Towards Lower Greenhouse Gas Emissions Agriculture in North Africa through Climate-Smart Agriculture: A Systematic Review
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Search and Inclusion Process
3.2. Search Results
4. Results
4.1. Broad Outlook on the Studies
4.2. Key Findings of Studies
5. Discussion
5.1. Research Orientations and Findings
5.2. Maturity of Low-Carbon Agriculture in NA
5.3. Status of Mitigation-Focused CSA
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Eds.; IPCC: Cambridge, UK, 2021. [Google Scholar]
- FAO. FAOSTAT Emissions Shares; FAO: Rome, Italy, 2020. [Google Scholar]
- Kim, D.-G.; Thomas, A.D.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A. Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: Synthesis of available data and suggestions for further research. Biogeosciences 2016, 13, 4789–4809. [Google Scholar] [CrossRef] [Green Version]
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 2004, 18, GB1009. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Livestock Patterns. 2020. Available online: https://www.fao.org/faostat/en/#data/EK (accessed on 14 January 2022).
- Statista. Contribution Share of Agriculture, Forestry, and Fishing Sector to the Gross Domestic Product (GDP) in North Africa in 2020, by Country. 2022. Available online: https://www.statista.com/statistics/1193834/agriculture-as-a-share-of-gdp-in-north-africa-by-country/ (accessed on 14 January 2022).
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- FAO. Climate-Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013. [Google Scholar]
- Tongwane, M.I.; Moeletsi, M.E. A review of greenhouse gas emissions from the agriculture sector in Africa. Agric. Syst. 2018, 166, 124–134. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Pawłowska, M.; Harasim, E.; Pawłowski, L. Strategies of Climate Change Mitigation in Agriculture Plant Production—A Critical Review. Energies 2023, 16, 4225. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef] [Green Version]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Frolking, S.; Butterbach-Bahl, K. Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Clim. Chang 2005, 72, 321–338. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- De Oliveira, M.E.D.; Vaughan, B.E.; Rykiel, E.J. Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint. Bioscience 2005, 55, 593–602. [Google Scholar] [CrossRef]
- Lovett, D.; Lovell, S.; Stack, L.; Callan, J.; Finlay, M.; Conolly, J.; O’Mara, F. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest. Prod. Sci. 2003, 84, 135–146. [Google Scholar] [CrossRef]
- Monteny, G.-J.; Bannink, A.; Chadwick, D. Greenhouse gas abatement strategies for animal husbandry. Agric. Ecosyst. Environ. 2006, 112, 163–170. [Google Scholar] [CrossRef]
- Dunnett, A.; Shirsath, P.; Aggarwal, P.; Thornton, P.; Joshi, P.; Pal, B.; Khatri-Chhetri, A.; Ghosh, J. Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions. Ecol. Model. 2018, 381, 23–35. [Google Scholar] [CrossRef]
- Anuga, S.W.; Chirinda, N.; Nukpezah, D.; Ahenkan, A.; Andrieu, N.; Gordon, C. Towards low carbon agriculture: Systematic-narratives of climate-smart agriculture mitigation potential in Africa. Curr. Res. Environ. Sustain. 2020, 2, 100015. [Google Scholar] [CrossRef]
- Ambaw, G.; Recha, J.W.M.; Nigussie, A.; Tadesse, M.; Radeny, M.A.O.; Solomon, D. Soil Organic Carbon Sequestration for Climate Change Mitigation in East African Climate-Smart Villages: Results from Climate-Smart Agriculture Interventions within Climate-Smart Villages in Kenya, Tanzania and Uganda. 2019. Available online: https://hdl.handle.net/10568/106207 (accessed on 14 January 2022).
- Roobroeck, D.; van Asten, P.J.A.; Vanlauwe, B. Integrated Soil Fertility Management: Contributions of Framework and Practices to Climate-Smart Agriculture. November 2015. Available online: https://hdl.handle.net/10568/69018 (accessed on 14 January 2022).
- Brandt, P.; Kvakić, M.; Butterbach-Bahl, K.; Rufino, M.C. How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework “targetCSA”. Agric. Syst. 2017, 151, 234–245. [Google Scholar] [CrossRef]
- Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Richards, M.; Bruun, T.B.; Campbell, B.; Gregersen, L.E.; Huyer, S.; Kuntze, V.; Madsen, S.T.N.; Oldvig, M.B.; Vasileiou, I. How Countries Plan to Address Agricultural Adaptation and Mitigation: An Analysis of Intended Nationally Determined Contributions. CCAFS Dataset. May 2016. Available online: https://hdl.handle.net/10568/73255 (accessed on 14 January 2022).
- Wright, R.W.; Brand, R.A.; Dunn, W.; Spindler, K.P. How to Write a Systematic Review. Clin. Orthop. Relat. Res. 2007, 455, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Bouazza, L.; Boufennara, S.; Bensaada, M.; Zeraib, A.; Rahal, K.; Saro, C.; Ranilla, M.J.; López, S. In vitro screening of Algerian steppe browse plants for digestibility, rumen fermentation profile and methane mitigation. Agrofor. Syst. 2019, 94, 1433–1443. [Google Scholar] [CrossRef]
- Mrabet, R.; Saber, N.; El-Brahli, A.; Lahlou, S.; Bessam, F. Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil Tillage Res. 2001, 57, 225–235. [Google Scholar] [CrossRef]
- Bessam, F.; Mrabet, R. Long-term changes in soil organic matter under conventional tillage and no-tillage systems in semiarid Morocco. Soil Use Manag. 2003, 19, 139–143. [Google Scholar] [CrossRef]
- Ben Moussa-Machraoui, S.; Errouissi, F.; Ben-Hammouda, M.; Nouira, S. Comparative effects of conventional and no-tillage management on some soil properties under Mediterranean semi-arid conditions in northwestern Tunisia. Soil Tillage Res. 2010, 106, 247–253. [Google Scholar] [CrossRef]
- Attia, A.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; Vianna, M.D.S.; Ullah, H.; Mansour, E.; Datta, A. Sensitivity of the DSSAT model in simulating maize yield and soil carbon dynamics in arid Mediterranean climate: Effect of soil, genotype and crop management. Field Crop. Res. 2020, 260, 107981. [Google Scholar] [CrossRef]
- Lembaid, I.; Moussadek, R.; Mrabet, R.; Douaik, A.; Bouhaouss, A. Modeling the effects of farming management practices on soil organic carbon stock under two tillage practices in a semi-arid region, Morocco. Heliyon 2021, 7, e05889. [Google Scholar] [CrossRef]
- Moula, N.; Salhi, A.; Touazi, L.; Philippe, F.X. Greenhouse gas emissions from livestock production in rural area of Algeria, the case of Chemini (Kabylie). Livest. Res. Rural Dev. 2015, 27. [Google Scholar]
- Ben Mbarek, H.; Gargouri, K.; Mbadra, C.; Ben Mahmoud, I.; Chaker, R.; Maktouf, S.; Abbas, O.; Baeten, V.; Rigane, H. Effects of combination of tillage with olive mill wastewater on soil organic carbon groups in arid soils. Arab. J. Geosci. 2020, 13, 255. [Google Scholar] [CrossRef]
- Bahri, H.; Annabi, M.; M’Hamed, H.C.; Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Sci. Total. Environ. 2019, 692, 1223. [Google Scholar] [CrossRef]
- Namr, K.I.; Mrabet, R. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco. J. Afr. Earth Sci. 2004, 39, 485–489. [Google Scholar] [CrossRef]
- Fenni, M.; Nadjem, K.; Mekhlouf, A. Carbon Sequestration by Direct Seeding of Wheat in Setif High Plains (North East of Algeria). In Progress in Clean Energy; Dincer, I., Colpan, C., Kizilkan, O., Ezan, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 1, pp. 615–621. [Google Scholar] [CrossRef]
- Gross, C.D.; Bork, E.W.; Carlyle, C.N.; Chang, S.X. Biochar and its manure-based feedstock have divergent effects on soil organic carbon and greenhouse gas emissions in croplands. Sci. Total Environ. 2022, 806, 151337. [Google Scholar] [CrossRef]
- Rahman, M.; Aravindakshan, S.; Hoque, M.A.; Rahman, M.A.; Gulandaz, A.; Rahman, J.; Islam, T. Conservation tillage (CT) for climate-smart sustainable intensification: Assessing the impact of CT on soil organic carbon accumulation, greenhouse gas emission and water footprint of wheat cultivation in Bangladesh. Environ. Sustain. Indic. 2021, 10, 100106. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Zhang, Y.; Song, Q.; Fan, P.; Xi, B.; Tan, W. Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil. Environ. Pollut. 2021, 288, 117733. [Google Scholar] [CrossRef]
- Darwish, T.; Atallah, T.; Fadel, A. Challenges of soil carbon sequestration in the NENA region. Soil 2018, 4, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Climate Change and Soil Quality in the WANA Region; Springer: Berlin/Heidelberg, Germany, 2013; pp. 55–74. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration in dryland ecosystems of West Asia and North Africa. Land Degrad. Dev. 2002, 13, 45–59. [Google Scholar] [CrossRef]
- López-Bellido, R.J.; Fontán, J.M.; López-Bellido, F.J.; López-Bellido, L. Carbon Sequestration by Tillage, Rotation, and Nitrogen Fertilization in a Mediterranean Vertisol. Agron. J. 2010, 102, 310–318. [Google Scholar] [CrossRef]
- Piovanelli, C.; Gamba, C.; Brandi, G.; Simoncini, S.; Batistoni, E. Tillage choices affect biochemical properties in the soil profile. Soil Tillage Res. 2006, 90, 84–92. [Google Scholar] [CrossRef]
- Havlík, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Böttcher, H.; Conant, R.T.; et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef] [Green Version]
- Barthelmie, R.J. Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US. Climate 2022, 10, 43. [Google Scholar] [CrossRef]
- Kumar, S.; Choudhury, P.K.; Carro, M.D.; Griffith, G.W.; Dagar, S.S.; Puniya, M.; Calabro, S.; Ravella, S.R.; Dhewa, T.; Upadhyay, R.C.; et al. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol. 2013, 98, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Van Gastelen, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouatahar, L.; Bannink, A.; Lanigan, G.; Amon, B. Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems. Sci. Total Environ. 2021, 776, 145932. [Google Scholar] [CrossRef]
- Pawłowski, L.; Pawłowska, M.; Kwiatkowski, C.A.; Harasim, E. The Role of Agriculture in Climate Change Mitigation—A Polish Example. Energies 2021, 14, 3657. [Google Scholar] [CrossRef]
- UNFCCC. NDC Registry (Interim). 2020. Available online: https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx (accessed on 16 January 2020).
- Pauw, W.P.; Castro, P.; Pickering, J.; Bhasin, S. Conditional nationally determined contributions in the Paris Agreement: Foothold for equity or Achilles heel? Clim. Policy 2019, 20, 468–484. [Google Scholar] [CrossRef] [Green Version]
- UN COMTRADE. International Trade Statistics Yearbook 2020. 2021. Available online: https://shop.un.org/ (accessed on 15 February 2023).
- Acevedo, M.; Pixley, K.; Zinyengere, N.; Meng, S.; Tufan, H.; Cichy, K.; Bizikova, L.; Isaacs, K.; Ghezzi-Kopel, K.; Porciello, J. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat. Plants 2020, 6, 1231–1241. [Google Scholar] [CrossRef]
- Brouziyne, Y.; Abouabdillah, A.; Hirich, A.; Bouabid, R.; Zaaboul, R.; Benaabidate, L. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agric. Syst. 2018, 162, 154–163. [Google Scholar] [CrossRef]
- CHarvey, A.; Chacón, M.; Donatti, C.I.; Garen, E.; Hannah, L.; Andrade, A.; Bede, L.; Brown, D.; Calle, A.; Chará, J.; et al. Climate-smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv. Lett. 2014, 7, 77–90. [Google Scholar] [CrossRef]
- Peterson, C.A. Local-Level Appraisal of Benefits and Barriers Affecting Adoption of Climate-Smart Agricultural Practices: Ghana. In CGIAR Research Program on Climate Change; Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2014. [Google Scholar]
- Ampaire, E.L.; Happy, P.; van Asten, P. The Role of Policy in Facilitating Adoption of Climate-Smart Agriculture in Uganda. In CGIAR Research Program on Climate Change; Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2015. [Google Scholar]
- Neufeldt, H.; Jahn, M.; Campbell, B.M.; Beddington, J.R.; DeClerck, F.; De Pinto, A.; Gulledge, J.; Hellin, J.; Herrero, M.; Jarvis, A.; et al. Beyond climate-smart agriculture: Toward safe operating spaces for global food systems. Agric. Food Secur. 2013, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Scherr, S.J.; Shames, S.; Friedman, R. From climate-smart agriculture to climate-smart landscapes. Agric. Food Secur. 2012, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Dougill, A.J.; Whitfield, S.; Stringer, L.C.; Vincent, K.; Wood, B.T.; Chinseu, E.L.; Steward, P.; Mkwambisi, D.D. Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers. J. Environ. Manag. 2017, 195, 25–34. [Google Scholar] [CrossRef]
Author(s), Year, | Country of Interest | Practice Evaluated | Methods, Approach | Key Findings |
---|---|---|---|---|
1. Bouazza et al. [29] | Algeria | alternative feedstuffs for ruminant nutrition | In vitro experiment | Leaves of Atriplex halimus and bark of Calligonum azel gave the lowest Methane production after fermentation (0.93 and 0.13 mmol g−1 dry matter, respectively) in comparison to other Algerian steppe browse species with Methane production ranging from 1.12 mmol g−1 dry matter to 2.63 mmol g−1 dry matter. |
2. Mrabet et al. [30] | Morocco | conservation tillage system and crop rotation (separately) | Field experiment | No-Till system has increased the soil organic carbon (SOC) by 13.6% across 11-years of experiment; and the fallow–wheat–forage sequestered more SOC (increase of 11.7%), followed by fallow–wheat–lentils (11%) and continuous wheat (10.9%) |
3. Bessam and Mrabet [31] | Morocco | conservation tillage system | Field experiment | No-till system sequestered 3.5 t ha−1and 3.4 t ha−1of SOC more than conventional till system over 4 and 11 years experiments respectively |
4. Ben Moussa-Machraoui et al. [32] | Tunisia | conservation tillage system | Field experiment | No-till system increases soil Carbon stock by an average of +4% to +7% compared to conventional till and depending on crop type after 4 years tests. |
5. Attia et al. [33] | Egypt | Organic amendment, crop rotation, residue management, and conservation tillage system | Field experiment and modeling | Maize residue retention levels left (5 Mg ha−1) and 10 Mg ha−1 of compost increased total SOC by 6180 kg C ha−1 under no-till and maize-fallow rotation as average across 10 years. The same treatment but with no residue left gave 1101 kg C ha−1 increase of total SOC and gave 1535 kg C ha−1 in the treatment with 5 Mg ha−1 of residue and no compost applied (no till was applied to all treatments). |
6. Lembaid et al. [34] | Morocco | Organic amendment, residue management, and conservation tillage system | Field experiment and modeling | +30% increase of SOC after adopting no-till practice over 9 years; and increase of SOC sequestration potential from 415 kg C ha−1 to 1787 kg C ha−1 under no-till practice, and from 150 kg C ha−1 to 818 kg C ha−1 (after 9 years) under conventional till system after increasing residue rate (to 90%) and applying 1 t ha−1 of manure |
7. Moula et al. [35] | Algeria | Animal genetics enhancement | survey | High producing dairy cattle has lower emission intensity (24.1 kg CO2-eq kg−1 milk and meat protein) than low producing cattle (50.9 kg CO2-eq kg−1 milk and meat protein) |
8. Ben Mbarek et al. [36] | Tunisia | Organic amendment and conservation tillage system (separately) | Field experiment | High soil organic matter (3.19%) in no till treatment for 80 years as well as in conventional till with annual application of 5l m−1 of olive mill wastewater for 20 years (1.78%) compared to conventional till treatment (0.82%) |
9. Bahri et al. [37] | Tunisia | residue management, and conservation tillage system | Modeling | Projections revealed higher decrease in SOC under semi-arid condition for conventional till treatment (−76%) than for no-till (−70%) and no-till and residue retention (−46%) in 2075–2094 compared to 2016–2035. In sub-humid area, the gain in SOC accumulation is computed to be +102% for no till, +75% for conventional till, and +25% for no till with residue retention in 2075–2094 compared to 2016–2035 |
10. Ibno Namr and Mrabet [38] | Morocco | Crop rotation, residue management, and conservation tillage system | Field experiment | After 4 years experiment, the highest SOC found in No-till with 50% of surface covered by residue (18 g kg−1) and in no-till with 100% surface covered by residue (17.7 g kg−1) compared to conventional till (14.3 g kg−1) in the 0–2.5 cm depth; no significant difference in higher depths. SOC was not significantly affected by crop rotation with slight advantage for continuous wheat at deep depth; SOC was not significantly affected by residue level under no-till at all the three depths due to retardation in crop residue degradation |
11. Fenni, Nadjem, and Mekhlouf [39] | Algeria | residue management and conservation tillage system | Field experiment | 260 g C m−2 and 257 g C m−2 of sequestered carbon in no-till and residue retention over durum and bread wheat crops respectively. 50% to 70% less fuel observed in no-till wheat cropping system compared to conventional till treatment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brouziyne, Y.; El Bilali, A.; Epule Epule, T.; Ongoma, V.; Elbeltagi, A.; Hallam, J.; Moudden, F.; Al-Zubi, M.; Vadez, V.; McDonnell, R. Towards Lower Greenhouse Gas Emissions Agriculture in North Africa through Climate-Smart Agriculture: A Systematic Review. Climate 2023, 11, 139. https://doi.org/10.3390/cli11070139
Brouziyne Y, El Bilali A, Epule Epule T, Ongoma V, Elbeltagi A, Hallam J, Moudden F, Al-Zubi M, Vadez V, McDonnell R. Towards Lower Greenhouse Gas Emissions Agriculture in North Africa through Climate-Smart Agriculture: A Systematic Review. Climate. 2023; 11(7):139. https://doi.org/10.3390/cli11070139
Chicago/Turabian StyleBrouziyne, Youssef, Ali El Bilali, Terence Epule Epule, Victor Ongoma, Ahmed Elbeltagi, Jamal Hallam, Fouad Moudden, Maha Al-Zubi, Vincent Vadez, and Rachael McDonnell. 2023. "Towards Lower Greenhouse Gas Emissions Agriculture in North Africa through Climate-Smart Agriculture: A Systematic Review" Climate 11, no. 7: 139. https://doi.org/10.3390/cli11070139
APA StyleBrouziyne, Y., El Bilali, A., Epule Epule, T., Ongoma, V., Elbeltagi, A., Hallam, J., Moudden, F., Al-Zubi, M., Vadez, V., & McDonnell, R. (2023). Towards Lower Greenhouse Gas Emissions Agriculture in North Africa through Climate-Smart Agriculture: A Systematic Review. Climate, 11(7), 139. https://doi.org/10.3390/cli11070139