Performance Evaluation of TerraClimate Monthly Rainfall Data after Bias Correction in the Fes-Meknes Region (Morocco)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation of the Study Area
2.2. Station Rain Gauge Data
2.3. TerraClimate Data
3. Bias Validation and Correction Methodology
3.1. Validation of Monthly Rainfall Data from TerraClimate
3.1.1. Correlation Coefficient
Criteria | Definition | Unit |
---|---|---|
Mean error between estimated (E) and observed (O). | (mm) | |
Mean absolute error between estimated (E) and observed (O). | (mm) | |
Mean squared error between estimated (E) and observed (O). | (mm2) | |
Root Mean Square Error (RMSE) between estimated (E) and observed (O). RMSE gives the standard deviation of the model prediction error. A smaller value indicates better model performance. | (mm) | |
Percent bias (PBIAS) measures the average tendency of the estimated values to be larger or smaller than their observed ones. The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate TerraClimate data. Positive values indicate overestimation bias, whereas negative values indicate underestimation bias. | (%) | |
Coefficient of Determination. | (-) | |
The Index of Agreement (d) developed by [33] as a standardized measure of the degree of TerraClimate prediction error and varies between 0 and 1. A value of 1 indicates a perfect match, and 0 indicates no agreement at all [33]. The index of agreement can detect additive and proportional differences in the observed and estimated means and variances; however, it is overly sensitive to extreme values due to the squared differences [30]. | (-) |
3.1.2. Index of Agreement
3.1.3. Measures of Error
3.1.4. Graphical Comparison
3.2. Quantile Mapping Bias-Correction Methods
4. Results
4.1. Validation of TC Monthly Rainfall before Bias Correction
4.2. Validation of Bias Correction Methods for TC Rainfall Data Using the Taylor Diagram
4.3. Validation of TC Monthly Rainfall Data after Bias Correction
4.4. Comparisons of Average Monthly Rainfall Patterns Observed and Estimated by TerraClimate
4.4.1. Comparisons of Rainfall Patterns before Bias Correction
4.4.2. Comparisons of Rainfall Patterns after Bias Correction
- All stations show an overestimation of March rainfall;
- Unlike the Aguelman Sidi Ali station, the other stations show an underestimation of January and April rainfall and an overestimation of January rainfall;
- The Azzaba station is unique in its underestimation of April rainfall, unlike the other stations;
- September rainfall is underestimated at Azib Soltane, Azzaba, and Aïn Aicha stations;
- Except for Aïn Aicha and Azib Soltane stations, October rainfall is overestimated at the other three stations;
- Rainfall in December is significantly underestimated at mountain stations (Aguelman Sidi Ali and Jbel Outka) compared to the three low-altitude stations;
- Summer rainfall is substantially underestimated at the Aguelman Sidi Ali station;
- May rainfall estimation is relatively accurate across all stations when compared to the other months.
4.4.3. Effectiveness of Bias Correction by Quantile Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Iturbe, I.; De Power, B.F.; Sharifi, M.B.; Georgakakos, K.P. Chaos in rainfall. Water Resour. Res. 1989, 25, 1667–1675. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis. Int. J. Climatol. 2021, 41, 5431–5446. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Centella-Artola, A.; Bezanilla-Morlot, A.; Taylor, M.A.; Herrera, D.A.; Martinez-Castro, D.; Gouirand, I.; Sierra-Lorenzo, M.; Vichot-Llano, A.; Stephenson, T.; Fonseca, C.; et al. Evaluation of Sixteen Gridded Precipitation Datasets over the Caribbean Region Using Gauge Observations. Atmosphere 2020, 11, 1334. [Google Scholar] [CrossRef]
- Abdi, O. Climate-Triggered Insect Defoliators and Forest Fires Using Multitemporal Landsat and TerraClimate Data in NE Iran: An Application of GEOBIA TreeNet and Panel Data Analysis. Sensors 2019, 19, 3965. [Google Scholar] [CrossRef]
- Wu, B.; Ma, Z.; Yan, N. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, J.; Wang, C.; Guo, E. Characteristic Analysis of Droughts and Waterlogging Events for Maize Based on a New Comprehensive Index through Coupling of Multisource Data in Midwestern Jilin Province, China. Remote Sens. 2019, 12, 60. [Google Scholar] [CrossRef]
- Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of global actual evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 2021, 13, 447–480. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y.; Zhang, Y. Land desertification and its influencing factors in Kazakhstan. J. Arid Environ. 2020, 180, 104203. [Google Scholar] [CrossRef]
- Khan, R.; Gilani, H.; Iqbal, N.; Shahid, I. Satellite-based (2000–2015) drought hazard assessment with indices, mapping, and monitoring of Potohar plateau, Punjab, Pakistan. Environ. Earth Sci. 2019, 79, 23. [Google Scholar] [CrossRef]
- Salhi, A.; Martin-Vide, J.; Benhamrouche, A.; Benabdelouahab, S.; Himi, M.; Benabdelouahab, T.; Casas Ponsati, A. Rainfall distribution and trends of the daily precipitation concentration index in northern Morocco: A need for an adaptive environmental policy. SN Appl. Sci. 2019, 1, 277. [Google Scholar] [CrossRef]
- Dubey, S.; Gupta, H.; Goyal, M.K.; Joshi, N. Evaluation of precipitation datasets available on Google earth engine over India. Int. J. Climatol. 2021, 41, 4844–4863. [Google Scholar] [CrossRef]
- Tuel, A.; Kang, S.; Eltahir, E.A.B. Understanding climate change over the southwestern Mediterranean using high-resolution simulations. Clim. Dyn. 2021, 56, 985–1001. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Hansen, J.W. Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef]
- Sapountzis, M.; Kastridis, A.; Kazamias, A.P.; Karagiannidis, A.; Nikopoulos, P.; Lagouvardos, K. Utilization and uncertainties of satellite precipitation data in flash flood hydrological analysis in ungauged watersheds. Glob. Nest J. 2021, 23, 388–399. [Google Scholar] [CrossRef]
- Maghsood, F.F.; Hashemi, H.; Hosseini, S.H.; Berndtsson, R. Ground Validation of GPM IMERG Precipitation Products over Iran. Remote Sens. 2020, 12, 48. [Google Scholar] [CrossRef]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue. J. Clim. 2013, 26, 2137–2143. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Reiter, P.; Gutjahr, O.; Schefczyk, L.; Heinemann, G.; Casper, M. Does applying quantile mapping to subsamples improve the bias correction of daily precipitation? Int. J. Climatol. 2018, 38, 1623–1633. [Google Scholar] [CrossRef]
- Vigna, I.; Bigi, V.; Pezzoli, A.; Besana, A. Comparison and Bias-Correction of Satellite-Derived Precipitation Datasets at Local Level in Northern Kenya. Sustainability 2020, 12, 2896. [Google Scholar] [CrossRef]
- Heo, J.-H.; Ahn, H.; Shin, J.-Y.; Kjeldsen, T.R.; Jeong, C. Probability Distributions for a Quantile Mapping Technique for a Bias Correction of Precipitation Data: A Case Study to Precipitation Data Under Climate Change. Water 2019, 11, 1475. [Google Scholar] [CrossRef]
- Kessabi, R.; Hanchane, M.; Guijarro, J.A.; Krakauer, N.Y.; Addou, R.; Sadiki, A.; Belmahi, M. Homogenization and Trends Analysis of Monthly Precipitation Series in the Fez-Meknes Region, Morocco. Climate 2022, 10, 64. [Google Scholar] [CrossRef]
- HCP. Recensement Général de la Populatiion et de l’Habitat; Monographie Générale; Région de Fès-Meknès. 2014; p. 171. Rabat, Morocco. Available online: https://www.hcp.ma/ (accessed on 23 May 2023).
- DGCL. Monographie Générale; Région de Fès-Meknè. 2015; p. 62. Rabat, Morocco. Available online: https://collectivites-territoriales.gov.ma/fr/node/738 (accessed on 23 May 2023).
- Ebita, A.; Kobayashi, S.; Ota, Y.; Moriya, M.; Kumabe, R.; Onogi, K.; Harada, Y.; Yasui, S.; Miyaoka, K.; Takahashi, K.; et al. The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA 2011, 7, 149–152. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large rwer basin with point and nonpoint sources. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Willmott, C.J. On the Evaluation of Model Performance in Physical Geography BT—Spatial Statistics and Models; Gaile, G.L., Willmott, C.J., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 443–460. ISBN 978-94-017-3048-8. [Google Scholar]
- Singh, U.; Agarwal, P.; Sharma, P.K. Meteorological drought analysis with different indices for the Betwa River basin, India. Theor. Appl. Climatol. 2022, 148, 1741–1754. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. ASCE 1999, 4, 135–143. [Google Scholar] [CrossRef]
- ASCE Criteria for Evaluation of Watershed Models. J. Irrig. Drain. Eng. 1993, 119, 429–442. [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Manatsa, D.; Chingombe, W.; Matarira, C.H. The impact of the positive Indian Ocean dipole on Zimbabwe droughts. Int. J. Climatol. 2008, 28, 2011–2029. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115, 520. [Google Scholar] [CrossRef]
- Dosio, A.; Paruolo, P. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. J. Geophys. Res. Atmos. 2011, 116, 161. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R.; Ramis, C. Future extremes of temperature and precipitation in Europe derived from a combination of dynamical and statistical approaches. Int. J. Climatol. 2020, 40, 4800–4827. [Google Scholar] [CrossRef]
- Allen, M.R.; Stott, P.A. Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Clim. Dyn. 2003, 21, 477–491. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Ruoyun, N.; Babaousmail, H.; Ojara, M.; Wido, H.; Mumo, L.; Ngoma, N.H.; Nooni, I.K.; Ongoma, V. Quantile Mapping Bias Correction on Rossby Centre Regional Climate Models for Precipitation Analysis over Kenya, East Africa. Water 2020, 12, 801. [Google Scholar] [CrossRef]
- Darand, M.; Khandu, K. Statistical evaluation of gridded precipitation datasets using rain gauge observations over Iran. J. Arid Environ. 2020, 178, 104172. [Google Scholar] [CrossRef]
Rain Gauge Station | Latitude ° | Longitude ° | Elevation in (Meters) | Mean Annual Precipitation in (mm) | T Average in (°C) | The de Martonne Aridity Index | Climate | |
---|---|---|---|---|---|---|---|---|
Rain Gauge Data | Terra Climate | |||||||
Aguelman Sidi Ali | 33.1 | −5.0 | 2089 | 423.9 | 329.2 | 10.0 | 21 | Sub humid |
Ain Aicha | 34.5 | −4.7 | 236 | 500.4 | 602.8 | 18.9 | 17 | Semi-arid |
Azib Soltane | 34.5 | −5.1 | 298 | 488.9 | 692.4 | 19.1 | 17 | Semi-arid |
Azzaba | 33.8 | −4.7 | 373 | 339.9 | 416.8 | 17.7 | 12 | Semi-arid |
Jbel Outhka | 34.7 | −4.8 | 1589 | 1515.2 | 817.0 | 14.5 | 62 | Humid |
Method | Description | References |
---|---|---|
fitQmapQUANT: Non-parametric quantile mapping using empirical quantiles. | Estimates values of the empirical cumulative distribution function of observed and modeled time series for regularly spaced quantiles. doQmapQUANT uses these estimates to perform quantile mapping. | [37,39] |
fitQmapRQUANT: Non-parametric quantile mapping using robust empirical quantiles | Estimates the values of the quantile-quantile relation of observed and modeled time series for regularly spaced quantiles using local linear least square regression. doQmapRQUANT performs quantile mapping by interpolating the empirical quantiles. | [39] |
fitQmapSSPLIN: Quantile mapping using a smoothing spline | fitQmapSSPLIN fits a smoothing spline to the quantile-quantile plot of observed and modeled time. doQmapSSPLIN uses the spline function to adjust the distribution of the modeled data to match the distribution of the observations. | [37] |
fitQmapDIST: Quantile mapping using distribution-derived transformations | fitQmapDIST fits a theoretical distribution to observed and to modeled time series and returns these parameters and a transfer function derived from the distribution. doQmapDIST uses the transfer function to transform the distribution of the modeled data to match the distribution of the observations. | [16,17,37,40] |
fitQmapPTF: Quantile mapping using parametric transformations | fitQmapPTF fits parametric transformations to the quantile-quantile relation of observed and modeled values. doQmapPTF uses the transformation to adjust the distribution of the modeled data to match the distribution of the observations. | [20,37,41] |
Aïn Aicha_ before bias correction | Aïn Aïcha_ after bias correction | ||||||||||||||
Month | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | SD |
S | 3.04 | 8.43 | 131.8 | 11.5 | 25.6 | 0.5 | 0.81 | −4.21 | 7.6 | 149.7 | 12.2 | −35.4 | 0.52 | 0.71 | 15.92 |
O | 16.58 | 20.64 | 667.2 | 25.8 | 42.2 | 0.7 | 0.86 | −0.15 | 12.1 | 312 | 17.7 | −0.4 | 0.71 | 0.9 | 33.29 |
N | 42.35 | 44.89 | 2731 | 52.3 | 58 | 0.8 | 0.81 | 13.6 | 22.7 | 817 | 28.6 | 18.6 | 0.78 | 0.9 | 50.39 |
D | 26.19 | 32.64 | 1699.2 | 41.2 | 35.8 | 0.83 | 0.92 | 0.59 | 18.8 | 733 | 27.1 | 0.8 | 0.84 | 1 | 69.4 |
J | 2.31 | 12.4 | 276 | 16.6 | 4 | 0.89 | 1 | −15 | 18.37 | 611.1 | 24.7 | −25.8 | 0.9 | 0.92 | 50.49 |
F | 23.8 | 27.1 | 1012 | 33.3 | 42.4 | 0.8 | 0.87 | 2.65 | 15.7 | 493 | 22.2 | 4.7 | 0.8 | 0.9 | 45.48 |
M | 29.17 | 30.51 | 1363 | 36.9 | 63.2 | 0.78 | 0.85 | 8.83 | 16.5 | 472 | 21.7 | 19.1 | 0.77 | 0.9 | 42.05 |
A | 29.17 | 30.51 | 1363.1 | 36.9 | 63.2 | 0.8 | 0.85 | −6.78 | 13.7 | 259 | 19 | −15.4 | 0.66 | 0.9 | 30.95 |
M | 12.7 | 15.5 | 347.6 | 18.6 | 51 | 0.7 | 0.9 | −21.5 | 31.48 | 2424 | 49.2 | −46.7 | 0.01 | 0.41 | 26.22 |
J | 5.51 | 5.68 | 96.4 | 9.82 | 143.1 | 0.7 | 0.78 | 0.63 | 2.94 | 25.7 | 5.07 | 16.4 | 0.67 | 0.9 | 7.48 |
J | −0.46 | 0.46 | 2.04 | 1.43 | −100 | NA | 0.3 | −0.46 | 0.46 | 2 | 1.43 | −100 | NA | 0.26 | 1.37 |
A | −0.72 | 2.15 | 23.6 | 4.86 | −38.3 | 0.1 | 0.3 | −1.85 | 1.85 | 28.6 | 5.35 | −98 | 0.07 | 0.26 | 5.14 |
Azib Soltan_ before bias correction | Azib Soltan_ after bias correction | ||||||||||||||
Month | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | SD |
S | 1.46 | 7.89 | 106.3 | 10.31 | 10.5 | 0.74 | 0.9 | −6.37 | 8.66 | 207.4 | 14.4 | −45.8 | 0.77 | 0.7 | 18.95 |
O | −3.74 | 15.62 | 427.6 | 20.68 | −8 | 0.67 | 0.89 | −1.28 | 13.88 | 397.9 | 19.18 | 2.7 | 0.71 | 0.92 | 35.87 |
N | −16.5 | 23.54 | 1005.5 | 31.71 | −19.3 | 0.78 | 0.89 | 8.62 | 17.98 | 555.2 | 23.59 | 10.1 | 0.86 | 0.96 | 55.63 |
D | −10.8 | 20.01 | 885.7 | 29.76 | −13.7 | 0.87 | 0.93 | 3.07 | 18.52 | 731 | 27.04 | 3.9 | 0.86 | 0.96 | 68.69 |
J | −22.5 | 25.1 | 1777.7 | 42.16 | −33.9 | 0.84 | 0.8 | −11.4 | 17.25 | 747.3 | 27.34 | −17.2 | 0.89 | 0.93 | 63.04 |
F | −18.7 | 26.08 | 1358.4 | 36.86 | −31.3 | 0.7 | 0.75 | 8.06 | 19.65 | 656.9 | 25.63 | 13.5 | 0.75 | 0.92 | 49.45 |
M | 0.94 | 16.1 | 409.5 | 20.24 | 2 | 0.7 | 0.9 | 11.72 | 18.46 | 564.5 | 23.76 | 24.7 | 0.75 | 0.91 | 37.58 |
A | −2.32 | 11.81 | 266.8 | 16.33 | −5.3 | 0.68 | 0.9 | −1.43 | 10.51 | 227 | 15.07 | −3.3 | 0.73 | 0.92 | 28.99 |
M | 2.15 | 18.6 | 610.5 | 24.71 | 7 | 0.47 | 0.8 | −21.6 | 31.86 | 2092 | 45.74 | −45.5 | 0.03 | 0.49 | 34.19 |
J | 0.39 | 4.53 | 44 | 6.7 | 4.7 | 0.73 | 0.9 | −3.7 | 4.43 | 63.8 | 7.99 | −44.4 | 0.72 | 0.87 | 13.08 |
J | −1.29 | 2.33 | 25 | 5.06 | −59.1 | 0.06 | 0.29 | −2.17 | 2.17 | 30 | 5.48 | −100 | NA | 0.33 | 5.1 |
A | 2.27 | 2.74 | 12 | 3.47 | 188 | 0.3 | 0.6 | −1.13 | 1.16 | 6.8 | 2.6 | −93.5 | 0.39 | 0.39 | 2.55 |
Azzaba_ before bias correction | Azzaba_ after bias correction | ||||||||||||||
Month | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | SD |
S | −1.94 | 9.12 | 208.7 | 14.5 | −11.2 | 0.57 | 0.8 | −5.49 | 9.24 | 258.8 | 16.1 | −31.7 | 0.57 | 0.72 | 21.52 |
O | 8.13 | 14.23 | 327.5 | 18.1 | 23.2 | 0.79 | 0.92 | 0.33 | 13.2 | 314 | 17.7 | 0.9 | 0.77 | 0.91 | 35.24 |
N | 24.94 | 26.9 | 1334.8 | 36.5 | 56.6 | 0.58 | 0.72 | 13.3 | 18.5 | 684 | 26.1 | 30.1 | 0.58 | 0.81 | 26 |
D | 29.16 | 29.31 | 1785.3 | 42.2 | 74.7 | 0.69 | 0.74 | 17.8 | 19.8 | 1008 | 31.7 | 45.6 | 0.66 | 0.81 | 29.18 |
J | 3.94 | 12.02 | 288.3 | 17 | 9.8 | 0.72 | 0.91 | −3.78 | 10.8 | 220 | 14.8 | −9.4 | 0.74 | 0.92 | 28.2 |
F | 2.51 | 10.81 | 179.4 | 13.4 | 6.5 | 0.73 | 0.9 | −4.79 | 10.4 | 194.6 | 13.9 | −12.4 | 0.72 | 0.9 | 25.18 |
M | 12.03 | 16.62 | 496.3 | 22.3 | 33.1 | 0.6 | 0.81 | 3.14 | 12.8 | 251 | 15.8 | 8.6 | 0.61 | 0.87 | 21.84 |
A | −1.79 | 17.4 | 981.8 | 31.3 | −4.1 | 0.51 | 0.8 | −9.23 | 17.89 | 1130 | 33.6 | −21.4 | 0.5 | 0.71 | 44.38 |
M | 3.92 | 12.4 | 231.6 | 15.2 | 13.5 | 0.67 | 0.9 | −9.58 | 25.43 | 889.2 | 29.8 | −26.4 | 0 | 0.43 | 25.98 |
J | 0.4 | 4.31 | 40.7 | 6.4 | 4.8 | 0.77 | 0.9 | −1.71 | 3.91 | 45.3 | 6.7 | −21.1 | 0.8 | 0.91 | 13.42 |
J | −2.23 | 2.92 | 42.1 | 6.5 | −71.5 | 0.19 | 0.33 | −2.93 | 3 | 47.3 | 6.9 | −94.1 | 0.22 | 0.35 | 6.51 |
A | −1.27 | 3.68 | 48.9 | 7 | −26.8 | 0.53 | 0.6 | −2.55 | 3.6 | 58.4 | 7.6 | −53.8 | 0.48 | 0.54 | 8.84 |
Aguelman Sidi Ali_ before bias correction | Aguelman Sidi Ali_ after bias correction | ||||||||||||||
Month | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | SD |
S | −7.91 | 17.02 | 531.8 | 23 | −21.3 | 0.43 | 0.77 | 0.83 | 16.47 | 584.6 | 24.18 | 2.5 | 0.44 | 0.8 | 29.34 |
O | −5.43 | 15.4 | 438.6 | 21 | −13.5 | 0.65 | 0.86 | 7.66 | 17.43 | 495.6 | 22.26 | 19 | 0.68 | 0.9 | 34.17 |
N | −10.3 | 19.9 | 910.5 | 30.2 | −18 | 0.58 | 0.8 | −4.69 | 29.18 | 1781 | 42.2 | −8.2 | 0.23 | 0.71 | 44.06 |
D | −21.2 | 23.84 | 1510.7 | 38.9 | −45.4 | 0.68 | 0.67 | −13.3 | 20.3 | 989 | 31.45 | −28.5 | 0.68 | 0.81 | 46.9 |
J | −2.66 | 8.64 | 143.1 | 12 | −9.2 | 0.81 | 0.93 | 5.65 | 9.86 | 177.3 | 13.31 | 19.4 | 0.82 | 0.94 | 26.39 |
F | −3.89 | 13.2 | 340.5 | 18. 5 | −11.2 | 0.57 | 0.82 | 5.77 | 13.79 | 367.3 | 19.17 | 16.6 | 0.58 | 0.86 | 27.63 |
M | −1.16 | 12.1 | 275.6 | 16.6 | −3.1 | 0.59 | 0.9 | 11.6 | 17.06 | 523 | 22.87 | 31 | 0.6 | 0.84 | 26.19 |
A | −8.6 | 15.71 | 546.1 | 23.4 | −21.3 | 0.6 | 0.81 | 2.12 | 15.3 | 516 | 22.7 | 5.2 | 0.57 | 0.87 | 33.84 |
M | −7.12 | 13.3 | 350.5 | 18.7 | −17.8 | 0.66 | 0.9 | 6.83 | 33.49 | 1812 | 42.57 | 18.3 | 0 | 0.33 | 30.06 |
J | −12.3 | 16.9 | 510 | 22.6 | −43.7 | 0.37 | 0.7 | −8.16 | 17.42 | 510.3 | 22.59 | −29.1 | 0.36 | 0.75 | 24.04 |
J | −8.51 | 12.18 | 434.1 | 20.9 | −54.2 | 0.02 | 0.4 | −7.88 | 12.54 | 443.2 | 21.05 | −50.2 | 0.01 | 0.4 | 19.2 |
A | −7.99 | 14 | 386 | 19. 7 | −36.1 | 0.07 | 0.52 | −4.79 | 15.14 | 402.8 | 20.07 | −21.6 | 0.07 | 0.54 | 17.78 |
Jbel Outhka_ before bias correction | Jbel Outhka_ after bias correction | ||||||||||||||
Month | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | ME (mm) | MAE (mm) | MSE (mm2) | RMSE (mm) | PBias (%) | R2 | d | SD |
S | −3.23 | 16.1 | 674.8 | 26 | −12 | 0.45 | 0.7 | 1.83 | 16.81 | 621.4 | 24.9 | 6.8 | 0.47 | 0.81 | 35.67 |
O | −36.2 | 4247 | 3404.8 | 58.3 | −34.4 | 0.62 | 0.76 | 5.12 | 40.8 | 2755 | 52.5 | 4.9 | 0.6 | 0.87 | 73.67 |
N | −67.9 | 75.9 | 12,390 | 111.3 | −28.7 | 0.76 | 0.81 | 71.11 | 89.62 | 14,800 | 121.7 | 30.1 | 0.75 | 0.88 | 165.93 |
D | −146 | 155 | 50,199 | 224.1 | −65.3 | 0.79 | 0.6 | −90.1 | 107 | 23,897 | 154.6 | −41.5 | 0.79 | 0.81 | 234.33 |
J | −95.7 | 104.5 | 21,474 | 146.5 | −46 | 0.89 | 0.76 | −9.08 | 47.2 | 3996 | 63.2 | −4.4 | 0.89 | 0.97 | 219.64 |
F | −71.3 | 88.11 | 19,047 | 138 | −36.9 | 0.61 | 0.68 | 20.2 | 69 | 10,732 | 103.6 | 10.5 | 0.62 | 0.87 | 177.85 |
M | −28.9 | 61.1 | 9409 | 97 | −19.6 | 0.64 | 0.79 | 91.39 | 85.06 | 12,048 | 109.8 | 41.7 | 0.67 | 0.86 | 146.54 |
A | −74 | 74.41 | 9823 | 94.4 | −53 | 0.54 | 0.61 | −36.6 | 58.8 | 4995 | 70.7 | −26.2 | 0.52 | 0.78 | 94.89 |
M | −27.1 | 35.11 | 3162.7 | 56.2 | −39.2 | 0.76 | 0.7 | −86 | 105.6 | 29,407 | 171.5 | −58.4 | 0.01 | 0.4 | 80.11 |
J | −1.66 | 5.52 | 75.1 | 8.7 | −16.2 | 0.74 | 0.9 | −1.74 | 6.02 | 93.1 | 9.65 | −17 | 0.74 | 0.92 | 17.96 |
J | −0.69 | 1.39 | 6 | 2.44 | −44.6 | 0.14 | 0.5 | −1.38 | 1.46 | 7.85 | 2.8 | −88.6 | 0.1 | 0.4 | 2.77 |
A | −8.12 | 10.61 | 1729 | 41.6 | −69.7 | 0.21 | 0.16 | −9.67 | 10.5 | 1775.7 | 42.1 | −83 | 0.19 | 0.17 | 8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanchane, M.; Kessabi, R.; Krakauer, N.Y.; Sadiki, A.; El Kassioui, J.; Aboubi, I. Performance Evaluation of TerraClimate Monthly Rainfall Data after Bias Correction in the Fes-Meknes Region (Morocco). Climate 2023, 11, 120. https://doi.org/10.3390/cli11060120
Hanchane M, Kessabi R, Krakauer NY, Sadiki A, El Kassioui J, Aboubi I. Performance Evaluation of TerraClimate Monthly Rainfall Data after Bias Correction in the Fes-Meknes Region (Morocco). Climate. 2023; 11(6):120. https://doi.org/10.3390/cli11060120
Chicago/Turabian StyleHanchane, Mohamed, Ridouane Kessabi, Nir Y. Krakauer, Abderrazzak Sadiki, Jaafar El Kassioui, and Imane Aboubi. 2023. "Performance Evaluation of TerraClimate Monthly Rainfall Data after Bias Correction in the Fes-Meknes Region (Morocco)" Climate 11, no. 6: 120. https://doi.org/10.3390/cli11060120
APA StyleHanchane, M., Kessabi, R., Krakauer, N. Y., Sadiki, A., El Kassioui, J., & Aboubi, I. (2023). Performance Evaluation of TerraClimate Monthly Rainfall Data after Bias Correction in the Fes-Meknes Region (Morocco). Climate, 11(6), 120. https://doi.org/10.3390/cli11060120