Brief Overview of Greek Fir Radial Growth in Response to Climate and European Fir Budworm: Three Case Studies from Giona Mountain, Central Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Tree Growth
3.2. Climatic Factors
3.3. Break Years of Growth and Temperature Time Series
3.4. European Fir Budworm Infestations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peñuelas, J.; Lloret, F.; Montoya, R. Severe Drought Effects on Mediterranean Woody Flora in Spain. For. Sci. 2001, 47, 214–218. [Google Scholar]
- Dobbertin, M. Tree Growth as Indicator of Tree Vitality and of Tree Reaction to Environmental Stress: A Review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Parry, M.; Canziani, O.; Palutikof, J.; Linden, P.; Hanson, C. Climate Change 2007: Impact, Adaptation and Vulnerability by Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC; Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation—SREX Summary for Policymakers; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.D.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; et al. A Multi-Species Synthesis of Physiological Mechanisms in Drought-Induced Tree Mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of Tree Mortality under Drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Colangelo, M.; Camarero, J.J.; Ripullone, F.; Gazol, A.; Sánchez-Salguero, R.; Oliva, J.; Redondo, M.A. Drought Decreases Growth and Increases Mortality of Coexisting Native and Introduced Tree Species in a Temperate Floodplain Forest. Forests 2018, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Cerrillo, R.M.; Rodriguez-Vallejo, C.; Silveiro, E.; Hortal, A.; Palacios-Rodríguez, G.; Duque-Lazo, J.; Camarero, J.J. Cumulative Drought Stress Leads to a Loss of Growth Resilience and Explains Higher Mortality in Planted than in Naturally Regenerated Pinus Pinaster Stands. Forests 2018, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Cerrillo, R.M.; Gazol, A.; Rodríguez-Vallejo, C.; Manzanedo, R.D.; Palacios-Rodríguez, G.; Camarero, J.J. Linkages between Climate, Radial Growth and Defoliation in Abies Pinsapo Forests from Southern Spain. Forests 2020, 11, 1002. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; González-Moreno, P.; Ruiz-Gómez, F.J.; Sánchez-Cuesta, R.; Gazol, A.; Camarero, J.J. Drought Stress and Pests Increase Defoliation and Mortality Rates in Vulnerable Abies Pinsapo Forests. For. Ecol. Manag. 2022, 504, 119824. [Google Scholar] [CrossRef]
- Gazol, A.; Sangüesa-Barreda, G.; Camarero, J.J. Forecasting Forest Vulnerability to Drought in Pyrenean Silver Fir Forests Showing Dieback. Front. For. Glob. Chang. 2020, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Gazol, A.; Camarero, J.J.; Gutiérrez, E.; Popa, I.; Andreu-Hayles, L.; Motta, R.; Nola, P.; Ribas, M.; Sangüesa-Barreda, G.; Urbinati, C.; et al. Distinct Effects of Climate Warming on Populations of Silver Fir (Abies Alba) across Europe. J. Biogeogr. 2015, 42, 1150–1162. [Google Scholar] [CrossRef] [Green Version]
- Gentilesca, T.; Todaro, L. Tree-Ring Growth and Climate Response of Silver Fir (Abies Alba Mill.) in Basilicata (Southern Italy). For. J. Silvic. For. Ecol. 2008, 5, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Mazza, G.; Gallucci, V.; Manetti, M.C.; Urbinati, C. Climate-Growth Relationships of Silver Fir (Abies Alba Mill.) in Marginal Populations of Central Italy. Dendrochronologia 2014, 32, 181–190. [Google Scholar] [CrossRef]
- Sarris, D.; Christodoulakis, D.; Körner, C. Recent Decline in Precipitation and Tree Growth in the Eastern Mediterranean. Glob. Change Biol. 2007, 13, 1187–1200. [Google Scholar] [CrossRef]
- Papadopoulos, A. Tree-Ring Patterns and Climate Response of Mediterranean Fir Populations in Central Greece. Dendrochronologia 2016, 40, 17–25. [Google Scholar] [CrossRef]
- Koulelis, P.P.; Daskalakou, E.N.; Ioannidis, K.E. Impact of Regional Climatic Conditions on Tree Growth on Mainland Greece. Folia Oecologica 2019, 46, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Koulelis, P.P.; Fassouli, V.P.; Petrakis, P.V.; Ioannidis, K.D. The Impact of Selected Climatic Factors on the Growth of Greek Fir on Mount Giona in Mainland Greece Based on Tree Ring Analysis. Austrian J. For. Sci. 2022, 1, 1–30. [Google Scholar]
- Koutavas, A. Late 20th Century Growth Acceleration in Greek Firs (Abies Cephalonica) from Cephalonia Island, Greece: A CO2 Fertilization Effect? Dendrochronologia 2008, 26, 13–19. [Google Scholar] [CrossRef]
- Markalas, S. Site and Stand Factors Related to Mortality Rate in a Fir Forest after a Combined Incidence of Drought and Insect Attack. For. Ecol. Manag. 1992, 47, 367–374. [Google Scholar] [CrossRef]
- Brofas, G.; Economidou, E. Le dépérissement du Sapin du Mont Parnasse. Lerôle des conditions climatiques et écologiques. Ecol. Mediterr. 1994, 20, 1–8. [Google Scholar] [CrossRef]
- Tsopelas, P.; Angelopoulos, A.; Economou, A.; Soulioti, N. Mistletoe (Viscum Album) in the Fir Forest of Mount Parnis, Greece. For. Ecol. Manag. 2004, 202, 59–65. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Raftoyannis, Y.; Pantera, A. Fir decline in Greece: A dendroclimatological approach. In Proceedings of the 10th International Conference on Environmental Science and Technology (CEST-2007), Kos, Greece, 5–7 September 2007; pp. 571–578. [Google Scholar]
- Papadopoulos, A.M. Investigations dendroclimatologiques du Sapin deCéphalonie en Grèce Centrale. Geogr. Tech. 2009, 2, 34–38. [Google Scholar]
- Koutavas, A. CO2 fertilization and enhanced drought resistance in Greek firsfrom Cephalonia Island, Greece. Glob. Change Biol. 2013, 19, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.; Im, E.S.; Coppola, E.; Diffenbaugh, N.S.; Gao, X.J.; Mariotti, L.; Shi, Y. Higher Hydroclimatic Intensity with Global Warming. J. Clim. 2011, 24, 5309–5324. [Google Scholar] [CrossRef]
- Baillie, M.G. Tree-Ring Dating and Archaeology; Croom Helm: Dundee, UK, 1982. [Google Scholar]
- Fritts, H.C. Tree-Rings and Climate; Academic Press: London, UK, 1976; 567p. [Google Scholar]
- Schweingruber, F.H. Tree Rings: Basics and Applications of Dendrochronology; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Stokes, M.A. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996. [Google Scholar]
- Pearl, J.K.; Keck, J.R.; Tintor, W.; Siekacz, L.; Herrick, H.M.; Meko, M.D.; Pearson, C.L. New Frontiers in Tree-Ring Research. Holocene 2020, 30, 923–941. [Google Scholar] [CrossRef]
- Waring, R.H.; Running, S.W. Forest Ecosystems: Analysis at Multiple Scales; Academic Press: San Diego, CA, USA, 1998; 370p. [Google Scholar]
- Littell, J.S.; Peterson, D.L.; Tjoelker, M. Douglas-Fir Growth in Mountain Ecosystems: Water Limits Tree Growth from Stand to Region. Ecol. Monogr. 2008, 78, 349–368. [Google Scholar] [CrossRef]
- Bunn, A.G.; Waggoner, L.A.; Graumlich, L.J. Topographic Mediation of Growth in High Elevation Foxtail Pine (Pinus Balfouriana Grev. et Balf.) Forests in the Sierra Nevada, USA. Glob. Ecol. Biogeogr. 2005, 14, 103–114. [Google Scholar] [CrossRef]
- Holman, M.L.; Peterson, D.L. Spatial and Temporal Variability in Forest Growth in the Olympic Mountains, Washington: Sensitivity to Climatic Variability. Can. J. For. Res. 2006, 36, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Petrakis, P.V.; Koulelis, P.P.; Fassouli, V.P.; Solomou, A.D. Preliminary Results of European Budworm Choristoneura Murinana (Hubner) Impact on Greek Fir Radial Growth at Mts Parnassus and Giona. Folia Oecologica 2022, 49, 102–109. [Google Scholar] [CrossRef]
- Climate Engine. Desert Research Institute and University of Idaho. 2023. Available online: http://climateengine.org (accessed on 20 November 2022).
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- Rahman, M.A.; Yunsheng, L.; Sultana, N. Analysis and Prediction of Rainfall Trends over Bangladesh Using Mann–Kendall, Spearman’s Rho Tests and ARIMA Model. Meteorol. Atmos. Phys. 2017, 129, 409–424. [Google Scholar] [CrossRef]
- Buffoni, L.; Maugeri, M.; Nanni, T. Precipitation in Italy from 1833 to 1996. Theor. Appl. Climatol. 1999, 63, 33–40. [Google Scholar] [CrossRef]
- Reiter, A.; Weidinger, R.; Mauser, W. Recent Climate Change at the Upper Danube-A Temporal and Spatial Analysis of Temperature and Precipitation Time Series. Clim. Change 2012, 111, 665–696. [Google Scholar] [CrossRef]
- Bickici Arikan, B.; Kahya, E. Homogeneity Revisited: Analysis of Updated Precipitation Series in Turkey. Theor. Appl. Climatol. 2019, 135, 211–220. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Z.X.; Huang, J.X. Spatio-Temporal Variation and Abrupt Changes for Major Climate Variables in the Taihu Basin, China. Stoch. Environ. Res. Risk Assess. 2012, 26, 777–791. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hirsch, R.M.; Slack, J.R. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, R.; Buck, A.; Katila, P. Adaptation of Forests & People to Climate Change. A Global Assessment Report, Prepared by the Global Forest Expert Panel on Adaptation of Forests to Climate Change; IUFRO World Series; International Union of Forest Research Organizations (IUFRO): Vienna, Austria, 2009; Volume 22. [Google Scholar]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a Potent Driver of Regional Forest Drought Stress and Tree Mortality. Nat. Clim. Change 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Jump, A.S.; Mátyás, C.; Peñuelas, J. The Altitude-for-Latitude Disparity in the Range Retractions of Woody Species. Trends Ecol. Evol. 2009, 24, 694–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, G.M.; Gugerli, F.; Fonti, P.; Frank, D.C. Tree Growth Response along an Elevational Gradient: Climate or Genetics? Oecologia 2013, 173, 1587–1600. [Google Scholar] [CrossRef] [Green Version]
- Graumlich, L.J.; Brubaker, L.B. Reconstruction of Annual Temperature (1590-1979) for Longmire, Washington, Derived from Tree Rings. Quat. Res. 1986, 25, 223–234. [Google Scholar] [CrossRef]
- Peterson, D.W.; Peterson, D.L. Effects of Climate on Radial Growth of Subalpine Conifers in the North Cascade Mountains. Can. J. For. Res. 1994, 24, 1921–1932. [Google Scholar] [CrossRef]
- Peterson, D.W.; Peterson, D.L.; Ettl, G.J. Growth Responses of Subalpine Fir to Climatic Variability in the Pacific Northwest. Can. J. For. Res. 2002, 32, 1503–1517. [Google Scholar] [CrossRef]
- Nakawatase, J.M.; Peterson, D.L. Spatial Variability in Forest Growth—Climate Relationships in the Olympic Mountains, Washington. Can. J. For. Res. 2006, 36, 77–91. [Google Scholar] [CrossRef]
- Schickhoff, U.; Bobrowski, M.; Böhner, J.; Bürzle, B.; Chaudhary, R.P.; Gerlitz, L.; Heyken, H.; Lange, J.; Müller, M.; Scholten, T.; et al. Do Himalayan Treelines Respond to Recent Climate Change? An Evaluation of Sensitivity Indicators. Earth Syst. Dynamis 2015, 6, 245–265. [Google Scholar] [CrossRef]
- Köorner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.G.; Alam, S.A.; Zhai, L.; Dawson, A.; Stadt, K.J.; Comeau, P.G. Drought Causes Reduced Growth of Trembling Aspen in Western Canada. Glob. Change Biol. 2017, 23, 2887–2902. [Google Scholar] [CrossRef]
- Zheng, L.; Gaire, N.P.; Shi, P. High-Altitude Tree Growth Responses to Climate Change across the Hindu Kush Himalaya. J. Plant Ecol. 2021, 14, 829–842. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-off from Hotter Drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D. Darcy’s Law Predicts Widespread Forest Mortality under Climate Warming. Nat. Clim. Change 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Bogenschütz, H. Tortricinae. Die Eur. 1978, 3, 55–89. [Google Scholar]
- Pschorn-Walcher, H. Biological control of forest insects. Annu. Rev. Entomol. 1977, 22, 1–22. [Google Scholar] [CrossRef]
Stand No | Near | Latitude | Longitude | Aspect | Altitude | Trees Age Average | Trees Sampled |
---|---|---|---|---|---|---|---|
1 | Kaloskopi | 38.648514° N | 22.38500° E | SE | 988 m | 85 | 20 |
2 | Kaloskopi | 38.679078° N | 22.30685° E | SE | 1274 m | 61 | 20 |
3 | Mavrolithari | 38.747888° N | 22.26833° E | SE | 1257 m | 56 | 20 |
Stand 1 | T(12M) (Previous Year) | Tmax (12M) (Previous Year) | Tmax March | Tmax April | Tmax July | Tmax Aug | Tmax GroSe |
---|---|---|---|---|---|---|---|
ARWI | −0.537 ** | −0.269 * | −0.254 * | −0.301 * | −0.251 * | −0.335 * | n.s. |
ETactual 12M (previous year) | Prec April | Prec June | ETactual GroSe | ||||
ARWI | −0.395 ** | 0.278 * | −0.487 * | −0.345 ** | |||
Stand 2 | T (12M) (previous year) | Tmax (12M) (previous year) | Tmax March | Tmax April | Tmax Jul | Tmax Aug | Tmax GroSe |
ARWI | −0.511 ** | −0.439 ** | −0.240 * | −0.236 * | −0.591 ** | −0.577 ** | −0.580 ** |
ETactual 12M (previous year) | Prec April | Prec June | ETactual GroSe | ||||
ARWI | −0.411 * | 0.245 * | −0.443 ** | −0.333 * | |||
Stand 3 | T(12M) (previous year) | Tmax (12M (previous year) | Tmax March | Tmax April | Tmax Jul | Tmax Aug | Tmax GroSe |
ARWI | −0.523 ** | −0.266 * | −0.255 * | −0.292 * | −0.440 * | −0.522 ** | −0.537 ** |
ETactual 12M (previous year) | Prec April | Prec June | ETactual GroSe | ||||
ARWI | −0.423 ** | 0.229 * | −0.275 * | −0.324 * |
Change Point at Year | Two-Tailed Test (p Value) | Shift | |
---|---|---|---|
Stand 1 | 1998 | 0.002 | Downward |
Stand 2 | 1993 | <0.0001 | Downward |
Stand 3 | 1993 | <0.0001 | Downward |
Two-Tailed Test until the Change Point If Any | Two-Tailed Test after the Change Point If Any | |
---|---|---|
MK p Value | MK p Value | |
Stand 1 | 0.106 | 0.264 |
Stand 2 | 0.639 | 0.031 |
Stand 3 | 0.378 | <0.0001 |
Change Point at Year | Two-Tailed Test (p Value) | Shift | |
---|---|---|---|
Stand 1 | 1997 | <0.0001 | Upward |
Stand 2 | 1997 | <0.0001 | Upward |
Stand 3 | 1997 | <0.0001 | Upward |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulelis, P.P.; Petrakis, P.V. Brief Overview of Greek Fir Radial Growth in Response to Climate and European Fir Budworm: Three Case Studies from Giona Mountain, Central Greece. Climate 2023, 11, 78. https://doi.org/10.3390/cli11040078
Koulelis PP, Petrakis PV. Brief Overview of Greek Fir Radial Growth in Response to Climate and European Fir Budworm: Three Case Studies from Giona Mountain, Central Greece. Climate. 2023; 11(4):78. https://doi.org/10.3390/cli11040078
Chicago/Turabian StyleKoulelis, Panagiotis P., and Panos V. Petrakis. 2023. "Brief Overview of Greek Fir Radial Growth in Response to Climate and European Fir Budworm: Three Case Studies from Giona Mountain, Central Greece" Climate 11, no. 4: 78. https://doi.org/10.3390/cli11040078
APA StyleKoulelis, P. P., & Petrakis, P. V. (2023). Brief Overview of Greek Fir Radial Growth in Response to Climate and European Fir Budworm: Three Case Studies from Giona Mountain, Central Greece. Climate, 11(4), 78. https://doi.org/10.3390/cli11040078