Analysis of Extreme Precipitation Events in the Mountainous Region of Rio de Janeiro, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Precipitation Estimation by the SOAS Method
2.3. Statistical Analysis of SOAS and CMORPH Precipitation Estimates
2.4. The Gumbel Statistical Distribution
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tucci, C.E. Hidrologia: Ciência e Aplicação; Editora ABRH: Porto Alegre, Brasil, 2020. [Google Scholar]
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019); World Meteorological Organization (WMO): Geneva, Switzerland, 2021; ISBN 978-92-63-11267-5. [Google Scholar]
- Busch, A.; Aorim, S.N.D. A Tragédia da Região Serrana do Rio de Janeiro em 2011: Procurando Respostas. 2011. Available online: http://repositorio.enap.gov.br/handle/1/328 (accessed on 15 March 2023).
- Koutsoyiannis, D. On the appropriateness of the Gumbel distribution for modelling extreme rainfall. In Proceedings of the ESF LESC Exploratory Workshop, Bologna, Italy, 24–25 October 2003; pp. 303–319. [Google Scholar]
- Available online:cprm.gov.br/publique/Gestao-Territorial/Cartas-de-Suscetibilidade-a-Movimentos-Gravitacionais-deMassa-e-Inundacoes---Rio-de-Janeiro-5082.html (accessed on 15 March 2023).
- Tavares, C.D.M.G.; Ferreira, C.D.C.M. A Relação Entre a Orografia e os Eventos Extremos de Precipitação Para o Município de Petropolis-RJ. Revista Brasileira de Climatologia, 26. 2020. Available online: https://ojs.ufgd.edu.br/index.php/rbclima/article/view/14242 (accessed on 15 March 2023).
- Mendonça, F.; Danni-Oliveira, I.M. Climatologic: Noções Básicas e Climas do Brasil; Oficina de Textos: São Paulo, Brasil, 2017. [Google Scholar]
- Santos, G.M.D. Análise Quantitativa de Eventos Extremos de Precipitação e Análise de Desastres Naturais Na Região Metropolitana da Baixada Santista e Litoral Norte do Estado de São Paulo. 2017. Available online: http://hdl.handle.net/11449/156316 (accessed on 15 March 2023).
- Cavalcanti, I.F. Tempo e Clima no Brasil; Oficina de Textos: São Paulo, Brasil, 2016. [Google Scholar]
- Barcellos, D.R.; de Quadro, M.F.L. Classificação de eventos extremos de precipitação quanto sua intensidade, persistência e abrangência na região das ZCAS. Metodol. E Aprendizado 2019, 2, 76–81. [Google Scholar] [CrossRef]
- Tavares, C.D.M.G.; de Oliveira, T.A.; Ferreira, C.D.C.M. Comportamento espacial das precipitações: Estudo de caso dos eventos de 11 e 12 de janeiro de 2011 e suas repercussões espaciais na região serrana do estado do rio de Janeiro. In Proceedings of the VII Seminário do PPGEO—UFJF A Geografia e os Desafios Contemporaneos, Rio de Janeiro, Brasil, 30 October–1 November 2019. [Google Scholar]
- Adler, R.F.; Negri, A.J. A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall. J. Appl. Meteorol. 1988, 27, 30–51. [Google Scholar] [CrossRef]
- Sun, R.; Yuan, H.; Liu, X.; Jiang, X. Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe River basin. J. Hydrol. 2016, 536, 302–319. [Google Scholar] [CrossRef]
- Filho, A.J.P.; Vemado, F.; Vemado, G.; Reis, F.A.G.V.; Giordano, L.D.C.; Cerri, R.I.; Dos Santos, C.C.; Lopes, E.S.S.; Gramani, M.F.; Ogura, A.T.; et al. A Step towards Integrating CMORPH Precipitation Estimation with Rain Gauge Measurements. Adv. Meteorol. 2018, 2018, 1–24. [Google Scholar] [CrossRef]
- Lopez, M.D.C.S.; Filho, A.J.P.; Pinaya, J.L.D. Hydrometeorology of Anthropogenic Erosion in the Metropolitan Region of São Paulo. J. Environ. Prot. 2021, 12, 1234–1253. [Google Scholar] [CrossRef]
- Meylan, P.; Favre, A.-C.; Musy, A. Predictive Hydrology: A Frequency Analysis Approach; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Gomes, R.A.T.; Guimarães, R.F.; Carvalho, O.A.; Fernandes, N.F.; Vargas, E.A.; Martins, S. Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow. Nat. Hazards 2008, 45, 197–209. [Google Scholar] [CrossRef]
- Dorici, M.; Costa, C.W.; de Moraes, M.C.P.; Piga, F.G.; Lorandi, R.; de Lollo, J.A.; Moschini, L.E. Accelerated erosion in a watershed in the southeastern region of Brazil. Environ. Earth Sci. 2016, 75, 1301. [Google Scholar] [CrossRef] [Green Version]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Petley, D.N. Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat. Hazards Earth Syst. Sci. 2015, 15, 1821–1833. [Google Scholar] [CrossRef] [Green Version]
- Blunden, J.; Arndt, D. State of the Climate in 2011. Bull. Am. Meteorol. Soc. 2012, 93, S1–S264. [Google Scholar] [CrossRef]
- Ferreira, S.T.; Kuser, H.H.; Garrido, R.G.; Trindade-Filho, A.; Paula, K.A.; Galvão, M.F.; Moraes, A.V. Floods and mudslides in the State of Rio de Janeiro and a plane crash in the Brazilian Amazon rainforest: A study of two different experiences in disaster victim identification (DVI). Forensic Sci. Int. Genet. Suppl. Ser. 2011, 3, e516–e517. [Google Scholar] [CrossRef]
- Rosi, A.; Canavesi, V.; Segoni, S.; Nery, T.D.; Catani, F.; Casagli, N. Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds. Geosciences 2019, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Lorentz, J.F.; Calijuri, M.L.; Marques, E.G.; Baptista, A.C. Multicriteria analysis applied to landslide susceptibility mapping. Nat. Hazards 2016, 83, 41–52. [Google Scholar] [CrossRef]
Municipality | Altitude (m) | Slope above |
---|---|---|
Petrópolis | 40 to 2200 | 20° |
Areal | 300 to 1020 | 20° |
Teresópolis | 160 to 2200 | 25° |
São José do Vale do Rio Preto | 400 to 1420 | 20° |
Nova Friburgo | 160 to 2220 | 25° |
Sumidouro | 260 to 1760 | 16° |
Bom Jardim | 280 to 1620 | 25° |
Geographic Coordinates | Series Value | Calculated | ||
---|---|---|---|---|
Latitude | Longitude | Maximum | Average | Tr (Years) |
−22.7955 | −42.9871 | 90.40 | 63.94 | 28.66 |
−22.7955 | −42.9143 | 78.16 | 65.29 | 8.70 |
−22.7955 | −42.8416 | 89.93 | 70.35 | 9.48 |
−22.7955 | −42.7688 | 95.76 | 73.15 | 12.06 |
−22.7955 | −42.6960 | 107.93 | 74.70 | 23.53 |
−22.7227 | −41.9685 | 204.65 | 81.61 | 133.56 |
−22.2862 | −42.6233 | 208.52 | 78.17 | 110.77 |
−22.2862 | −42.5505 | 175.54 | 74.46 | 120.67 |
−22.2862 | −42.4778 | 201.16 | 81.06 | 130.55 |
−22.2862 | −42.4050 | 262.37 | 95.89 | 192.71 |
−22.2862 | −42.3323 | 185.62 | 84.47 | 128.08 |
−22.2862 | −42.2595 | 137.75 | 80.46 | 36.33 |
−22.2862 | −42.1867 | 113.68 | 77.29 | 20.52 |
Geographic Coordinates | Volumes Corresponding to Return Times in Years (Tr) | ||||||
---|---|---|---|---|---|---|---|
Latitude | Longitude | 10 | 20 | 25 | 50 | 75 | 100 |
−22.7955 | −42.9871 | 79.98 | 86.88 | 89.06 | 95.80 | 99.97 | 102.49 |
−22.7955 | −42.9143 | 79.40 | 85.47 | 87.40 | 93.33 | 96.99 | 99.22 |
−22.7955 | −42.8416 | 90.61 | 99.32 | 102.09 | 110.61 | 115.86 | 119.06 |
−22.7955 | −42.7688 | 93.38 | 102.08 | 104.84 | 113.35 | 118.60 | 121.79 |
−22.7955 | −42.6960 | 96.43 | 105.77 | 108.74 | 117.87 | 123.51 | 126.93 |
−22.7227 | −41.9685 | 129.34 | 149.87 | 156.38 | 176.44 | 188.83 | 196.36 |
−22.2862 | −42.6233 | 131.04 | 153.78 | 160.99 | 183.22 | 196.94 | 205.27 |
−22.2862 | −42.5505 | 114.62 | 131.89 | 137.37 | 154.25 | 164.68 | 171.01 |
−22.2862 | −42.4778 | 127.90 | 148.05 | 154.44 | 174.13 | 186.28 | 193.67 |
−22.2862 | −42.4050 | 155.40 | 181.00 | 189.12 | 214.13 | 229.57 | 238.96 |
−22.2862 | −42.3323 | 124.09 | 141.14 | 146.55 | 163.20 | 173.49 | 179.74 |
−22.2862 | −42.2595 | 112.40 | 126.14 | 130.49 | 143.92 | 152.21 | 157.25 |
−22.2862 | −42.1867 | 102.46 | 113.28 | 116.72 | 127.29 | 133.83 | 137.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, M.d.C.S.; Pinaya, J.L.D.; Pereira Filho, A.J.; Vemado, F.-l.; Reis, F.A.G.V. Analysis of Extreme Precipitation Events in the Mountainous Region of Rio de Janeiro, Brazil. Climate 2023, 11, 73. https://doi.org/10.3390/cli11030073
Lopez MdCS, Pinaya JLD, Pereira Filho AJ, Vemado F-l, Reis FAGV. Analysis of Extreme Precipitation Events in the Mountainous Region of Rio de Janeiro, Brazil. Climate. 2023; 11(3):73. https://doi.org/10.3390/cli11030073
Chicago/Turabian StyleLopez, Maria del Carmen Sanz, Jorge Luiz Diaz Pinaya, Augusto José Pereira Filho, Fe-lipe Vemado, and Fábio Augusto Gomes Vieira Reis. 2023. "Analysis of Extreme Precipitation Events in the Mountainous Region of Rio de Janeiro, Brazil" Climate 11, no. 3: 73. https://doi.org/10.3390/cli11030073
APA StyleLopez, M. d. C. S., Pinaya, J. L. D., Pereira Filho, A. J., Vemado, F. -l., & Reis, F. A. G. V. (2023). Analysis of Extreme Precipitation Events in the Mountainous Region of Rio de Janeiro, Brazil. Climate, 11(3), 73. https://doi.org/10.3390/cli11030073