Cut-Off Lows over South Africa: A Review
Abstract
:1. Introduction
2. Defining Cut-Off Lows
3. Description of Study Area
4. Seasonality and Contribution of COLs to Annual Rainfall over South Africa
5. Dynamical Processes and Upper-Air Interactions during COLs
6. Impacts of COLs
6.1. Case 1: 14–17 August 2002
6.2. Case 2: 22–25 April 2019
7. Forecasting Cut-Off Lows
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engelbrecht, F.A.; Monteiro, P.M. The IPCC Assessment Report Six Working Group 1 report and southern Africa: Reasons to take action. S. Afr. J. Sci. 2021, 117, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xulu, N.G.; Chikoore, H.; Bopape, M.-J.; Nethengwe, N. Climatology of the Mascarene High and Its Influence on Weather and Climate over Southern Africa. Climate 2020, 8, 86. [Google Scholar] [CrossRef]
- Hart, N.C.; Reason, C.J.; Fauchereau, N. Cloud bands over southern Africa: Seasonality, contribution to rainfall variability and modulation by the MJO. Clim. Dyn. 2013, 41, 1199–1212. [Google Scholar] [CrossRef]
- Blamey, R.C.; Reason, C.J.C. The role of mesoscale convective complexes in southern Africa summer rainfall. J. Clim. 2013, 26, 1654–1668. [Google Scholar] [CrossRef]
- Webster, E.M. A Synoptic Climatology of Continental Tropical Low Pressure Systems over Southern Africa and Their Contribution to Rainfall over South Africa. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2019. [Google Scholar]
- Chikoore, H.; Vermeulen, J.H.; Jury, M.R. Tropical cyclones in the Mozambique channel: January–March 2012. Nat. Hazards 2015, 77, 2081–2095. [Google Scholar] [CrossRef]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef] [Green Version]
- Singleton, A.T.; Reason, C.J.C. A Numerical Model Study of an Intense Cutoff Low Pressure System over South Africa. Mon. Weather Rev. 2007, 135, 1128–1150. [Google Scholar] [CrossRef]
- Favre, A.; Hewitson, B.; Lennard, C.; Cerezo-Mota, R.; Tadross, M. Cut-off Lows in the South Africa region and their contribution to precipitation. Clim. Dyn. 2013, 41, 2331–2351. [Google Scholar] [CrossRef]
- Muofhe, T.P.; Chikoore, H.; Bopape, M.-J.M.; Nethengwe, N.S.; Ndarana, T.; Rambuwani, G.T. Forecasting Intense Cut-Off Lows in South Africa Using the 4.4 km Unified Model. Climate 2020, 8, 129. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, J. Study on cut-off low-pressure systems with floods over Northeast Asia. Meteorol. Atmos. Phys. 2007, 96, 159–180. [Google Scholar] [CrossRef]
- Palmen, E.; Newton, C. Atmospheric Circulation Systems; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Pinheiro, H.R.; Hodges, K.I.; Gan, M.A. An intercomparison of subtropical cut-off lows in the Southern Hemisphere using recent reanalyses: ERA-Interim, NCEP-CFRS, MERRA-2, JRA-55, and JRA-25. Clim. Dyn. 2020, 54, 777–792. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, C.; Schultz, D.; Vaughan, G. A midlatitude climatology and interannual variability of 200-and 500-hPa cut-off lows. J. Clim. 2020, 33, 2201–2222. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.X.; Lu, R.Y.; Wang, D.H. Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China. Meteor. Atmos. Phys. 2010, 106, 37–48. [Google Scholar] [CrossRef]
- Reboita, M.S.; Nieto, R.; Gimeno, L.; Da Rocha, R.P.; Ambrizzi, T.; Garreaud, R.; Krüger, L.F. Climatological features of cutoff low systems in the Southern Hemisphere. J. Geophys. Res. Atmos. 2010, 115, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nieto, R.; Gimeno, L.; de la Torre, L.; Ribera, P.; Gallego, D.; García-Herrera, R.; García, J.A.; Nuñez, M.; Redaño, A.; Lorente, J. Climatological features of cut-off low systems in the Northern Hemisphere. J. Clim. 2005, 18, 3085–3103. [Google Scholar] [CrossRef] [Green Version]
- Risbey, J.; Pook, M.; McIntosh, P.; Wheeler, M.; Hendon, H. On the remote drivers of rainfall variability in Australia. Mon. Weather Rev. 2009, 137, 3233–3253. [Google Scholar] [CrossRef]
- Pinheiro, H.R.; Hodges, K.I.; Gan, M.A. Sensitivity of identifying cut-off lows in the Southern Hemisphere using multiple criteria: Implications for numbers, seasonality and intensity. Clim. Dyn. 2019, 53, 6699–6713. [Google Scholar] [CrossRef] [Green Version]
- Fuenzalida, H.A.; Sánchez, R.; Garreaud, R.D. A climatology of cutoff lows in the Southern Hemisphere. J. Geophys. Res. Atmos. 2005, 110, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, H.R.; Hodges, K.I.; Gan, M.A.; Ferreira, S.H.; Andrade, K.M. Contributions of downstream baroclinic development to strong Southern Hemisphere cut-off lows. Q. J. R. Meteorol. Soc. 2021, 148, 214–232. [Google Scholar] [CrossRef]
- Barnes, M.A.; Ndarana, T.; Landman, W.A. Cut-off lows in the southern Hemisphere and their extension to the surface. Clim. Dyn. 2021, 56, 3709–3732. [Google Scholar] [CrossRef]
- Price, J.D.; Vaughan, G. Statistical studies of cut-off low systems. Ann. Geophys. 1992, 10, 96–102. [Google Scholar]
- Tyson, P.D.; Preston-Whyte, R.A. The Weather and Climate of Southern Africa; Oxford University Press: Cape Town, South Africa, 2000; 396p. [Google Scholar]
- Ndarana, T.; Lekoloane, L.E.; Rammopo, T.S.; Reason, C.J.; Bopape, M.J.M.; Chikoore, H.; Engelbrecht, F.A. Downstream development during ridging South Atlantic Ocean anticyclones. Clim. Dyn. 2023, 1–19. [Google Scholar] [CrossRef]
- Singleton, A.T.; Reason, C.J.C. Variability in the characteristics of cut-off low pressure systems over subtropical southern Africa. Int. J. Climatol. 2006, 27, 295–310. [Google Scholar] [CrossRef]
- Baray, J.L.; Baldy, S.; Diab, R.D.; Cammas, J.P. Dynamical study of a tropical cut-off low over South Africa, and its impact on tropospheric ozone. Atmos. Environ. 2003, 37, 1475–1488. [Google Scholar] [CrossRef]
- Pook, M.J.; McIntosh, P.C.; Meyers, G.A. The synoptic decomposition of cool-season rainfall in the southeastern Australian cropping region. J. Appl. Meteorol. Clim. 2006, 45, 1156–1170. [Google Scholar] [CrossRef]
- Buckley, B.W.; Leslie, L.M.; Sullivan, W.; Leplastrier, M.; Qi, L. A rare East Indian Ocean autumn season tropical cut-off low: Impacts and a high-resolution modelling study. Meteorol. Atmos. Phys. 2007, 96, 61–84. [Google Scholar] [CrossRef]
- Risbey, J.S.; Pook, M.J.; McIntosh, P.C.; Ummenhofer, C.C.; Meyers, G. Characteristics and variability of synoptic features associated with cool season rainfall in southeastern Australia. Int. J. Clim. 2009, 29, 1595–1613. [Google Scholar] [CrossRef]
- Lavender, S.L.; Abbs, D.J. Trends in Australian rainfall: Contribution of tropical cyclones and closed lows. Clim. Dyn. 2013, 40, 317–326. [Google Scholar] [CrossRef]
- Pook, M.J.; Risbey, J.S.; McIntosh, P.C. A comparative synoptic climatology of cool-season rainfall in major grain-growing regions of southern Australia. Theor. Appl. Climatol. 2013, 117, 521–533. [Google Scholar] [CrossRef]
- Hauser, S.; Grams, C.M.; Reeder, M.J.; McGregor, S.; Fink, A.H.; Quinting, J.F. A weather system perspective on winter–spring rainfall variability in southeastern Australia during El Niño. Q. J. R. Meteorol. Soc. 2020, 146, 2614–2633. [Google Scholar] [CrossRef]
- Ndarana, T.; Waugh, D.W. The link between cut-off lows and Rossby wave breaking in the Southern Hemisphere. Q. J. R. Meteorol. Soc. 2010, 136, 869–885. [Google Scholar] [CrossRef]
- Muofhe, T.P. Characteristics of Deep Moist Convection and Rainfall in Cut-Off Lows over South Africa. Master Dissertation, University of Venda, Thohoyandou, South Africa, 2019. [Google Scholar]
- Abba-Omar, S.; Abiodun, B.J. Simulating the characteristics of cut-off low rainfall over the Western Cape using WRF. Clim. Dyn. 2021, 56, 1265–1283. [Google Scholar] [CrossRef]
- Chikoore, H.; Bopape, M.-J.M.; Ndarana, T.; Muofhe, T.P.; Gijben, M.; Munyai, R.B.; Manyanya, T.C.; Maisha, R. Synoptic structure of a sub-daily extreme precipitation and flood event in Thohoyandou, north-eastern South Africa. Weather Clim. Extremes 2021, 33, 100327. [Google Scholar] [CrossRef]
- Taljaard, J.J. Change of rainfall distribution and circulation patterns over southern Africa in summer. J. Climatol. 1986, 6, 579–592. [Google Scholar] [CrossRef]
- Qi, L.; Wang, Y.; Leslie, L.M. Numerical simulation of a cut-off low over southern Australia. Meteorol. Atmos. Phys. 2000, 74, 103–115. [Google Scholar] [CrossRef]
- Campetella, C.M.; Possia, N.E. Upper-level cut-off lows in southern South America. Meteorol. Atmos. Phys. 2007, 96, 181–191. [Google Scholar] [CrossRef]
- Godoy, A.A.; Possia, N.E.; Campetella, C.M.; Skabar, Y.G. A cut-off low in southern South America: Dynamic and thermodynamic processes. Rev. Bras. Meteorol. 2011, 26, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Ndarana, T.; Rammopo, T.S.; Bopape, M.J.; Reason, C.J.; Chikoore, H. Downstream development during South African cut-off low pressure systems. Atmos. Res. 2021, 249, 105315. [Google Scholar] [CrossRef]
- Hoskins, B.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Ndarana, T.; Rammopo, T.S.; Chikoore, H.; Barnes, M.A.; Bopape, M.-J. A quasi-geostrophic diagnosis of the zonal flow associated with cut-off lows over South Africa and surrounding oceans. Clim. Dyn. 2020, 55, 2631–2644. [Google Scholar] [CrossRef]
- Bell, G.D.; Bosart, L.F. A case study diagnosis of the formation of an upper-level cutoff cyclonic circulation over the eastern United States. Mon. Weather Rev. 1993, 121, 1635–1655. [Google Scholar] [CrossRef]
- van Delden, A.; Neggers, R. A case study of tropopause cyclogenesis. Meteorol. Appl. 2003, 10, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Mcintyre, M.E.; Palmer, T.N. Breaking planetary waves in the stratosphere. Nature 1983, 305, 593–600. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Hodges, K.I. A new perspective on Southern Hemisphere storm tracks. J. Clim. 2005, 18, 4108–4129. [Google Scholar] [CrossRef]
- Hoskins, B.J. Atmospheric frontogenesis models: Some solutions. Q. J. R. Meteorol. Soc. 1971, 97, 139–153. [Google Scholar] [CrossRef]
- Price, J.D.; Vaughan, G. The potential for stratosphere-troposphere exchange in cut-off-low systems. Q. J. R. Meteorol. Soc. 1993, 119, 343–365. [Google Scholar] [CrossRef]
- Rondanelli, R.; Gallardo, L.; Garreaud, R.D. Rapid changes in ozone mixing ratios at Cerro Tololo (30°10′ S, 70°48′ W, 2200 m) in connection with cut-off lows and deep troughs. J. Geophys. Res. Atmos. 2002, 107, ACL-6. [Google Scholar] [CrossRef]
- Pinheiro, H.; Ambrizzi, T.; Hodges, K.; Gan, M.; Andrade, K.; Garcia, J. Are Cut-off Lows simulated better in CMIP6 compared to CMIP5? Clim. Dyn. 2022, 59, 2117–2136. [Google Scholar] [CrossRef]
- Wernli, H.; Sprenger, M. Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci. 2007, 64, 1569–1586. [Google Scholar] [CrossRef]
- Ancellet, G.; Beekmann, M.; Papayiannis, A. Impact of a cutoff development on downward transport of ozone in the stratosphere. J. Geophys. Res. 1994, 99, 3451–3463. [Google Scholar] [CrossRef]
- Gimeno, L.; Trigo, R.M.; Ribera, P.; Garcia, J.A. Special issue on cut-off low systems (COL). Meteorol. Atmos. Phys. 2006, 96, 1. [Google Scholar] [CrossRef]
- Ebel, A.; Hass, H.; Jakobs, H.; Laube, M.; Memmesheimer, M.; Oberreuter, A.; Geiss, H.; Kuo, Y.-H. Simulation of ozone intrusion caused by a tropopause fold and cut-off low. Atmos. Environ. Part A Gen. Top. 1991, 25, 2131–2144. [Google Scholar] [CrossRef]
- Langford, A.; Masters, C.; Proffitt, M.; Hsie, E.; Tuck, A. Ozone measurements in a tropopause fold associated with a cut-off low system. Geophys. Res. Lett. 1996, 23, 2501–2504. [Google Scholar] [CrossRef]
- South African Government. National State of Disaster-In-Numbers—18 April 2022. 2022. Available online: https://www.gov.za/speeches/national-state-disaster-numbers-%E2%80%93-18-april-2022-18-apr-2022-0000 (accessed on 29 June 2022).
- Mac Mahon, A.G.; Swart, J.P. The Laingsburg flood disaster. S. Afr. Med J. 1983, 63, 865–866. [Google Scholar]
- Nath, P.K.; Behera, B. A critical review of impact of and adaptation to climate change in developed and developing economies. Environ. Dev. Sustain. 2010, 13, 141–162. [Google Scholar] [CrossRef]
- Llasat, M.C.; Martín, F.; Barrera-Escoda, A. From the concept of “Kaltlufttropfen” (cold air pool) to the cut-off low. The case of September 1971 in Spain as an example of their role in heavy rainfalls. Meteorol. Atmos. Phys. 2006, 96, 43–60. [Google Scholar] [CrossRef]
- Mashao, F.M.; Mothapo, M.C.; Munyai, R.B.; Letsoalo, J.M.; Mbokodo, I.L.; Muofhe, T.P.; Matsane, W.; Chikoore, H. Extreme Rainfall and Flood Risk Prediction over the East Coast of South Africa. Water 2022, 15, 50. [Google Scholar] [CrossRef]
- Pyle, D.M.; Jacobs, T.L. The Port Alfred floods of 17–23 October 2012: A case of disaster (mis) management? Jàmbá J. Disaster Risk Stud. 2016, 8, a207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, M.A.; Turner, K.; Ndarana, T.; Landman, W.A. Cape storm: A dynamical study of a cut-off low and its impact on South Africa. Atmos. Res. 2021, 249, 105290. [Google Scholar] [CrossRef]
- Molekwa, S.; Engelbrecht, C.J.; Rautenbach, C.D. Attributes of cut-off low induced rainfall over the Eastern Cape Province of South Africa. Theor. Appl. Climatol. 2014, 118, 307–318. [Google Scholar] [CrossRef] [Green Version]
- ENCA. Travelers Warned as Wet Weather Continues in Parts of SA. 2019. Available online: https://www.enca.com/news/wet-weather-affect-many-travel-plans (accessed on 11 May 2022).
- CNN. 70 People Killed in South Africa Floods. 2019. Available online: https://edition.cnn.com/2019/04/24/africa/51-dead-south-africa-flood-intl/index (accessed on 11 May 2020).
- Pinheiro, H.R.; Ambrizzi, T.; Hodges, K.I.; Gan, M.A. Understanding the El Niño Southern Oscillation Effect on Cut-Off Lows as Simulated in Forced SST and Fully Coupled Experiments. Atmosphere 2022, 13, 1167. [Google Scholar] [CrossRef]
- WMO. Impact-Based Forecasting Informs Anticipatory Action. 2021. Available online: https://public.wmo.int/en/media/news/impact-based-forecasting-informs-anticipatory-action (accessed on 15 January 2023).
- Bozkurt, D.; Rondanelli, R.; Garreaud, R.; Arriagada, A. Impact of warmer eastern tropical Pacific SST on the March 2015 Atacama floods. Mon. Weather Rev. 2016, 144, 4441–4460. [Google Scholar] [CrossRef] [Green Version]
- Reyers, M.; Shao, Y. Cut-off lows of the coast of the Atacama Desert under present day conditions and in the Last Glacial Maximum. Glob. Planet. Chang. 2019, 181, 102983. [Google Scholar] [CrossRef]
- Mpungose, N.; Thoithi, W.; Blamey, R.C.; Reason, C.J.C. Extreme rainfall events in southeastern Africa during the summer. Theor. Appl. Clim. 2022, 150, 185–201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xulu, N.G.; Chikoore, H.; Bopape, M.-J.M.; Ndarana, T.; Muofhe, T.P.; Mbokodo, I.L.; Munyai, R.B.; Singo, M.V.; Mohomi, T.; Mbatha, S.M.S.; et al. Cut-Off Lows over South Africa: A Review. Climate 2023, 11, 59. https://doi.org/10.3390/cli11030059
Xulu NG, Chikoore H, Bopape M-JM, Ndarana T, Muofhe TP, Mbokodo IL, Munyai RB, Singo MV, Mohomi T, Mbatha SMS, et al. Cut-Off Lows over South Africa: A Review. Climate. 2023; 11(3):59. https://doi.org/10.3390/cli11030059
Chicago/Turabian StyleXulu, Nkosinathi G., Hector Chikoore, Mary-Jane M. Bopape, Thando Ndarana, Tshimbiluni P. Muofhe, Innocent L. Mbokodo, Rendani B. Munyai, Mukovhe V. Singo, Tumelo Mohomi, Sifiso M. S. Mbatha, and et al. 2023. "Cut-Off Lows over South Africa: A Review" Climate 11, no. 3: 59. https://doi.org/10.3390/cli11030059
APA StyleXulu, N. G., Chikoore, H., Bopape, M. -J. M., Ndarana, T., Muofhe, T. P., Mbokodo, I. L., Munyai, R. B., Singo, M. V., Mohomi, T., Mbatha, S. M. S., & Mdoka, M. L. (2023). Cut-Off Lows over South Africa: A Review. Climate, 11(3), 59. https://doi.org/10.3390/cli11030059