Monitoring the Meteorological and Hydrological Droughts in the Largest River Basin (Mahaweli River) in Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Data and Filling of Missing Data
2.4. Meteorological and Hydrological Drought Indices
2.4.1. Standardized Precipitation Index (SPI)
2.4.2. Standardized Precipitation Evaporation Index (SPEI)
2.4.3. Standardized Streamflow Index (SSI)
2.4.4. Validation of Drought Events
3. Results
3.1. Comparative Analysis of Meteorological and Hydrological Droughts
3.2. Annual Variations of Drought Events in MRB
3.3. Spatial Distribution of Drought Indices Using SPI, SPEI, and SSI
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D.A. Drought as a Natural Hazard; Drought Mitigation Center Faculty: Lincoln, NE, USA, 2000. [Google Scholar]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. Drought modeling—A review. J. Hydrol. 2011, 403, 157–1975. [Google Scholar] [CrossRef]
- Mallya, G.; Mishra, V.; Niyogi, D.; Tripathi, S.; Govindaraju, R.S. Trends and variability of droughts over the Indian monsoon region. Weather Clim. Extrem. 2016, 12, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Sharma, J.; Ravindranath, N.H. Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Env. Res. Commun. 2019, 1, 051004. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Gimeno, L.; Nieto, R.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Beguería, S.; Azorin-Molina, C. A multiscalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res. 2016, 116, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 2013, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. Appl. Climatol. 1993, 17, 179–183. [Google Scholar]
- Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2007, 21, 821–833. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; Per-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hejazi, M.; Cai, X.; Valocch, A.J. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res. 2011, 47, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Maskey, S. Hydrological Modeling for Drought Assessment. In Hydro-Meteorological Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 263–282. [Google Scholar]
- Edossa, D.C.; Babel, M.S.; Gupta, D.A. Drought Analysis in the Awash River Basin, Ethiopia. Water Resour Manag. 2010, 24, 1441–1460. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yao, H.; Zhang, D. Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Sci. Total Environ. 2021, 765, 144232. [Google Scholar] [CrossRef]
- Tokarczyk, T.; Szalińska, W. Combined analysis of precipitation and water deficit for drought hazard assessment. Hydrol. Sci. J. 2014, 59, 1675–1689. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, X.; Yao, H.; Gao, L.; Chen, Y.; Liu, M. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. J. Hydrol. 2017, 551, 495–507. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought and climatic change impact on streamflow in small watersheds. Sci. Total Environ. 2012, 440, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Azareh, A.; Rahdari, M.R.; Sardoii, R.E.; Moghadam, F.A. Investigate the relationship between hydrological and meteorological droughts in Karaj dam Basin. Eur. J. Exp. Biol. 2014, 4, 102–107. [Google Scholar]
- UNDRR. Disaster Risk Reduction in Sri Lanka; UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2019. [Google Scholar]
- Asian Development Bank. Climate Risk Country Profile; World Bank Group: Washington, DC, USA, 2020. [Google Scholar]
- Eckstein, D.; Kunzel, V.; Schafer, L. Global Climate Risk Index 2021; Germanwatch: Bonn, Germany, 2012; pp. 1–50. [Google Scholar]
- Gunda, T.; Hornberger, G.M.; Gilligan, J.M. Spatiotemporal Patterns of Agricultural Drought in Sri Lanka: 1881–2010. Int. J. Climatol. 2016, 36, 563–575. [Google Scholar] [CrossRef]
- Lyon, B.; Zubair, L.; Ralapanawe, V.; Yahiya, Z. Finescale Evaluation of Drought in a Tropical Setting: Case Study in Sri Lanka. Appl. Meteorol. Climatol. 2009, 48, 77–88. [Google Scholar] [CrossRef]
- Lin, Z.; Shelton, S. Interdecadal Change of Drought Characteristics in Mahaweli River Basin of Sri Lanka and the Associated Atmospheric Circulation Difference. Front. Earth Sci. 2020, 8, 306. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Köpke, S.; Withanachchi, C.R.; Pathiranage, R.; Ploeger, A. Water Resource Management in Dry Zonal Paddy Cultivation in Mahaweli River Basin, Sri Lanka: An Analysis of Spatial andTemporal Climate Change Impacts and Traditional Knowledge. Climate 2014, 2, 329–354. [Google Scholar] [CrossRef]
- Shelton, S.; Lin, Z. Streamflow variability in Mahaweli river basin of Sri Lanka during 1990–2014 and its possible mechanisms. Water 2019, 11, 2485. [Google Scholar] [CrossRef] [Green Version]
- Neves, J. Compute SPI Index using R, Josemir Neves. 2012. Available online: https://cran.microsoft.com/snapshot/2015-07-09/web/packages/spi/spi.pdf (accessed on 1 November 2022).
- Begueria, S.; Vicente-Serrano, S.M. Calculation of the Standardised Precipitation-Evapotranspiration Index, Santiago Begueria; CiteSeerX Pennsylvania State University: State College, PA, USA, 2017. [Google Scholar]
- R-Tools Technology Inc. User Manual-RStudio; R-Tools Technology: Richmond Hill, ON, Canada, 2023. [Google Scholar]
- Smakhin, V.U.; Hughes, D.A. Review, Automated Estimation and Analyses of Drought Indices in South Asia; International Water Management Institute: Colombo, Sri Lanka, 2004. [Google Scholar]
- Guttman, N.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index. J. Amarican Water Resour. Assos. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Hernandez, E.A.; Uddameri, V. Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas. Environ. Earth Sci. Vol. 2014, 71, 2491–2501. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Am. Geogr. Soc. 1948, 38, 55–94. [Google Scholar]
- Byakatonda, J.; Parida, B.P.; Kenabatho, P.K.; Moalafhi, D.B. Modeling Dryness Severity using Artificial Neural Network at the Okavango Delta, Bostwana. Glob. NEST J. 2016, 18, 463–481. [Google Scholar]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geogr. Res. Lett. 2007, 35, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Doesken, N.; Mckee, T.; Leist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Abeysingha, N.S.; Rajapaksha, U.R.L.N. SPI-Based Spatiotemporal Drought over Sri Lanka. Adv. Meteorol. 2020, 2020, 9753279. [Google Scholar] [CrossRef] [Green Version]
- Alahacoon, N.; Edirisinghe, M.; Ranagalage, M. Satellite-Based Meteorological and Agricultural Drought Monitoring for Agricultural Sustainability in Sri Lanka. Sustainability 2021, 13, 3427. [Google Scholar] [CrossRef]
- Central Bank. Annual Reports; Central Bank Sri Lanka: Colombo, Sri Lanka, 2015. [Google Scholar]
- Zubair, L.; Ralapanawe, V.; Tennakoon, U.; Yahiya, Z.; Perera, R. Natural disaster risks in Sri Lanka: Mapping hazards and risk hotspots. In Natural Disaster Hotspots Case Studies; The World Bank Hazard Management Unit: Washington, DC, USA, 2006. [Google Scholar]
Drought Index | Station | Latitude (°) | Longitude (°) |
---|---|---|---|
SPI | Ambewela | 6.87 | 80.80 |
Kotmale | 7.06 | 80.60 | |
Rantambe | 7.20 | 80.95 | |
Victoria | 7.24 | 80.79 | |
Mapakada Wewa | 7.29 | 81.03 | |
Katugastota | 7.32 | 80.62 | |
Polgolla | 7.32 | 80.65 | |
Illukkumbura | 7.54 | 80.80 | |
Elahera | 7.73 | 80.79 | |
Angammedilla | 7.86 | 86.91 | |
Parakrama Samudra | 7.91 | 81.00 | |
Giritale | 8.00 | 80.92 | |
Kaudulla Wewa | 8.14 | 80.93 | |
Kantale tank | 8.37 | 81.00 | |
SPEI | Bandarawela | 6.83 | 81.00 |
Badulla | 6.99 | 81.05 | |
Nuwara Eliya | 6.97 | 80.77 | |
Katugastota | 7.32 | 80.62 | |
Trincomalee | 8.59 | 81.22 | |
SSI | Demodara | 6.94 | 81.03 |
Caledonia | 6.90 | 80.70 | |
Nawalapitiya | 7.05 | 80.53 | |
Peradeniya | 7.27 | 80.61 | |
Manampitiya | 7.91 | 81.09 |
Drought Category | SPI, SPEI, and SSI |
---|---|
Extremely wet | >2 |
Very wet | 1.5 to1.99 |
Moderately wet | 1 to 1.49 |
Near Normal | −0.99 to 0.99 |
Moderately dry | −1 to −1.49 |
Severely dry | −1.5 to −1.99 |
Extremely dry | −2 |
(a) | |||||
Manampitiya | SPI1–SSI1 | SPI3–SSI3 | SPI6–SSI6 | SPI12–SSI12 | SPI24–SSI24 |
Elahera | 0.315 | 0.030 | 0.297 | 0.547 | 0.388 |
Angamadilla | 0.462 | 0.063 | 0.402 | 0.463 | 0.390 |
Parakrama Samudra | 0.581 | 0.032 | 0.192 | 0.481 | 0.431 |
Giritale | 0.204 | –0.209 | –0.306 | –0.237 | –0.215 |
Kaudulla Wewa | 0.250 | 0.116 | 0.256 | 0.385 | –0.216 |
Kantale | 0.336 | 0.158 | 0.334 | 0.456 | 0.327 |
(b) | |||||
Demodara | SPI1–SSI1 | SPI3–SSI3 | SPI6–SSI6 | SPI12–SSI12 | SPI24–SSI24 |
Rantambe | 0.106 | 0.446 | 0.189 | 0.271 | –0.086 |
Victoria | 0.208 | 0.147 | 0.323 | 0.379 | 0.403 |
Mapakada Wewa | 0.605 | 0.169 | 0.588 | 0.447 | 0.532 |
Illukkumbura | 0.096 | 0.340 | 0.291 | 0.138 | 0.106 |
(c) | |||||
Caledonia | SPI1–SSI1 | SPI3–SSI3 | SPI6–SSI6 | SPI12–SSI12 | SPI24–SSI24 |
Ambewela | 0.208 | 0.445 | 0.516 | 0.514 | 0.575 |
Kotmale | –0.270 | 0.387 | 0.203 | 0.701 | 0.704 |
Katugastota | 0.053 | 0.492 | 0.609 | 0.585 | 0.429 |
Polgolla | –0.155 | 0.495 | 0.469 | 0.572 | 0.450 |
(d) | |||||
Nawalapitiya | SPI1–SSI1 | SPI3–SSI3 | SPI6–SSI6 | SPI12–SSI12 | SPI24–SSI24 |
Ambewela | 0.558 | 0.561 | 0.174 | 0.412 | 0.503 |
Kotmale | 0.521 | 0.502 | 0.531 | 0.518 | 0.332 |
Katugastota | 0.396 | 0.449 | 0.622 | 0.587 | 0.577 |
Polgolla | 0.348 | 0.359 | 0.234 | 0.367 | 0.318 |
(e) | |||||
Peradeniya | SPI1–SSI1 | SPI3–SSI3 | SPI6–SSI6 | SPI12–SSI12 | SPI24–SSI24 |
Ambewela | 0.503 | 0.444 | 0.441 | 0.451 | 0.483 |
Kotmale | –0.010 | –0.159 | –0.010 | –0.047 | –0.332 |
Katugastota | 0.335 | 0.294 | 0.363 | 0.372 | 0.306 |
Polgolla | 0.010 | –0.034 | –0.138 | 0.041 | –0.193 |
(a) | |||||
Manampitiya | SPEI1–SSI1 | SPEI3–SSI3 | SPEI6–SSI6 | SPEI12–SSI12 | SPEI24–SSI24 |
Trincomalee | 0.259 | 0.314 | 0.371 | 0.258 | 0.347 |
(b) | |||||
Demodara | SPEI1–SSI1 | SPEI3–SSI3 | SPEI6–SSI6 | SPEI12–SSI12 | SPEI24–SSI24 |
Badulla | 0.387 | 0.404 | 0.423 | 0.408 | 0.246 |
Bandarawela | 0.092 | 0.095 | 0.013 | –0.116 | –0.340 |
(c) | |||||
Caledonia | SPEI1–SSI1 | SPEI3–SSI3 | SPEI6–SSI6 | SPEI12–SSI12 | SPEI24–SSI24 |
Katugastota | 0.362 | 0.346 | 0.357 | 0.443 | 0.475 |
Nuwara Eliya | 0.379 | 0.399 | 0.376 | 0.450 | 0.515 |
(d) | |||||
Nawalapitiya | SPEI1–SSI1 | SPEI3–SSI3 | SPEI6–SSI6 | SPEI12–SSI12 | SPEI24–SSI24 |
Katugastota | 0.086 | 0.046 | 0.120 | 0.110 | 0.156 |
Nuwara Eliya | 0.091 | 0.085 | 0.100 | 0.011 | 0.010 |
(e) | |||||
Peradeniya | SPEI1–SSI1 | SPEI3–SSI3 | SPEI6–SSI6 | SPEI12–SSI12 | SPEI24–SSI24 |
Katugastota | 0.267 | 0.188 | 0.191 | 0.310 | 0.431 |
Nuwara Eliya | 0.048 | 0.008 | 0.037 | 0.079 | 0.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senatilleke, U.; Sirisena, J.; Gunathilake, M.B.; Muttil, N.; Rathnayake, U. Monitoring the Meteorological and Hydrological Droughts in the Largest River Basin (Mahaweli River) in Sri Lanka. Climate 2023, 11, 57. https://doi.org/10.3390/cli11030057
Senatilleke U, Sirisena J, Gunathilake MB, Muttil N, Rathnayake U. Monitoring the Meteorological and Hydrological Droughts in the Largest River Basin (Mahaweli River) in Sri Lanka. Climate. 2023; 11(3):57. https://doi.org/10.3390/cli11030057
Chicago/Turabian StyleSenatilleke, Udara, Jeewanthi Sirisena, Miyuru B. Gunathilake, Nitin Muttil, and Upaka Rathnayake. 2023. "Monitoring the Meteorological and Hydrological Droughts in the Largest River Basin (Mahaweli River) in Sri Lanka" Climate 11, no. 3: 57. https://doi.org/10.3390/cli11030057
APA StyleSenatilleke, U., Sirisena, J., Gunathilake, M. B., Muttil, N., & Rathnayake, U. (2023). Monitoring the Meteorological and Hydrological Droughts in the Largest River Basin (Mahaweli River) in Sri Lanka. Climate, 11(3), 57. https://doi.org/10.3390/cli11030057