Proposal of an Agricultural Vulnerability Stochastic Model for the Rural Population of the Northeastern Region of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study and Data
2.2. Methods
2.3. Determination of the Agricultural Sensitivity Factor SeA
2.4. Calculation of Agricultural Vulnerability to Extreme Droughts (VaED)
3. Results and Discussion
3.1. Analysis of Risk Component and Factorial Analysis for the Sensitivity Component (SeA)
3.2. Agricultural Vulnerability to Drought Extremes
4. Conclusions
- (1)
- The methodology adopted for calculating the risk of drought during the rainy season proved to be effective, not only because of its simplicity, but also because it provides results that are congruent with those found in the specialized literature.
- (2)
- The sensitivity and exposure of agriculture to drought (SeA) proved to be robust, since all the necessary validation steps, including the Kaiser–Meyer–Olkin (KMO) and Bartlett tests, were satisfactorily met. This establishes a solid basis for using the proposed model in future scientific research.
- (3)
- Finally, the vulnerability to drought extremes indicator (VaED) precisely delineated the areas that require special attention from the government, highlighting the central and southwestern regions of Bahia, as well as the entire semi-arid territory of the NEB. These areas have been identified as particularly critical in previous studies [4,5] due to future scenarios that point to an increase in water deficit.
- (4)
- Thus, this study represents a fundamental step in advancing knowledge about vulnerability to droughts in the region, providing valuable input for designing effective mitigation and adaptation strategies, which are essential for ensuring the resilience and sustainable development of the Brazilian Northeast in the face of these climatic challenges.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaption, and Vulnerability. Part A: Global and Sectoral Aspects; Dokken, D.J., Field, C.B., Barros, V., Mach, M., Et, A., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1–32. Available online: http://ipcc-wg2.gov/AR5/images/uploads/WG2AR5_SPM_FINAL.pdf (accessed on 2 August 2023).
- Rao, V.B.; Franchito, S.H.; Santo, C.M.E.; Gan, M.A. An update on the rainfall characteristics of Brazil: Seasonal variations and trends in 1979–2011. Int. J. Climatol. 2015, 36, 291–302. [Google Scholar] [CrossRef]
- Da Rocha Júnior, R.L.; Pinto, D.D.C.; dos Santos Silva, F.D.; Gomes, H.B.; Gomes, H.B.; Costa, R.L.; Pereira, M.P.S.; Peña, M.; dos Santos Coelho, C.A.; Herdies, D.L. An Empirical Seasonal Rainfall Forecasting Model for the Northeast Region of Brazil. Water 2021, 13, 1613. [Google Scholar] [CrossRef]
- Marengo, J.A.; Bernasconi, M. Regional differences in aridity/drought conditions over Northeast Brazil: Present state and future projections. Clim. Chang. 2015, 129, 103–115. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Jiang, G.; Yu, F.; Zhao, Y. An analysis of vulnerability to agricultural drought in China using the expand grey relation analysis method. Procedia Eng. 2012, 28, 670–676. [Google Scholar]
- Kienberger, S.; Lang, S.; Zeil, P. Spatial vulnerability units—Expert-based spatial modelling of socio-economic vulnerability in the Salzach catchment, Austria. Nat. Hazards Earth Syst. Sci. 2009, 9, 767–778. [Google Scholar] [CrossRef]
- Silva, B.K.N.; Lucio, P.S. Indicator of Agriculture Vulnerability to Climatic Extremes. A Conceptual Model with Case Study for the Northeast Brazil. Atmos. Clim. Sci. 2014, 4, 334–345. [Google Scholar] [CrossRef]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Haines, A.; Kovats, R.S.; Campbell-Lendrum, D.; Corvalan, C. Climate change and human health: Impacts, vulnerability and public health. Public Health 2006, 120, 585–596. [Google Scholar] [CrossRef]
- Torres, R.R.; Lapola, D.M.; Marengo, J.A.; Lombardo, M.A. Socio-climatic hotspots in Brazil. Clim. Chang. 2012, 115, 597–609. [Google Scholar] [CrossRef]
- Darela Filho, J.P.; Lapola, D.M.; Torres, R.R.; Lemos, M.C. Socio-climatic hotspots in Brazil: How do changes driven by the new set of IPCC climatic projections affect their relevance for policy? Clim. Chang. 2016, 136, 413–425. [Google Scholar] [CrossRef]
- Gbetibouo, G.A.; Ringler, C.; Hassan, R. Vulnerability of the South African farming sector to climate change and variability: An indicator approach. Nat. Resour. Forum 2010, 34, 175–187. [Google Scholar] [CrossRef]
- Eakin, H.; Luers, A.L. Assessing the Vulnerability of Social-Environmental Systems. Annu. Rev. Environ. Resour. 2006, 31, 365–394. [Google Scholar] [CrossRef]
- Simelton, E.; Fraser, E.D.G.; Termansen, M.; Forster, P.M.; Dougill, A.J. Typologies of crop-drought vulnerability: An empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961–2001). Environ. Sci. Policy 2009, 12, 438–452. [Google Scholar] [CrossRef]
- Wilhelmi, O.V. Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study. Nat. Hazards 2002, 25, 37–58. [Google Scholar] [CrossRef]
- Luers, A.L.; Lobell, D.B.; Sklar, L.S.; Addams, C.L.; Matson, P.A. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Chang. 2003, 13, 255–267. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Fraser, E.D.G.; Dougill, A.J.; Stringer, L.C.; Simelton, E. Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Appl. Geogr. 2012, 32, 324–334. [Google Scholar] [CrossRef]
- Popova, Z.; Ivanova, M.; Martins, D.; Pereira, L.S.; Doneva, K.; Alexandrov, V.; Kercheva, M. Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems. Nat. Hazards 2014, 74, 865–886. [Google Scholar] [CrossRef]
- Alexandrov, V.A.; Hoogenboom, G. The impact of climate variability and change on crop yield in Bulgaria. Agric. For. Meteorol. 2000, 104, 315–327. [Google Scholar] [CrossRef]
- Costa, R.L.; Gomes, H.B.; Pinto, D.D.C.; da Rocha Júnior, R.L.; dos Santos Silva, F.D.; Gomes, H.B.; da Silva, M.C.L.; Herdies, D.L. Gap Filling and Quality Control Applied to Meteorological Variables Measured in the Northeast Region of Brazil. Atmosphere 2021, 12, 1278. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–778. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.T.; Santos e Silva, C.M.; Lima, K.C. Linear trend of occurrence and intensity of heavy rainfall events on Northeast Brazil. Atmos. Sci. Lett. 2014, 177, 172–177. [Google Scholar] [CrossRef]
- Oliveira, P.T.; Lima, K.C.; Santos e Silva, C.M. Synoptic environment associated with heavy rainfall events on the coastland of Northeast Brazil. Adv. Geosci. 2013, 35, 73–78. [Google Scholar] [CrossRef]
- Kienberger, S. The Integration of Land Use/Land cover Data within the Modelling of Socio-Economic Vulnerabilities; Centre for Geoinformatics, Salzburg University: Salzburg, Austria, 2010; pp. 205–214. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Gribov, A.; Krivoruchko, K. Empirical Bayesian kriging implementation and usage. Sci. Total Environ. 2020, 722, 137290. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009; 761p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. Available online: http://www.r-project.org/3-900051-07-0 (accessed on 2 August 2023).
- Figueiredo, D.B.F.; Silva, J.A.J. Visão além do alcance: Uma introdução à análise fatorial. Opinião Pública 2010, 16, 160–185. [Google Scholar] [CrossRef]
- Waichman, A.V. Uma proposta de avaliação integrada de risco do uso de agrotóxicos no estado do Amazonas, Brasil. Acta Amaz. 2008, 38, 45–50. [Google Scholar] [CrossRef]
Component | Indicator | Variables | ||||||
---|---|---|---|---|---|---|---|---|
Sensitivity | Land usage in the establishments | Permanent plantation (s1) | Temporary plantation (s2) | Natural pasture (s3) | Forests that are areas of preservation or legal reserve (s4) | Forests (permanent preservation area and in forest-agricultural systems). (s5) | Degraded land (eroded, deserted, salinized, etc.) (s6) | |
Workers from agricultural establishments | Number of workers at the establishments (s7) | |||||||
Production value | Animal (s8) | Vegetable (s9) | Pressing vegetable-plantations (s10) | Temporary vegetable-plantations (s11) | Vegetable-horticulture (s12) | Vegetable—vegetable extraction (s13) | Agribusiness (s14) | |
Activity located out of the place | Livestock (s15) | Non-livestock (s16) | No activity (s17) | |||||
Adaptation Capacity | Technical knowledge of the person in charge | Elementary education (1°grade) (ad1) | Complete secondary school (agro-technical) (ad2) | Complete secondary school (ad3) | Other type of higher education (ad4) | Does not know how to write and read (ad5) | ||
Technical knowledge received | Occasionally (ad6) | Regularly (ad7) | No (ad8) | |||||
Agent responsible for the technical guidance | Government (federal, state or local) (ad9) | Cooperatives (ad10) | Private companies (ad11) | Non-governmental organizations (NGO) (ad12) | Non-applicable (ad13) | |||
Degree of investment in the agricultural establishment | Number of establishments that invested (ad14) | Value of the investment (ad15) | ||||||
Financial agent responsible for the loan | Banks (ad16) | Credit cooperatives (ad17) | Nongovernmental organization (ONG) (ad18) | |||||
Agricultural technique | Leveled planting (ad19) | Crop rotation (ad20) | Use of plantations to reform and/or renew and/or restore pastures (ad21) | Fires (ad22) | Protection/conservation of hillsides (ad23) | |||
Electric power | Solar energy (ad24) | Wind power (ad25) | Burn of fossil fuels (ad26) | |||||
Fertilization products | Nitrogen chemical fertilizers (ad27) | Dung and/or urine (ad28) | Green fertilization (ad29) | Biofertilizers (ad30) | Organic compound (ad31) | |||
Area of the establishments that are used to irrigation | Area of the livestock establishments that use irrigation (%) (ad32) | |||||||
Usage of pesticides | Used (ad33) |
Variables | Communality |
---|---|
s3 | 0.686 |
s7 | 0.995 |
s11 | 0.516 |
s15 | 0.921 |
s16 | 0.995 |
ad1 | 0.897 |
ad2 | 0.692 |
ad3 | 0.902 |
ad4 | 0.995 |
ad5 | 0.910 |
ad9 | 0.892 |
ad13 | 0.984 |
ad14 | 0.800 |
ad15 | 0.995 |
ad19 | 0.564 |
Variable | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 |
---|---|---|---|---|---|---|---|---|
s3 | 0.295 | −0.250 | 0.202 | 0.140 | 0.266 | 0.612 | ||
s7 | −0.407 | 0.865 | −0.135 | 0.163 | −0.153 | |||
s11 | −0.426 | 0.541 | 0.118 | |||||
s15 | 0.930 | −0.164 | −0.139 | |||||
s16 | 0.247 | 0.561 | −0.103 | 0.771 | ||||
ad1 | 0.910 | −0.178 | 0.158 | |||||
ad2 | 0.781 | −0.229 | 0.101 | −0.101 | ||||
ad3 | 0.875 | −0.202 | 0.134 | 0.248 | ||||
ad4 | −0.134 | 0.538 | −0.267 | 0.777 | ||||
ad5 | 0.887 | −0.156 | 0.295 | |||||
ad9 | 0.128 | 0.926 | ||||||
ad13 | 0.894 | 0.258 | −0.227 | 0.235 | 0.256 | |||
ad14 | 0.813 | 0.183 | 0.103 | 0.744 | −0.151 | |||
ad15 | 0.389 | −0.155 | 0.397 | 0.305 | ||||
ad19 | 0.622 | 0.132 | −0.123 | 0.138 | 0.149 | 0.312 |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | |
---|---|---|---|---|---|---|---|---|
Accumulated | 3.832 | 3.365 | 1.507 | 0.997 | 0.772 | 0.771 | 0.751 | 0.722 |
load | ||||||||
Proportional | 0.255 | 0.224 | 0.100 | 0.066 | 0.051 | 0.051 | 0.050 | 0.048 |
Variance | ||||||||
Accumulated | 0.255 | 0.480 | 0.580 | 0.647 | 0.698 | 0.750 | 0.800 | 0.848 |
variance | ||||||||
p-value | 0.471 | |||||||
KMO | 0.774 | |||||||
Bartlett’s test | 2470.8 | |||||||
Degrees of freedom | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, B.K.d.N.; Costa, R.L.; Silva, F.D.d.S.; Vanderlei, M.H.G.d.S.; da Silva, H.J.F.; Júnior, J.B.C.; Costa Júnior, D.S.d.; Pedra, G.U.; Pérez-Marin, A.M.; Silva, C.M.S.e. Proposal of an Agricultural Vulnerability Stochastic Model for the Rural Population of the Northeastern Region of Brazil. Climate 2023, 11, 211. https://doi.org/10.3390/cli11100211
Silva BKdN, Costa RL, Silva FDdS, Vanderlei MHGdS, da Silva HJF, Júnior JBC, Costa Júnior DSd, Pedra GU, Pérez-Marin AM, Silva CMSe. Proposal of an Agricultural Vulnerability Stochastic Model for the Rural Population of the Northeastern Region of Brazil. Climate. 2023; 11(10):211. https://doi.org/10.3390/cli11100211
Chicago/Turabian StyleSilva, Bruce Kelly da Nóbrega, Rafaela Lisboa Costa, Fabrício Daniel dos Santos Silva, Mário Henrique Guilherme dos Santos Vanderlei, Helder José Farias da Silva, Jório Bezerra Cabral Júnior, Djailson Silva da Costa Júnior, George Ulguim Pedra, Aldrin Martin Pérez-Marin, and Cláudio Moisés Santos e Silva. 2023. "Proposal of an Agricultural Vulnerability Stochastic Model for the Rural Population of the Northeastern Region of Brazil" Climate 11, no. 10: 211. https://doi.org/10.3390/cli11100211
APA StyleSilva, B. K. d. N., Costa, R. L., Silva, F. D. d. S., Vanderlei, M. H. G. d. S., da Silva, H. J. F., Júnior, J. B. C., Costa Júnior, D. S. d., Pedra, G. U., Pérez-Marin, A. M., & Silva, C. M. S. e. (2023). Proposal of an Agricultural Vulnerability Stochastic Model for the Rural Population of the Northeastern Region of Brazil. Climate, 11(10), 211. https://doi.org/10.3390/cli11100211