The Arctic Winter Seasons 2016 and 2017: Climatological Context and Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Daily Arctic Sea Ice Extent
3.2. Pre-Conditioning
3.3. Climatological Reflection of Winters 2015/16 and 2016/17
3.4. Analysis of Teleconnections
3.5. Analysis of Sinuosity
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serreze, M.C.; Holland, M.M.; Stroeve, J. Perspectives on the Arctic’s Shrinking Sea-Ice Cover. Science 2007, 315, 1533–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, J.E.; Holland, M.M.; Jahn, A. Inter-Annual to Multi-Decadal Arctic Sea Ice Extent Trends in a Warming World. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Notz, D.; Marotzke, J. Observations Reveal External Driver for Arctic Sea-Ice Retreat. Geophys. Res. Lett. 2012, 38, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; Coumou, D.; et al. Divergent Consensuses on Arctic Amplification Influence on Midlatitude Severe Winter Weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Stroeve, J.; Blanchard-Wrigglesworth, E.; Guemas, V.; Howell, S.; Massonnet, F.; Tietsche, S. Improving Predictions of Arctic Sea Ice Extent. Earth Space Sci. 2015, 96, 11. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and Impacts of Arctic Amplification: A Research Synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Arndt, D.S.; Blunden, J. State of the Climate in 2011. Bull. Am. Meteorol. Soc. 2012, 93, S1–S282. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.N.; Holland, M.M. The Emergence of Surface-Based Arctic Amplification. Cryosphere 2009, 3, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Park, D.-S.R.; Lee, S.; Feldstein, S.B. Attribution of the Recent Winter Sea Ice Decline over the Atlantic Sector of the Arctic Ocean. J. Clim. 2015, 28, 4027–4033. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence for a Wavier Jet Stream in Response to Rapid Arctic Warming. Environ. Res. Lett. 2015, 10, 014005. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M.; Walsh, J.E.; Stroeve, J.C. Future Arctic Climate Changes: Adaptation and Mitigation Time Scales. Earth’s Future 2014, 2, 68–74. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. Increased Variability in the Early Winter Subarctic North American Atmospheric Circulation. J. Clim. 2015, 28, 7297–7305. [Google Scholar] [CrossRef]
- Honda, M.; Inoue, J.; Yamane, S. Influence of Low Arctic Sea-Ice Minima on Anomalously Cold Eurasian Winters. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic Amplification and Extreme Mid-Latitude Weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.A.; Vavrus, S.J. Evidence Linking Arctic Amplification to Extreme Weather in Mid-Latitudes. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Barnes, E.A.; Screen, J.A. The Impact of Arctic Warming on the Midlatitude Jet-Stream: Can It? Has It? Will It? Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.E.; Wang, M. Recent Extreme Arctic Temperatures Are Due to a Split Polar Vortex. J. Clim. 2016, 29, 5609–5616. [Google Scholar] [CrossRef]
- NCEI. Climate at a Glance. Global Time Series: Global Land and Ocean Temperature Anomalies, 1880–2015. 2017. Available online: https://charts.datawrapper.de/9RvfW/index.html (accessed on 29 November 2017).
- Francis, J.; Skific, N. Evidence Linking Rapid Arctic Warming to Mid-Latitude Weather Patterns. Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373, 20140170. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, R.; Deavean, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Huang, B.; Banzon, V.F.; Freeman, E.; Lawrimore, J.; Liu, W.; Peterson, T.C.; Smith, T.M.; Thorne, P.W.; Woodruff, S.D.; Zhang, H.M. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons. J. Clim. 2015, 28, 911–930. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H.-C.; Gu, W.; Sienkiewicz, M.; Koster, R.D.; Gelaro, R.; et al. The GEOS-5 Data Assimilation System-Documentation of Versions 5.0. 1, 5.1. 0, and 5.2. 0.; No. NASA/TM-2008-104606-VOL-27; NASA: Washington, DC, USA, 2008; Volume 27. [Google Scholar]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; Draper, C.S.; Liu, Q.; Girotto, M.; Mahanama, S.P.P.; Koster, R.D.; De Lannoy, G.J.M. Assessment of MERRA-2 Land Surface Hydrology Estimates. J. Clim. 2017, 30, 2937–2960. [Google Scholar] [CrossRef] [Green Version]
- Bosilovich, M.G.; Robertson, F.R.; Takacs, L.; Molod, A.; Mocko, D. Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis. J. Clim. 2017, 30, 1177–1196. [Google Scholar] [CrossRef]
- Comiso, J.C.; Nishio, F. Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I, and SMMR Data. J. Geophys. Res. Ocean. 2008, 113, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Fretterer, F.; Savoie, M.; Mallory, S.; Duerr, R.; Stroeve, J. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3. Boulder, Colorado USA. NSIDC Natl. Snow Ice Data Cent. 2017, 5, 311–318. [Google Scholar]
- Petoukhov, V.; Semenov, V.A. A Link between Reduced Barents-Kara Sea Ice and Cold Winter Extremes over Northern Continents. J. Geophys. Res. Atmos. 2010, 115, 869–873. [Google Scholar] [CrossRef]
- Mori, M.; Watanabe, M.; Shiogama, H.; Inoue, J.; Kimoto, M. Robust Arctic Sea-Ice Influence on the Frequent Eurasian Cold Winters in Past Decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Ionita, M.; Tallaksen, L.M.; Kingston, D.G.; Stagge, J.H.; Laaha, G.; Van Lanen, H.A.J.; Scholz, P.; Chelcea, S.M.; Haslinger, K.; Van Lanen, H.A.J.; et al. The European 2015 Drought from a Climatological Perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef] [Green Version]
- Van Lanen, H.A.; Laaha, G.; Kingston, D.G.; Gauster, T.; Ionita, M.; Vidal, J.P.; Vlnas, R.; Tallaksen, L.M.; Stahl, K.; Hannaford, J.; et al. Hydrology Needed to Manage Droughts: The 2015 European Case. Hydrol. Process. 2016, 30, 3097–3104. [Google Scholar] [CrossRef] [Green Version]
- Inoue, J.; Hori, M.E.; Takaya, K. The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly. J. Clim. 2012, 25, 2561–2568. [Google Scholar] [CrossRef]
- Yang, X.Y.; Yuan, X.; Ting, M. Dynamical Link between the Barents-Kara Sea Ice and the Arctic Oscillation. J. Clim. 2016, 29, 5103–5122. [Google Scholar] [CrossRef]
- Boisvert, L.N.; Stroeve, J.C. The Arctic Is Becoming Warmer and Wetter as Revealed by the Atmospheric Infrared Sounder. Geophys. Res. Lett. 2015, 42, 4439–4446. [Google Scholar] [CrossRef]
- Ionita, M.; Scholz, P.; Grosfeld, K.; Treffeisen, R. Moisture Transport and Antarctic Sea Ice: Austral Spring 2016 Event. Earth Syst. Dyn. 2018, 9, 939–954. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Ottersen, G. The North Atlantic Oscillation: Climate Significance and Environmental Impact; American Geophysical Union: Washington, DC, USA, 2003; ISBN 0875909949. [Google Scholar]
- Quadrelli, R.; Wallace, J.M. A Simplified Linear Framework for Interpreting Patterns of Northern Hemisphere Wintertime Climate Variability. J. Clim. 2004, 17, 3728–3744. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Annular Modes in the Extratropical Circulation. Part II: Trends. J. Clim. 2000, 13, 1018–1036. [Google Scholar] [CrossRef]
- L’Heureux, M.L.; Kumar, A.; Bell, G.D.; Halpert, M.S.; Higgins, R.W. Role of the Pacific-North American (PNA) Pattern in the 2007 Arctic Sea Ice Decline. Geophys. Res. Lett. 2008, 35, 1–7. [Google Scholar] [CrossRef]
- Bueh, C.; Nakamura, H. Scandinavian Pattern and Its Climatic Impact. Q. J. R. Meteorol. Soc. 2007, 133, 2117–2132. [Google Scholar] [CrossRef]
- Ionita, M. The Impact of the East Atlantic/Western Russia Pattern on the Hydroclimatology of Europe from Mid-Winter to Late Spring. Climate 2014, 2, 296. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Cullather, R.I.; Lim, Y.K.; Boisvert, L.N.; Brucker, L.; Lee, J.N.; Nowicki, S.M.J. Analysis of the Warmest Arctic Winter, 2015–2016. Geophys. Res. Lett. 2016, 43, 10–808. [Google Scholar] [CrossRef]
- Screen, J.A.; Francis, J.A. Contribution of Sea-Ice Loss to Arctic Amplification Is Regulated by Pacific Ocean Decadal Variability. Nat. Clim. Chang. 2016, 6, 856–860. [Google Scholar] [CrossRef] [Green Version]
- Cattiaux, J.; Peings, Y.; Saint-Martin, D.; Trou-Kechout, N.; Vavrus, S.J. Sinuosity of Midlatitude Atmospheric Flow in a Warming World. Geophys. Res. Lett. 2016, 43, 8259–8268. [Google Scholar] [CrossRef] [Green Version]
- Notz, D.; Stroeve, J. Observed Arctic Sea-Ice Loss Directly Follows Anthropogenic CO2 Emission. Science 2016, 354, 747–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroeve, J.; Notz, D. Changing State of Arctic Sea Ice across All Seasons. Environ. Res. Lett. 2018, 13, 103001. [Google Scholar] [CrossRef]
- Ionita, M.; Grosfeld, K.; Scholz, P.; Treffeisen, R.; Lohmann, G. September Arctic Sea Ice Minimum Prediction—A New Skillful Statistical Approach. Earth Syst. Dyn. Discuss. 2018, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Stuecker, M.F.; Bitz, C.M.; Armour, K.C. Conditions Leading to the Unprecedented Low Antarctic Sea Ice Extent during the 2016 Austral Spring Season. Geophys. Res. Lett. 2017, 44, 9008–9019. [Google Scholar] [CrossRef]
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Trend | −0.48 | −0.47 | −0.42 | −0.37 | −0.34 | −0.45 | −0.73 | −0.76 | −0.87 | −0.66 | −0.55 | −0.44 |
2015/2016 | 2016/2017 | |||||
---|---|---|---|---|---|---|
Dec | Jan | Feb | Dec | Jan | Feb | |
AO | 1.44 | −1.45 | −0.02 | 1.79 | 0.94 | 0.34 |
NAO | 1.99 | −0.37 | 1.35 | 0.35 | 0.05 | 0.69 |
PNA | 0.47 | 1.94 | 1.68 | −0.65 | −0.29 | −0.05 |
PDO | 1.01 | 1.53 | 1.75 | 1.57 | 0.77 | 0.70 |
Niño3.4 | 2.32 | 2.24 | 2.01 | −0.65 | −0.47 | −0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionita, M. The Arctic Winter Seasons 2016 and 2017: Climatological Context and Analysis. Climate 2023, 11, 19. https://doi.org/10.3390/cli11010019
Ionita M. The Arctic Winter Seasons 2016 and 2017: Climatological Context and Analysis. Climate. 2023; 11(1):19. https://doi.org/10.3390/cli11010019
Chicago/Turabian StyleIonita, Monica. 2023. "The Arctic Winter Seasons 2016 and 2017: Climatological Context and Analysis" Climate 11, no. 1: 19. https://doi.org/10.3390/cli11010019
APA StyleIonita, M. (2023). The Arctic Winter Seasons 2016 and 2017: Climatological Context and Analysis. Climate, 11(1), 19. https://doi.org/10.3390/cli11010019