Thirty-Five Years of Aerosol–PBAP in situ Research in Brazil: The Need to Think outside the Amazonian Box
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Information
3.2. Distribution of Cases by Biomes and Sampling Sites
3.3. Aerosol–PBAP Sampling and Characterisation
3.4. Sampling Effort of Aerosol–PBAP Research
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef] [Green Version]
- Bauer, H.; Kasper-Giebl, A.; Löflund, M.; Giebl, H.; Hitzenberger, R.; Zibuschka, F.; Puxbaum, H. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 2002, 64, 109–119. [Google Scholar] [CrossRef]
- Sesartic, A.; Lohmann, U.; Storelvmo, T. Modelling the impact of fungal spore ice nuclei on clouds and precipitation. Environ. Res. Lett. 2013, 8, 014029. [Google Scholar] [CrossRef] [Green Version]
- Artaxo, P.; Rizzo, L.V.; Brito, J.F.; Barbosa, H.M.J.; Arana, A.; Sena, E.T.; Cirino, G.G.; Bastos, W.; Martin, S.T.; Andreae, M.O. Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discuss. 2013, 165, 203–235. [Google Scholar] [CrossRef] [Green Version]
- Morais, F.G.; Franco, M.A.; Palácios, R.; Machado, L.A.T.; Rizzo, L.V.; Barbosa, H.M.J.; Jorge, F.; Schafer, J.S.; Holben, B.N.; Landulfo, E.; et al. Relationship between land use and spatial variability of atmospheric brown carbon and black carbon aerosols in Amazonia. Atmosphere 2022, 13, 1328. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, L.V.; Artaxo, P.; Karl, T.; Guenther, A.B.; Greenberg, J. Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia. Atmos. Environ. 2010, 44, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Acevedo, O.C.; Araùjo, A.; Artaxo, P.; Barbosa, C.G.G.; Barbosa, H.M.J.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B.B.L.; et al. The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys. 2015, 15, 10723–10776. [Google Scholar] [CrossRef] [Green Version]
- Boulton, C.A.; Lenton, T.M.; Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Chang. 2022, 12, 271–278. [Google Scholar] [CrossRef]
- Harriss, R.C.; Wofsy, S.C.; Garstang, M.; Browell, E.V.; Molion, L.C.B.; McNeal, R.J.; Hoell, J.M., Jr.; Bendura, R.J.; Beck, S.M.; Navarro, R.L.; et al. The Amazon Boundary Layer Experiment (ABLE 2A): Dry season 1985. J. Geophys. Res. 1988, 93, 1351–1360. [Google Scholar] [CrossRef]
- Artaxo, P.; Maenhaut, W.; Storms, H.; van Grieken, R. Aerosol characteristics and sources for the Amazon Basin during the wet season. J. Geophys. Res. 1990, 95, 16971–16985. [Google Scholar] [CrossRef]
- Gash, J.H.C.; Nobre, C.A.; Roberts, J.M.; Victoria, R.L. (Eds.) An Overview of ABRACOS. In Amazonian Deforestation and Climate; John Wiley: New York, NY, USA, 1996; pp. 1–14. [Google Scholar]
- Andreae, M.O.; Artaxo, P.; Brandão, C.; Carswell, F.E.; Ciccioli, P.; Da Costa, A.L.; Culf, A.D.; Esteves, J.L.; Gash, J.H.C.; Grace, J.; et al. Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments. J. Geophys. Res. 2002, 107, 8066. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.T.; Andreae, M.O.; Althausen, D.; Artaxo, P.; Baars, H.; Borrmann, S.; Chen, Q.; Farmer, D.K.; Guenther, A.; Gunthe, S.S.; et al. An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmos. Chem. Phys. 2010, 10, 11415–11438. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.T.; Artaxo, P.; Machado, L.A.T.; Manzi, A.O.; Souza, R.A.F.D.; Schumacher, C.; Wang, J.; Andreae, M.O.; Barbosa, H.M.J.; Fan, J.; et al. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys. 2016, 16, 4785–4797. [Google Scholar] [CrossRef] [Green Version]
- Mei, F.; Wang, J.; Comstock, J.M.; Weigel, R.; Krämer, M.; Mahnke, C.; Shilling, J.E.; Schneider, J.; Schulz, C.; Long, C.N.; et al. Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmos. Meas. Tech. 2020, 13, 661–684. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and earth engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Emygdio, A.P.M.; Andrade, M.F.; Gonçalves, F.L.T.; Engling, G.; Zanetti, R.H.S.; Kumar, P. Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil. Sci. Total Environ. 2018, 612, 809–821. [Google Scholar] [CrossRef]
- Emygdio, A.P.M.; Degobbi, C.; Gonçalves, F.L.T.; Andrade, M.F. One year of temporal characterization of fungal spore concentration in São Paulo metropolitan area, Brazil. J. Aerosol Sci. 2018, 115, 121–131. [Google Scholar] [CrossRef]
- Emygdio, A.P.M.; Degobbi, C.; Carotenuto, F.; Castro e Silva, D.M.; Quintino, T.B.; Zanetti, R.H.S.; Mantoani, M.C.; Boschilia, S.M.; Guerra, L.C.C.; Dias, P.L.S.; et al. Bioaerosol vertical fungal spores profile in Minas Gerais State, Brazil. Aerobiologia 2022, 38, 85–101. [Google Scholar] [CrossRef]
- Lima, R.A.F.; Oliveira, A.A.; Pitta, G.R.; Gasper, A.L.; Vibrans, A.C.; Chave, J.; ter Steege, H.; Prado, P.I. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nat. Commun. 2020, 11, 6347. [Google Scholar] [CrossRef]
- Orsini, C.Q.; Tabacniks, M.H.; Artaxo, P.; Andrade, M.F.; Kerr, A.S. Characteristics of fine and coarse particles of natural and urban aerosols of Brazil. Atmos. Environ. 1986, 20, 2259–2269. [Google Scholar] [CrossRef]
- Mantoani, M.C.; Osborne, B.A. Alien plant introductions and greenhouse gas emissions: Insights from Gunnera tinctoria invasions. Sci. Total Environ. 2021, 775, 145861. [Google Scholar] [CrossRef] [PubMed]
- Panieiri, G.; Ervens, B.; Jesus-Rydin, C.; Beniest, A.; Pickering, R.; EGU (European Geophysics Union). Scientific Neo-Colonialism: What Is It and Why Should You Care? 2022. Available online: https://meetingorganizer.copernicus.org/EGU22/session/44560 (accessed on 23 December 2022).
- Castanho, A.D.A.; Artaxo, P. Wintertime and summertime São Paulo aerosol source apportionment study. Atmos. Environ. 2001, 35, 4889–4902. [Google Scholar] [CrossRef]
- Almeida, G.P.; Brito, J.; Morales, C.A.; Andrade, M.F.; Artaxo, P. Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: The importance of aerosol size-resolved chemical composition on CCN concentration prediction. Atmos. Chem. Phys. 2014, 14, 7559–7572. [Google Scholar] [CrossRef] [Green Version]
- Šantl-Temkiv, T.; Amato, P.; Casamayor, E.O.; Lee, P.K.H.; Pointing, S.B. Microbial ecology of the atmosphere. FEMS Microbiol. Rev. 2022, 46, fuac009. [Google Scholar] [CrossRef]
- Bühl, J.; Ansmann, A.; Seifert, P.; Baars, H.; Engelmann, R. Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations. Geophys. Res. Lett. 2013, 40, 4404–4408. [Google Scholar] [CrossRef]
- Graham, B.; Guyon, P.; Maenhaut, W.; Taylor, P.E.; Ebert, M.; Matthias-Maser, S.; Mayol-Bracero, O.L.; Godoi, R.H.M.; Artaxo, P.; Meixner, F.X.; et al. Composition and diurnal variability of the natural Amazonian aerosol. J. Geophys. Res. Atmos. 2003, 108, 4765. [Google Scholar] [CrossRef] [Green Version]
- Löbs, N.; Barbosa, C.G.G.; Brill, S.; Walter, D.; Ditas, F.; Sá, M.O.; Araújo, A.C.; Oliveira, L.R.; Godoi, R.H.M.; Wolff, S.; et al. Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon. Atmos. Meas. Tech. 2020, 13, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.G.; Taylor, P.E.; Sá, M.O.; Teixeira, P.R.; Souza, R.A.; Albrecht, R.I.; Barbosa, H.M.J.; Sebben, B.; Manzi, A.O.; Araújo, A.C.; et al. Identification and quantification of giant bioaerosol particles over the Amazon rainforest. NPJ Clim. Atmos. Sci. 2022, 5, 73. [Google Scholar] [CrossRef]
- Oliveira, S.O.; Duijm, E.; Stech, M.; Ruijgrok, J.; Polling, M.; Barbosa, C.G.G.; Cerqueira, G.R.; Nascimento, A.H.M.; Godoi, R.H.M.; Taylor, P.E.; et al. Life is in the air: An expedition into the Amazonian atmosphere. Front. Ecol. Evol. 2022, 10, 789791. [Google Scholar] [CrossRef]
- Santos, D.M.; Rizzo, L.V.; Carbone, S.; Schlag, P.; Artaxo, P. Physical and chemical properties of urban aerosols in São Paulo, Brazil: Links between composition and size distribution of submicron particles. Atmos. Chem. Phys. 2021, 21, 8761–8773. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantoani, M.C.; Martins, J.A.; Martins, L.D.; Carotenuto, F.; Šantl-Temkiv, T.; Morris, C.E.; Rodrigues, F.; Gonçalves, F.L.T. Thirty-Five Years of Aerosol–PBAP in situ Research in Brazil: The Need to Think outside the Amazonian Box. Climate 2023, 11, 17. https://doi.org/10.3390/cli11010017
Mantoani MC, Martins JA, Martins LD, Carotenuto F, Šantl-Temkiv T, Morris CE, Rodrigues F, Gonçalves FLT. Thirty-Five Years of Aerosol–PBAP in situ Research in Brazil: The Need to Think outside the Amazonian Box. Climate. 2023; 11(1):17. https://doi.org/10.3390/cli11010017
Chicago/Turabian StyleMantoani, Maurício C., Jorge A. Martins, Leila Droprinchinski Martins, Federico Carotenuto, Tina Šantl-Temkiv, Cindy E. Morris, Fábio Rodrigues, and Fábio L. T. Gonçalves. 2023. "Thirty-Five Years of Aerosol–PBAP in situ Research in Brazil: The Need to Think outside the Amazonian Box" Climate 11, no. 1: 17. https://doi.org/10.3390/cli11010017
APA StyleMantoani, M. C., Martins, J. A., Martins, L. D., Carotenuto, F., Šantl-Temkiv, T., Morris, C. E., Rodrigues, F., & Gonçalves, F. L. T. (2023). Thirty-Five Years of Aerosol–PBAP in situ Research in Brazil: The Need to Think outside the Amazonian Box. Climate, 11(1), 17. https://doi.org/10.3390/cli11010017