Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US
Abstract
:1. Introduction
1.1. Emissions of Greenhouse Gases from Agriculture/Food Supply
1.2. Determining GHG Emissions from Livestock: Top-Down
1.3. Determining Footprints from Diet or Consumption: Bottom-Up
2. Materials and Methods
2.1. Greenhouse Gas Footprints
- (i)
- Using a top-down approach, a GHG footprint, F, can be calculated by dividing total emissions, E, by the total population, N:
- (ii)
- The bottom-up approach aggregates goods or services consumed with associated emissions factors to compile GHG emissions.
2.2. Greenhouse Gas Footprints: Top-Down
2.2.1. Country GHG Emissions Statistics
2.2.2. Scaling Regional Estimates from the GLEAM Model
2.2.3. Using Emissions Factors Combined with Livestock Statistics
- EFs are IPCC Tier 1 regional emission factors of CH4 per head for enteric fermentation. For western Europe/US 126/138 kg·yr−1 for dairy cows, 52/64 kg·yr−1 for beef or heifers, respectively [15]. For lamb/sheep EFs are 8 kg·yr−1 and for poultry 0.26 kg·yr−1 [8]. For pigs total emissions factors of CH4 of 5.5 kg·yr−1 global average for pigs, 7/12 kg·yr−1 for Western Europe/US without correction for enteric fermentation.
2.3. Determining Food Carbon Footprints: Bottom-Up
- Food—all food plus restaurants;
- Personal—drinks, alcohol, tobacco, and clothing and footwear;
- Home—DIY, furniture, textiles, and appliances;
- Utilities—water, gas, and electricity;
- Transport—vehicles, public transport;
- Services—medical, hospitals, education, recreation, and other categories not given above.
3. Results
3.1. Emissions of Greenhouse Gases from All Activities
3.2. Emissions of GHG by Country from Livestock Statistics: Top-Down
3.2.1. Country’s Own Emissions Estimate
3.2.2. Scaling Regional Estimates from the GLEAM Model
3.2.3. Using Emissions Factors Combined with Livestock Statistics
3.3. Contributions Using Classifications of Consumption or Food Diaries/Surveys: Bottom-Up
4. Discussion: The Potential for Emissions Reductions
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme (UNEP). Emissions Gap Report 2020; United Nations: New York, NY, USA, 2020; 128p, ISBN 978-92-807-3812-4. [Google Scholar]
- Cossutta, M.; Foo, D.C.Y.; Tan, R.R. Carbon emission pinch analysis (CEPA) for planning the decarbonization of the UK power sector. Sustain. Prod. Consum. 2021, 25, 259–270. [Google Scholar] [CrossRef]
- Liu, J.; Santos, G. Decarbonizing the Road Transport Sector: Break-even Point and Consequent Potential Consumers’ Behavior for the U.S. Case. Int. J. Sustain. Transp. 2015, 9, 159–175. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impact through producers and consumers. Science 2019, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Hertwich, E.; Peters, G.P. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environ. Sci. Technol. 2009, 41, 6414–6420. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p, Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 11 November 2021).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 27p, Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_SPM_FINAL.pdf (accessed on 5 February 2014).
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Chapter 5: Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendi, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Diemen, R.V., et al., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019; 114p. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/08_Chapter-5.pdf (accessed on 4 November 2021).
- Herrero, M.; Wirsenius, S.; Henderson, B.; Rigolot, C.; Thornton, P.; Havlík, P.; de Boer, I.; Gerber, P.J. Livestock and the Environment: What Have We Learned in the Past Decade? Annu. Rev. Environ. Resour. 2015, 40, 177–202. [Google Scholar] [CrossRef]
- Robinson, T.P.; Wint, G.R.W.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the Global Distribution of Livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Data Collection. Available online: https://www.fao.org/statistics/data-collection/en/ (accessed on 26 November 2021).
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Population and Vital Statistics Report. Available online: https://unstats.un.org/unsd/demographic-social/products/vitstats/ (accessed on 23 February 2022).
- Intergovernmental Panel on Climate Change (IPCC). Ch. 10. Emissions From Livestock and Manure Management. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Gavrilova, O., Leip, A., Dong, H., MacDonald, J.D., Gomez Bravo, C.A., Amon, B., Barahona Rosales, R., del Prado, A., Aparecida de Lima, M., Oyhantçabal, W., et al., Eds.; IPCC: Geneva, Switzerland, 2019; 209p, Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch10_Livestock.pdf (accessed on 26 February 2021).
- Reisinger, A.; Clark, H. How much do direct livestock emissions actually contribute to global warming? Glob. Chang. Biol. 2018, 24, 1749–1761. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Global Livestock Environmental Assessment Model (GLEAM). Available online: http://www.fao.org/gleam/results/en/ (accessed on 7 May 2021).
- Ritchie, H. You Want to Reduce the Carbon Footprint of Your Food? Focus on What You Eat, Not Whether Your Food Is Local. Available online: https://ourworldindata.org/food-choice-vs-eating-local (accessed on 6 May 2021).
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock–A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; 139p. [Google Scholar]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Forero-Cantor, G.; Ribal, J.; Sanjuán, N. Levying carbon footprint taxes on animal-sourced foods. A case study in Spain. J. Clean. Prod. 2020, 243, 118668. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Ferguson Aikins, E.; Ramanathan, U. Key factors of carbon footprint in the UK food supply chains: A new perspective of life cycle assessment. Int. J. Oper. Prod. Manag. 2020, 40, 945–970. [Google Scholar] [CrossRef]
- Goyal, A.; Doomra, R.; Srivastava, S.; Rani, N.; Choudhary, A.R. Vegetarians, vegans and the carbon footprint: An increased environmental consciousness among the youths. Indian J. Health Wellbeing 2020, 11, 387–392. [Google Scholar]
- Neufeld, D. The Carbon Footprint of the Food Supply Chain. Available online: https://www.visualcapitalist.com/visualising-the-greenhouse-gas-impact-of-each-food/ (accessed on 24 April 2020).
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.M.; Travis, R.C.; Bradbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Chang. 2014, 125, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willits-Smith, A.; Aranda, R.; Heller, M.C.; Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: A population-based cross-sectional study. Lancet Planet. Health 2020, 4, e98–e106. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Neff, R. Measurement and communication of greenhouse gas emissions from U.S. food consumption via carbon calculators. Ecol. Econ. 2009, 69, 186–196. [Google Scholar] [CrossRef]
- Department for Environment, Food & Rural Affairs (DEFRA). Agricultural Statistics and Climate Change; DEFRA: Bristol, UK, 2019; 109p. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/835762/agriclimate-9edition-02oct19.pdf (accessed on 25 January 2021).
- Department for Environment, Food & Rural Affairs (DEFRA). Agri-Climate Report; DEFRA: Bristol, UK, 2021; 19p. Available online: https://www.gov.uk/government/statistics/agri-climate-report-2021/agri-climate-report-2021 (accessed on 25 January 2021).
- De Ruiter, H.; Macdiarmid, J.I.; Matthews, R.B.; Kastner, T.; Smith, P. Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas. J. R. Soc. Interface 2016, 13, 20151001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Environmental Protection Agency (U.S. EPA). Greenhouse Gas Inventory Data Explorer. Available online: https://cfpub.epa.gov/ghgdata/inventoryexplorer/ (accessed on 7 May 2021).
- Emery, I. Without animals, US farmers would reduce feed crop production. Proc. Natl. Acad. Sci. USA 2018, 115, E1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R. U.S. Food and Agricultural Imports: Safeguards and Selected Issues 1 July 2020; Congressional Research Service: Washington, DC, USA, 2020; 54p. Available online: https://crsreports.congress.gov/product/pdf/R/R46440/2 (accessed on 24 November 2021).
- Xu, X.; Lan, Y. A comparative study on carbon footprints between plant- and animal-based foods in China. J. Clean. Prod. 2016, 112, 2581–2592. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Portner, H.-O.; Roberts, D.; Skea, J.; Calvo Buendia, E.; Shukla, R.S.; Slade, R.; Connors, S.; van Diemen, R.; et al. Climate Change and Land: Summary for Policy Makers; Intergovernmental Panel of Climate Change: Geneva, Switzerland, 2020; 41p.
- Department for Environment, Food & Rural Affairs (DEFRA). Livestock Numbers in England and the UK: Annual Statistics on the Number of Livestock in England and the UK in June and December. 2021. Available online: https://www.gov.uk/government/statistical-data-sets/structure-of-the-livestock-industry-in-england-at-december (accessed on 5 May 2021).
- US Department of Agriculture. Chickens and Eggs. Available online: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chickens_and_Eggs/index.php (accessed on 5 May 2021).
- Department for Environment, Food & Rural Affairs (DEFRA). UK’s Carbon Footprint 1997–2017. Available online: https://www.gov.uk/government/statistics/uks-carbon-footprint (accessed on 7 May 2021).
- World Resources Institute. CAIT Climate Data Explorer. Country Greenhouse Gas Emissions. Available online: http://cait.wri.org (accessed on 20 November 2021).
- Climate Change Committee. The Sixth Carbon Budget Agriculture and Land Use, Land Use Change and Forestry; Climate Change Committee: London, UK, 2020; 82p. Available online: https://www.theccc.org.uk/wp-content/uploads/2020/12/Sector-summary-Agriculture-land-use-land-use-change-forestry.pdf (accessed on 20 November 2021).
- US Department of Agriculture. United States and Canadian Cattle and Sheep. 2021. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/474299142/d791t878n/3f4630186/uscc0321.pdf (accessed on 11 November 2021).
- US Department of Agriculture. Poultry-Production and Value 2020 Summary. April 2021. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/plva0421.pdf (accessed on 20 November 2021).
- US Department of Agriculture. Available online: https://www.ers.usda.gov/topics/animal-products/sheep-lamb-mutton/sector-at-a-glance/ (accessed on 5 May 2021).
- US Department of Agriculture. U.S. Agricultural Baseline Projections. Available online: https://www.ers.usda.gov/data-products/agricultural-baseline-database/visualization-us-agricultural-baseline-projections/ (accessed on 5 May 2021).
- Wolf, J.; Asrar, G.A.; West, T.O. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock. Carbon Balance Manag. 2017, 12, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Environmental Protection Agency (U.S. EPA). Inventory of U.S. Greenhose Gas Emissions and Sinks 1990–2019; U.S. EPA: Washington, DC, USA, 2021; p. 791. Available online: https://www.epa.gov/sites/default/files/2021-04/documents/us-ghg-inventory-2021-main-text.pdf?VersionId=yu89kg1O2qP754CdR8Qmyn4RRWc5iodZ (accessed on 25 November 2021).
- Department for Environment, Food & Rural Affairs (DEFRA). Farming Statistics Final Crop Area, Yields, Livestock Populations and Agricultural Workforce at June 2019 United Kingdom; DEFRA: Bristol, UK, 2020; 24p. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/865769/structure-jun2019final-uk-22jan20-rev_v2.pdf (accessed on 26 January 2021).
- US Department of Agriculture. 2013 Turkeys Highlights. 2014. Available online: https://www.nass.usda.gov/Publications/Highlights/2014/2013_Turkey_Industry/2013%20Turkeys%20Highlights.pdf (accessed on 5 May 2021).
- Zhu, B.; Kros, J.; Lesschen, J.P.; Staritsky, I.G.; de Vries, W. Assessment of uncertainties in greenhouse gas emission profiles of livestock sectors in Africa, Latin America and Europe. Reg. Environ. Chang. 2016, 16, 1571–1582. [Google Scholar] [CrossRef] [Green Version]
- Sykes, A.J.; Topp, C.F.E.; Rees, R.M. Understanding uncertainty in the carbon footprint of beef production. J. Clean. Prod. 2019, 234, 423–435. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (U.S. EPA). Carbon Footprint Calculator. Available online: https://www3.epa.gov/carbon-footprint-calculator/ (accessed on 30 November 2021).
- Maizland, L. COP26: Here’s What Countries Pledged. Available online: https://www.cfr.org/in-brief/cop26-heres-what-countries-have-pledged (accessed on 16 November 2021).
- Reisinger, A.; Clark, H.; Cowie, A.L.; Emmet-Booth, J.; Gonzalez Fischer, C.; Herrero, M.; Howden, M.; Leahy, S. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200452. [Google Scholar] [CrossRef]
- The White House. FACT SHEET: President Biden Sets 2030 Greenhouse Gas Pollution Reduction Target Aimed at Creating Good-Paying Union Jobs and Securing U.S. Leadership on Clean Energy Technologies. 22 April 2021. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-s-leadership-on-clean-energy-technologies/ (accessed on 4 December 2021).
- Press Release. UK Sets Ambitious New Climate Target ahead of UN Summit. 3 December 2020. Available online: https://www.gov.uk/government/news/uk-sets-ambitious-new-climate-target-ahead-of-un-summit (accessed on 26 January 2020).
- HM Government. The Ten Point Plan for a Green Industrial Revolution; HM Government: London, UK, 2020; 38p. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf (accessed on 10 July 2021).
- Carmichael, R. Behaviour Change, Public Engagement and Net Zero: A Report for the Committee on Climate Change; Imperial College London: London, UK, 2019; 81p, Available online: https://www.theccc.org.uk/wp-content/uploads/2019/10/Behaviour-change-public-engagement-and-Net-Zero-Imperial-College-London.pdf (accessed on 22 January 2021).
- ResearchAndMarkets.com. 2020 Insights on Global Meat & Poultry Trends-Key Trends Impacting Meat Consumption. 2020. Available online: https://www.businesswire.com/news/home/20200323005558/en/2020-Insights-on-Global-Meat-Poultry-Trends---Key-Trends-Impacting-Meat-Consumption---ResearchAndMarkets.com (accessed on 5 May 2021).
- Compassion in World Farming. The Life of Broiler Chickens. Available online: https://www.ciwf.org.uk/media/5235306/The-life-of-Broiler-chickens.pdf (accessed on 5 May 2021).
- Wasley, A.; Harvey, F.; Davies, M.; Child, D. UK has nearly 800 livestock mega farms, investigation reveals. Guardian 2017, 17. Available online: https://www.theguardian.com/environment/2017/jul/17/uk-has-nearly-800-livestock-mega-farms-investigation-reveals (accessed on 5 May 2021).
- Pacala, S.W.; Socolow, R. Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; 44p, Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg3-chapter8-1.pdf (accessed on 16 November 2021).
- Walsh, D. ‘Peak Meat’: How Plant-Based Alternatives Will Take over Europe by 2035. Available online: https://www.euronews.com/green/2021/03/26/peak-meat-how-plant-based-alternatives-will-take-over-europe-by-2035 (accessed on 16 November 2021).
- Lynch, J.; Pierrehumbert, R. Climate Impacts of Cultured Meat and Beef Cattle. Front. Sustain. Food Syst. 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Witte, B.; Obloj, P.; Koktenturk, S.; Morach, B.; Brigl, M.; Rogg, J.; Schulze, U.; Walker, D.; Von Koeller, E.; Dehnert, N.; et al. Food for Thought: The Protein Transformation; Boston Consulting Group: Boston, MA, USA; Blue Horizon Corporation: Zurich, Switzerland, 2021; 48p, Available online: https://web-assets.bcg.com/a0/28/4295860343c6a2a5b9f4e3436114/bcg-food-for-thought-the-protein-transformation-mar-2021.pdf (accessed on 4 June 2021).
- Rust, N.A.; Ridding, L.; Ward, C.; Clark, B.; Kehoe, L.; Dora, M.; Whittingham, M.J.; McGowan, P.; Chaudhary, A.; Reynolds, C.J.; et al. How to transition to reduced-meat diets that benefit people and the planet. Sci. Total Environ. 2020, 20, 718. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture. Food Availability and Consumption. Available online: https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/food-availability-and-consumption/ (accessed on 15 November 2021).
- The Lancet Editorial. We need to talk about meat. Lancet 2018, 392, 2237. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjorth, T.; Huseinovic, E.; Hallström, E.; Strid, A.; Johansson, I.; Lindahl, B.; Sonesson, U.; Winkvist, A. Changes in dietary carbon footprint over ten years relative to individual characteristics and food intake in the Västerbotten Intervention Programme. Sci. Rep. 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, C.; Bouamra-Mechemache, Z.; Réquillart, V.; Treich, N. Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare. Food Policy 2020, 97, 101847. [Google Scholar] [CrossRef]
- Armstrong, B.; Bridge, G.; Oakden, L.; Reynolds, C.; Wang, C.; Panzone, L.A.; Rivera, X.S.; Kause, A.; Ffoulkes, C.; Krawczyk, C.; et al. Piloting Citizen Science Methods to Measure Perceptions of Carbon Footprint and Energy Content of Food. Front. Sustain. Food Syst. 2020, 4, 120. [Google Scholar] [CrossRef]
- Stewart, C.; Piernas, C.; Cook, B.; Jebb, S.A. Trends in UK meat consumption: Analysis of data from years 1-11 (2008-09 to 2018-19) of the National Diet and Nutrition Survey rolling programme. Lancet Planet Health 2021, 5, e699–e708. [Google Scholar] [CrossRef]
- Zeng, L.; Ruan, M.; Liu, J.; Wilde, P.; Naumova, E.N.; Mozaffarian, D.; Zhang, F.F. Trends in Processed Meat, Unprocessed Red Meat, Poultry, and Fish Consumption in the United States, 1999–2016. J. Acad. Nutr. Diet. 2019, 119, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Garnett, E.E.; Balmford, A.; Marteau, T.M.; Pilling, M.A.; Sandbrook, C. Price of change: Does a small alteration to the price of meat and vegetarian options affect their sales? J. Environ. Psychol. 2021, 75, 101589. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Food Waste Index Report 2021; UNEP: Nairobi, Kenya, 2021; p. 100. ISBN 978-92-807-3851-3. [Google Scholar]
- Clarke, L. The Practical Ways to Reduce Your Carbon Footprint (That Actually Work). Available online: https://www.wired.co.uk/article/reduce-carbon-footprint (accessed on 26 January 2021).
1970 | 1980 | 1990 | 2000 | 2010 | 2019 | 2007 [10] | |
---|---|---|---|---|---|---|---|
Cattle | 1082 | 1217 | 1297 | 1320 | 1412 | 1511 | 1430 |
Pigs | 547 | 798 | 849 | 899 | 972 | 850 | 980 |
Sheep and goats | 1441 | 1563 | 1794 | 1825 | 2017 | 2333 | 1870 |
Poultry | 5712 | 7978 | 11,787 | 16,021 | 22,262 | 27,883 | 19,600 |
Total | 9693 | 12,425 | 16,604 | 20,784 | 27,295 | 32,943 | |
Human population (billions) | 3.7 | 4.46 | 5.33 | 6.14 | 6.96 | 7.71 | |
Ratio livestock per human | 2.6 | 2.8 | 3.1 | 3.4 | 3.9 | 4.3 |
kgCO2e/kg | kgCO2e/kg Protein | |||||||
---|---|---|---|---|---|---|---|---|
Source | [22] | [23] | [24] | [25] | [26] | [27] | WE [18] | NA [18] |
Beef/cattle | 40.5 | 18.2 | 9–129 | 35.9 (Meat) | 27.0 | 60.0 | 64.3 | 94.6 |
Chicken | 5.9 P | 4.0 | 2–6 P | 5.4 P | 6.9 | 6.0 | 27.5 | 20.2 |
Eggs | 3.0 | 3.0 | 2–6 | 4.8 | 4.5 | |||
Fish | 7.7 | 2.8 | 1–86 | 5.4 | 11.9 | 5.0–12.0 | ||
Pork | 7.0 | 5.0 | 4–11 | 12.1 | 7.0 | 50.0 | 36.5 | |
Lamb/goat | 50.4 | 23.0 | 10–150 | 39.2 | 24.0 | 95.5 | 217.2 | |
Turkey | 5.6 | 10.9 | ||||||
Cheese/dairy | 2.0 | 1–22 | 1.8 | 13.5 | 21.0 | |||
Meat substitutes | 1–2 | |||||||
Vegetable oils | 3.0 | 6.0–8.0 | ||||||
Rice | 1.7 | 3.9 | 2.7 | 4.0 | ||||
Sugar | 0.1 | 3.0 | ||||||
Nuts | 2.3 | 2.5 | ||||||
Vegetables | 0.5 | 1.6 | 1.1–2.9 | 0.3–3.0 | ||||
Pulses | 1–2 | 0.9 |
Sector | % | Mt CO2eyr−1 |
---|---|---|
Transport | 29 | 1876 |
Electricity | 25 | 1648 |
Industry | 23 | 1504 |
Agriculture | 10 | 669 |
Crop | 368 | |
Livestock | 261 | |
Fuel combustion | 41 | |
Commercial | 7 | 455 |
Residential | 6 | 380 |
Total | 100 | 6532 |
Categories | GHG (kgCO2e per £) |
---|---|
Personal travel and season tickets | 8.55–11.11 |
Imputed rent | 6.69 |
Natural gas | 6.31 |
Haberdashery, clothing materials, and clothing hire | 5.23 |
Legal fees, professional organizations and fees, and funeral expenses | 4.47 |
Electricity | 3.67 |
NHS prescription charges and payments | 2.94 |
Beef, pork, lamb, poultry, bacon, and ham sausages (fresh, chilled, or frozen) | 2.85 |
Enteric Fermentation Only | Total Estimated Emissions MtCO2eyr−1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number (Millions) | Emission Factor EFs | CH4 Emissions Mtyr−1 | CO2 Emissions MtCO2eyr−1 | ||||||||||||
Global | UK | US | Global | UK | US | Global | UK | US | Global | UK | US | Global | UK | US | |
Source | [18] | [40,51] | [41,47,48,52] | [15] | [8,18] | [8,18] | |||||||||
Cattle | 1511 | 57 | 86 | 2412 | 5481 | ||||||||||
Beef | 7.2 | 94.4 | 52 | 64 | 0.4 | 6.0 | 10 | 169 | 24 | 384 | |||||
Dairy | 1.9 | 9.4 | 126 | 138 | 0.2 | 1.3 | 7 | 36 | 15 | 83 | |||||
Pigs | 850 | 5.1 | 79.1 | 5.5 | 7 | 12 | 1 | 0.0 | 0.1 | 131 | 1 | 3 | 298 | 2 | 60 |
Sheep | 2333 | 33.1 | 5 | 7 | 7 | 7 | 16 | 0.2 | 0.0 | 457 | 6 | 1 | 1039 | 15 | 2 |
Chickens | 27,833 | 187 | 8500 | 0.26 | 0.26 | 0.26 | 7 | 0.0 | 2.2 | 203 | 1 | 62 | 461 | 3 | 141 |
Total | 111 | 0.9 | 9.7 | 3107 | 26 | 272 | 7278 | 59 | 670 |
Method/Source of Data | Global tCO2eyr−1 | UK tCO2eyr−1 | US tCO2eyr−1 | |
---|---|---|---|---|
Top-down | Total GHG (with land use) 2019 [1] | 6.7 (7.6) | ||
Total GHG 2018 [43] (Section 3.1.) | 6.3 | 6.6 | 17.5 | |
Country’s own data for total GHG [35,42] (Section 3.1) | 11.5 | 19.8 | ||
Country’s own data for livestock emissions [32,35] (Section 3.2.1) | 0.7 | 1.6 | ||
GLEAM livestock emissions (scaled from regional data for the UK and US) [10,18] (Section 3.2.2) | 1.0 | 1.1 | 1.6 | |
Livestock emissions (Table 5) (Section 3.2.3) | 0.9 | 2.0 | ||
Bottom-up | Carbon footprint calculator (excludes food) [55] | 8.9 | ||
Emissions from food/animal products only (consumption analysis, Section 3.3) | 1.5/1.3 | |||
Emissions from meat consumption (Section 3.3) | 1.5 | |||
Food diary meat eaters (M)/vegetarian (V)/vegan (N) [28] | 2.6 M/1.4 V/0.5 N | |||
Population-based survey [30]. Original diet/100% meat replaced with plant protein | 1.4–1.7 M/0.7 V | |||
Review using footprint calculators [31] High red meat/average/vegetarian/vegan | 1.6–5.3 M/1.3–5.7 M/0.5–2.7 V/0.2–2.3 N |
Activity | Reduced tCO2eyr−1 |
---|---|
Drive ~100 miles less each week, save one liter of petrol | 1.2 |
Eat one 200 g steak less per week | 0.6 |
Take one less return flight within Europe (~1000 km) | 0.4 |
Take one less return long-haul flight (~11,000 km) | 1.8 |
Reduce TV use by 6 h a week, save 1 kWh of electricity | 0.05 |
Removing meat from the diet | 1.3–1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barthelmie, R.J. Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US. Climate 2022, 10, 43. https://doi.org/10.3390/cli10030043
Barthelmie RJ. Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US. Climate. 2022; 10(3):43. https://doi.org/10.3390/cli10030043
Chicago/Turabian StyleBarthelmie, Rebecca J. 2022. "Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US" Climate 10, no. 3: 43. https://doi.org/10.3390/cli10030043
APA StyleBarthelmie, R. J. (2022). Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US. Climate, 10(3), 43. https://doi.org/10.3390/cli10030043