# Forecasting of SPI and SRI Using Multiplicative ARIMA under Climate Variability in a Mediterranean Region: Wadi Ouahrane Basin, Algeria

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

^{2}) using linear stochastic models known as Autoregressive Integrated Moving Average (ARIMA) and multiplicative Seasonal Autoregressive Integrated Moving Average (SARIMA). In particular, data from 6 precipitation stations and 1 hydrometric station for the period 1972–2018 were used to evaluate the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI) for 12 months. Then, the multiplicative ARIMA model was applied to forecasting drought based on SPI and SRI. As a result, the ARIMA model (1,0,1)(0,0,1)

_{12}for SPI and (1,0,1)(1,0,1)

_{12}for SRI were shown to be the best models for drought forecast. In fact, both models exhibited high quality for SPI and SRI of 0.97 and 0.51 for 1-month and 12-month lead time, respectively, based on validation R

^{2}. In general, prediction skill decreases with increase in lead time. The models can be used with reasonable accuracy to forecast droughts with up to 12 months of lead time.

## 1. Introduction

## 2. Data and Methods

#### 2.1. Study Area and Data

^{2}with a maximum altitude of 991 m and a minimum altitude of 165 m (Figure 1). The Wadi Ouahrane basin is limited to the east by the basin of Wadi Fodda, to the west by the Wadi Ras basin, to the north by the Wadi Allala basin, and to the south by the Wadi Sly basin. The basin is monitored by six pluviometric stations and one hydrometric station (Figure 1). It is influenced by the Mediterranean climate, with an interannual average precipitation of 333 mm during the period 1972–2018. The mean annual temperature is 18° C. The Ouled Farès sector receives a rainfall that varies from 207 to 628 mm, which is located below 200 m altitude. It occupies nearly 40% of the basin’s area. The Benairia sector, located at more than 350 m altitude, receives an average annual rainfall that varies between 234 and 749 mm. This sector covers about 60% of the basin. The Wadi Ouahrane basin is defined by impermeable marl bedrock that covers 80% of the basin’s surface. In contrast to the formations in the southern part of the basin, which are composed of conglomerate and red sand and have an average permeability, these soft lithological strata in the northern half of the basin are continually subjected to significant water erosion. The primary agricultural activities in the wadi Ouahrane watershed, in terms of land usage, are mixed farming and cereal cultivation [30]. The Köppen–Geiger classification [31] identifies the climate of the basin as a hot-summer Mediterranean climate, thus presenting relatively mild winters (with rain) and very hot summers (often very dry). With this climate, the coldest month generally averages above 0 °C, at least 1 month’s average temperature reaches values higher than 22 °C, and at least 4 months average above 10 °C. Concerning rainfall, in the hot-summer Mediterranean climate, rainfall in the wettest month of winter averages over three times that in the driest month of summer, which receives less than 30 mm.

#### 2.2. Standardized Precipitation (Runoff) Index

_{t}can be used [32]:

_{t}is the observed series, φ is the polynomial of order p, and θ is the polynomial of order q.

_{t}.

_{w}are created. A combination of seasonal and nonseasonal models forms the so-called multiplicative ARIMA models. The basic form of this model follows [33]:

_{t}) = Z

_{t−1}, (1 − B)

^{d}is equal to d of the second nonseasonal difference and (1 − B

^{w})

^{D}is equal to D of the second seasonal difference of size w [33].

#### 2.3. Model Development

_{tab}, the null hypothesis related to normality is rejected for the chosen level of significance.

#### 2.4. Kappa (κ)

#### 2.5. Model Validation

^{2}), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) [20,39].

## 3. Results

#### 3.1. Assessment of Drought Based on SPI and SRI

#### 3.2. Stochastic Model Development

_{12}and ARIMA (2,0,1)(1,0,1)

_{12}, respectively. According to the figures, it can be seen that most of the ACF and PACF values in both indices are within the confidence limit. Therefore, there is no significant correlation between the residuals; the residuals are white noise.

#### 3.3. Drought Forecasting Using Selected Models

^{2}, RMSE, and MAE values between observed data and predicted data using the selected best model for all time series. Results show that with a longer lead time, the coefficient of correlation decreases and error coefficient increases between observed and predicted data. The best models selected from the multiplicative ARIMA approach using a time series data of SPI-12 and SRI-12 series can be used for drought forecasting at whatever lag is desired.

## 4. Discussion

## 5. Conclusions

^{2}, both models had good quality; for the SPI and the SRI, R

^{2}was equal to 0.96 and 0.97, respectively, at 1-month lag. Finally, we conclude that the seasonal ARIMA model can be used to forecast meteorological and hydrological drought indices in arid regions.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Res. Manag.
**2007**, 21, 821–833. [Google Scholar] [CrossRef] - Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water
**2005**, 9–10, 3–11. [Google Scholar] - Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol.
**2010**, 391, 202–216. [Google Scholar] [CrossRef] - Boken, V.K.; Cracknell, A.P.; Heathcote, R.L. Monitoring and Predicting Agricultural Drought: A Global Study; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag.
**2007**, 21, 763–774. [Google Scholar] [CrossRef] [Green Version] - Wilhite, D. A methodology for drought preparedness. Nat. Hazards
**1996**, 13, 229–252. [Google Scholar] [CrossRef] [Green Version] - Palmer, W.C. Meteorlogical Drought; Research Paper No. 45; US Department of Commerce Weather Bureau: Washington, DC, USA, 1965; pp. 1–58.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Bera, B.; Shit, P.K.; Sengupta, N.; Saha, S.; Bhattacharjee, S. Trends and variability of drought in the extended part of Chhota Nagpur plateau (Singbhum Protocontinent), India applying SPI and SPEI indices. Environ. Chall.
**2021**, 5, 100310. [Google Scholar] [CrossRef] - Stagge, J.H.; Kingston, D.G.; Tallaksen, L.M.; Hannah, D.M. Observed drought indices show increasing divergence across Europe. Sci. Rep.
**2017**, 7, 14045. [Google Scholar] [CrossRef] - Dukat, P.; Bednorz, E.; Ziembińska, K.; Urbaniak, M. Trends in drought occurrence and severity at mid-latitude European stations (1951–2015) estimated using standardized precipitation (SPI) and precipitation and evapotranspiration (SPEI) indices. Meteorol. Atmos. Phys.
**2022**, 134, 20. [Google Scholar] [CrossRef] - Guttman, N.B. Comparing the Palmer drought severity index and the standardized precipitation Index. J. Am. Water Res. Assoc.
**1998**, 34, 113–121. [Google Scholar] [CrossRef] - Caloiero, T. Drought analysis in New Zealand using the standardized precipitation index. Environ. Earth Sci.
**2017**, 76, 569. [Google Scholar] [CrossRef] - Hayes, M.J.; Svoboda, M.; Wilhite, D.A.; Vanyarkho, O. Monitoring the 1996 drought using the SPI. Bull. Am. Meteorol. Soc.
**1999**, 80, 429–438. [Google Scholar] [CrossRef] [Green Version] - Paulo, A.A.; Pereira, L.S. Drought concepts and characterization: Comparing drought indices applied at local and regional scales. Water Int.
**2006**, 31, 37–49. [Google Scholar] [CrossRef] - Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett.
**2008**, 35, 226–236. [Google Scholar] [CrossRef] [Green Version] - Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, 1st ed.; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing
**2003**, 50, 159–175. [Google Scholar] [CrossRef] - Hu, W.; Tong, S.; Mengersen, K.; Connell, D. Weather variability and the incidence of cryptosporidiosis: Comparison of time series Poisson regression and SARIMA models. Ann. Epidemiol.
**2007**, 17, 679–688. [Google Scholar] [CrossRef] - Modarres, R. Streamflow drought time series forecasting. Stoch. Environ. Res. Risk Assess.
**2007**, 21, 223–233. [Google Scholar] [CrossRef] - Mishra, A.; Desai, V. Drought Forecasting Using Stochastic Models. Stoch. Environ. Res. Risk Assess.
**2005**, 19, 326–339. [Google Scholar] [CrossRef] - Fernandez, C.; Vega, J.A.; Fonturbel, T.; Jimenez, E. Streamflow drought time series forecasting: A case study in a small watershed in North West Spain. Stoch. Environ. Res. Risk Assess.
**2009**, 23, 1063–1070. [Google Scholar] [CrossRef] - Durdu, O.F. Application of Linear Stochastic Models for Drought Forecasting in the Buyuk Menderes River Basin, Western Turkey. Stoch. Environ. Res. Risk Assess.
**2010**, 24, 1145–1162. [Google Scholar] [CrossRef] - Bazrafshan, O.; Salajegheh, A.; Bazrafshan, J.; Mahdavi, M.; Maraj, A.F. Hydrological drought forecasting using ARIMA models (case study: Karkheh Basin). Ecopersia
**2015**, 3, 1099–1117. [Google Scholar] - Al Sayah, M.J.; Abdallah, C.A.; Khouri, M.; Darwich, T. A framework for climate change assessment in Mediterranean data-sparse watersheds using remote sensing and ARIMA modeling. Theor. Appl. Climatol.
**2021**, 143, 639–658. [Google Scholar] [CrossRef] - Shatanawi, K.; Bahbeh, M.; Shatanawi, M. Characterizing, Monitoring and Forecasting of Drought in Jordan River Basin. J. Water Resour. Prot.
**2013**, 5, 12. [Google Scholar] [CrossRef] [Green Version] - Buttafuoco, G.; Caloiero, T. Drought events at different timescales in southern Italy (Calabria). J. Maps
**2014**, 10, 529–537. [Google Scholar] [CrossRef] - Caloiero, T.; Veltri, S. Drought assessment in the Sardinia region (Italy) during 1922–2011 using the standardized precipitation index. Pure Appl. Geophys.
**2019**, 176, 925–935. [Google Scholar] [CrossRef] - Zhu, B.; Chevallier, J. Carbon Price Forecasting with a Hybrid ARIMA and Least Squares Support Vector Machines Methodology. In Pricing and Forecasting Carbon Markets; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Benkhaled, A.; Remini, B. Variabilité temporelle de la concentration en sédiments et phénomène d’hystérésis dans le bassin de l’Oued Wahrane (Algérie). Hydrol. Sci. J.
**2003**, 48, 243–255. [Google Scholar] [CrossRef] [Green Version] - Köppen, W. Das Geographische System der Klimate. Handbuch der Klimatologie; Köppen, W., Geiger, R., Eds.; Verlag von Gebrüder Borntraeger: Berlin, Germany, 1936; Volume 1, pp. 1–44. [Google Scholar]
- Mikosch, T.; Gadrich, T.; Klüppelberg, C.; Adler, R.J. Parameter Estimation for ARMA Models with Infinite Variance Innovations. Ann. Stat.
**1995**, 23, 305–326. [Google Scholar] [CrossRef] - Yevjevich, V. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Colorado State University: Fort Collins, CO, USA, 1967. [Google Scholar]
- Akaike, H. On the likelihood of a time series model. J. R. Stat. Soc. Ser. D
**1978**, 27, 217–235. [Google Scholar] [CrossRef] - Schwarz, G. Estimating the dimension of a model. Ann. Stat.
**1978**, 6, 461–464. [Google Scholar] [CrossRef] - Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull.
**1968**, 70, 213. [Google Scholar] [CrossRef] - Kumar, M.N.; Murthy, C.S.; Sai, M.V.R.S.; Roy, P.S. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl.
**2009**, 16, 381–389. [Google Scholar] [CrossRef] [Green Version] - Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics
**1977**, 33, 363. [Google Scholar] [CrossRef] [PubMed] - Roughani, M.; Ghafouri, M.; Tabatabaei, M. An innovative methodology for the prioritization of sub-catchments for flood control. Int. J. Appl. Earth Obs. Geoinf.
**2007**, 9, 79–87. [Google Scholar] [CrossRef] - Pińskwar, I.; Choryński, A.; Kundzewicz, Z.W. Severe Drought in the Spring of 2020 in Poland—More of the Same? Agronomy
**2020**, 10, 1646. [Google Scholar] [CrossRef] - Młyński, D.; Wałega, A.; Kuriqi, A. Influence of meteorological drought on environmental flows in mountain catchments. Ecol. Indic.
**2021**, 133, 108460. [Google Scholar] [CrossRef] - Tokarczyk, T.; Szalińska, W. Drought hazard assessment in the process of drought risk management. Acta Sci. Pol. Form. Circumiectus
**2018**, 18, 217–229. [Google Scholar] [CrossRef] - Kubiak-Wójcicka, K.; Pilarska, A.; Kamiński, D. The Analysis of Long-Term Trends in the Meteorological and Hydrological Drought Occurrences Using Non-Parametric Methods—Case Study of the Catchment of the Upper Noteć River (Central Poland). Atmosphere
**2021**, 12, 1098. [Google Scholar] [CrossRef] - Li, Y.; Gong, Y.; Huang, C. Construction of combined drought index based on bivariate joint distribution. Alex. Eng. J.
**2021**, 60, 2825–2833. [Google Scholar] [CrossRef] - Niu, J.; Chen, J.; Sun, L.Q. Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in South China. J. Hydrol.
**2015**, 526, 68–77. [Google Scholar] [CrossRef] - Sattar, M.N.; Kim, T.W. Probabilistic characteristics of lag time between meteorological and hydrological droughts using a Bayesian model. Terr. Atmos. Ocean. Sci.
**2018**, 29, 709–720. [Google Scholar] [CrossRef] [Green Version] - Han, P.; Wang, P.X.; Zhang, S.Y.; Zhu, D.H. Drought forecasting based on the remote sensing data using ARIMA models. Math. Comput. Model.
**2010**, 51, 1398–1403. [Google Scholar] [CrossRef] - Lloyd-Huhes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol.
**2002**, 22, 1571–1592. [Google Scholar] [CrossRef] - Conte, M.; Giuffrida, A.; Tedesco, S. The Mediterranean Oscillation. Impact on Precipitation and Hydrology in Italy Climate Water; Publications of the Academy of Finland: Helsinki, Finland, 1989. [Google Scholar]
- Muthoni, F.K.; Odongo, V.O.; Ochieng, J.; Mugalavai, E.M.; Mourice, S.K.; Hoesche-Zeledon, I.; Mwila, M.; Bekunda, M. Long-term spatial-temporal trends and variability of precipitation over Eastern and Southern Africa. Theor. Appl. Climatol.
**2019**, 137, 1869–1882. [Google Scholar] [CrossRef] [Green Version] - Martín-Vide, J.; López-Bustins, J.A. The Western Mediterranean Oscillation and Precipitation in the Iberian Peninsula. Int. J. Climatol.
**2006**, 26, 1455–1475. [Google Scholar] [CrossRef] - Kelley, C.; Ting, M.; Seager, R.; Kushnir, Y. Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys. Res. Lett.
**2012**, 39, L21703. [Google Scholar] [CrossRef] [Green Version] - Papastefanopoulos, V.; Linardatos, P.; Kotsiantis, S. COVID-19: A Comparison of Time Series Methods to Forecast Percentage of Active Cases per Population. Appl. Sci.
**2020**, 10, 3880. [Google Scholar] [CrossRef] - Karimi, M.; Meleese, A.M.; Khosravi, M.; Mamuye, M.; Zhang, J. Chapter 26—Analysis and prediction of meteorological drought using SPI index and ARIMA model in the Karkheh River Basin Iran. In Extreme Hydrology and Climate Variability; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 343–353. [Google Scholar] [CrossRef]
- Beyaztas, U.; Yaseen, Z.M. Drought interval simulation using functional data analysis. J. Hydrol.
**2019**, 579, 124141. [Google Scholar] [CrossRef]

**Figure 1.**Location, topographic characteristics, pluviometric, and hydrometric network of the study area.

**Figure 5.**ACF and PACF correlograms and 95% confidence limits for stochastic monthly series for the Wadi Ouahrane basin (

**a**–

**d**).

**Figure 6.**Diagnostic check of the best-fitted multiplicative ARIMA model for SPI-12 (

**a**,

**b**) and SRI-12 (

**c**,

**d**) time series for the Wadi Ouahrane watershed.

**Figure 8.**Comparison of SPI-12 (

**a**) and SRI-12 (

**b**) series observed and predicted in the validation phase for 1-month lead time.

Stations | ID | Name | Geographical Coordinates | Elevation | |
---|---|---|---|---|---|

Longitude | Latitude | ||||

(° ′ ″) | (° ′ ″) | (m) | |||

Precipitation Stations | |||||

S1 | 012201 | LARBAT OULED FARES | 01°09′18″ | 36°16′20″ | 116 |

S2 | 012224 | BOUZGHAIA | 01°14′27″ | 36°20′15″ | 217 |

S3 | 012205 | BENAIRIA | 01°22′28″ | 36°21′04″ | 320 |

S4 | 012221 | MEDJAJA | 01°20′53″ | 36°16′39″ | 487 |

S5 | 012209 | CHETIA | 01°15′53″ | 36°12′56″ | 108 |

S6 | NMO | Airport, Chlef | 01°19′28″ | 36°13′31″ | 158 |

Hydrometric Station | |||||

HS1 | 012201 | LARBAT OULED FARES | 01°13′56″ | 36°14′14″ | 173 |

Index | Model | AIC | BIC |
---|---|---|---|

SPI-12 | ARIMA(0,1,0)(0,1,1)_{12} | 605.25 | 613.74 |

ARIMA(0,1,1)(0,0,1)_{12} | 321.57 | 334.38 | |

ARIMA(1,0,1)(1,1,0)_{12} | 754.55 | 771.54 | |

ARIMA(1,0,1)(0,1,1)_{12} | 587.61 | 604.61 | |

ARIMA(1,0,0)(2,0,1)_{12} | 320.11 | 345.74 | |

SRI-12 | ARIMA(1,0,1)(1,0,0)_{12} | −1277.37 | −1255.90 |

ARIMA(2,0,0)(2,0,0)_{12} | −1355.60 | −1329.84 | |

ARIMA(2,0,1)(1,0,0)_{12} | −1305.33 | −1279.57 | |

ARIMA(2,1,0)(2,0,0)_{12} | −1360.34 | −1338.88 | |

ARIMA(2,1,2)(1,0,1)_{12} | −1481.87 | −1451.83 |

Index | Variables in the Model | |||||
---|---|---|---|---|---|---|

Model | Parameter | Value of Parameters | Standard Error | t-Ratio | p | |

SPI | ARIMA (0,1,0)(0,1,1)_{12} | Θ1 | −1.00 | 0.02 | −57.66 | 0 |

ARIMA(0,1,1)(0,0,1)_{12} | θ1 | −0.01 | 0.04 | −0.29 | 0.77 | |

Θ1 | −0.71 | 0.03 | −24.54 | 0 | ||

ARIMA(1,0,1)(1,1,0)_{12} | ϕ1 | 0.87 | 0.02 | 34.87 | 0 | |

θ1 | 0.11 | 0.05 | 2.09 | 0.04 | ||

Φ1 | −0.71 | 0.03 | −22.22 | 0 | ||

ARIMA(1,0,1)(0,1,1)_{12} | ϕ1 | 0.91 | 0.02 | 45.49 | 0 | |

θ1 | 0.01 | 0.05 | 0.25 | 0.81 | ||

Θ1 | −1.00 | 0.02 | −53.63 | 0 | ||

ARIMA(1,0,0)(2,0,1)_{12} | ϕ1 | 0.98 | 0.01 | 121.44 | 0 | |

Φ1 | −0.15 | 0.08 | −1.93 | 0.05 | ||

Φ2 | −0.01 | 0.06 | −0.23 | 0.82 | ||

Θ1 | −0.62 | 0.07 | −9.21 | 0 | ||

SRI | ARIMA(1,0,1)(1,0,1)_{12} | ϕ1 | 0.98 | 0.01 | 118.45 | 0 |

θ1 | 0.35 | 0.03 | 10.22 | 0 | ||

Φ1 | −0.46 | 0.04 | −11.66 | 0 | ||

ARIMA(2,0,0)(2,0,0)_{12} | ϕ1 | 1.42 | 0.04 | 36.79 | 0 | |

ϕ2 | −0.44 | 0.04 | −11.22 | 0 | ||

Φ1 | −0.59 | 0.04 | −13.88 | 0 | ||

Φ2 | −0.29 | 0.04 | −6.82 | 0 | ||

ARIMA(1,0,1)(1,0,0)_{12} | ϕ1 | 1.37 | 0.11 | 12.91 | 0 | |

θ1 | 0.08 | 0.1 | 0.77 | 0.44 | ||

Φ1 | −0.47 | 0.04 | −12.03 | 0 | ||

ARIMA(2,1,0)(2,0,0)_{12} | ϕ1 | 0.38 | 0.04 | 8.83 | 0 | |

ϕ2 | 0.12 | 0.04 | 2.69 | 0.01 | ||

Φ1 | −0.59 | 0.04 | −13.98 | 0 | ||

Φ2 | −0.30 | 0.04 | −7.13 | 0 | ||

ARIMA(2,1,2)(1,0,1)_{12} | ϕ1 | −0.06 | 0.36 | −0.18 | 0.86 | |

ϕ2 | 0.45 | 0.26 | 1.74 | 0.08 | ||

θ1 | 0.45 | 0.36 | 1.25 | 0.21 | ||

θ2 | −0.14 | 0.15 | −0.93 | 0.35 | ||

Φ1 | 0.05 | 0.05 | 0.99 | 0.32 | ||

Θ1 | −0.95 | 0.03 | −36.98 | 0 |

**Table 4.**Comparison of statistical properties of the observed and predicted data in model validation.

Index | SPI | SRI |
---|---|---|

Model | ARIMA (1,0,1)(0,1,1)_{12} | ARIMA (1,0,1)(1,0,1)_{12} |

Kw | 0.79 | 0.88 |

Variance (Observed) | 0.97 | 0.17 |

Variance (Forecasted) | 0.81 | 0.16 |

F test | 1.12 | 1.06 |

Mean (Observed) | −0.187 | −0.263 |

Mean (Forecasted) | −0.174 | −0.26 |

Z | −0.013 | −0.012 |

RMSE | 0.46 | 0.067 |

MAE | 0.02 | −0.002 |

R | 0.89 | 0.98 |

**Table 5.**Coefficient of correlation, RMSE, and MAE between observed and predicted data for lead time 1 to 12.

Lead Time | SPI-12 | SRI-12 | ||||
---|---|---|---|---|---|---|

R^{2} | RMSE | MAE | R^{2} | RMSE | MAE | |

1 | 0.96 | 0.43 | −0.026 | 0.97 | 0.061 | −0.001 |

2 | 0.9 | 0.45 | −0.028 | 0.966 | 0.06 | −0.016 |

3 | 0.87 | 0.55 | −0.049 | 0.961 | 0.058 | −0.018 |

4 | 0.86 | 0.58 | −0.054 | 0.96 | 0.11 | 0.03 |

5 | 0.85 | 0.64 | −0.089 | 0.95 | 0.14 | 0.07 |

6 | 0.8 | 0.67 | −0.001 | 0.92 | 0.17 | 0.09 |

7 | 0.78 | 0.78 | −0.012 | 0.91 | 0.19 | 0.1 |

8 | 0.71 | 0.84 | −0.022 | 0.88 | 0.23 | 0.12 |

9 | 0.68 | 0.89 | −0.033 | 0.86 | 0.28 | 0.15 |

10 | 0.65 | 0.91 | −0.052 | 0.84 | 0.29 | 0.16 |

11 | 0.58 | 0.93 | −0.080 | 0.74 | 0.37 | 0.19 |

12 | 0.51 | 0.98 | −0.091 | 0.7 | 0.39 | 0.21 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Achite, M.; Bazrafshan, O.; Azhdari, Z.; Wałęga, A.; Krakauer, N.; Caloiero, T.
Forecasting of SPI and SRI Using Multiplicative ARIMA under Climate Variability in a Mediterranean Region: Wadi Ouahrane Basin, Algeria. *Climate* **2022**, *10*, 36.
https://doi.org/10.3390/cli10030036

**AMA Style**

Achite M, Bazrafshan O, Azhdari Z, Wałęga A, Krakauer N, Caloiero T.
Forecasting of SPI and SRI Using Multiplicative ARIMA under Climate Variability in a Mediterranean Region: Wadi Ouahrane Basin, Algeria. *Climate*. 2022; 10(3):36.
https://doi.org/10.3390/cli10030036

**Chicago/Turabian Style**

Achite, Mohammed, Ommolbanin Bazrafshan, Zahra Azhdari, Andrzej Wałęga, Nir Krakauer, and Tommaso Caloiero.
2022. "Forecasting of SPI and SRI Using Multiplicative ARIMA under Climate Variability in a Mediterranean Region: Wadi Ouahrane Basin, Algeria" *Climate* 10, no. 3: 36.
https://doi.org/10.3390/cli10030036