Revealing a Tipping Point in the Climate System: Application of Symbolic Analysis to the World Precipitations and Temperatures
Abstract
:1. Introduction
2. Binary Coding
3. Analytical Methods
4. Results
- (1)
- The scattergrams of the first differences in the world precipitations are shown in Figure 3a (Period II versus Period I) and in Figure 3b (Period III versus Period II). Although the 46% increase in the divergence is confirmed (i.e., DKL = 2.24 × 10−2 nat → 3.26 × 10−2 nat), calculation of the Spearman’s rank correlation yields, respectively, rS = 0.8874 and rS = 0.8871, in which there is no significant difference. To conclude, as long as we restrict our attention to the first differences, perturbations in the world precipitations are too small to reveal significance in the climatic fluctuations.
- (2)
- The scattergrams of the second differences in the world precipitations are shown in Figure 4a (Period II versus Period I) and in Figure 4b (Period III versus Period II). As seen in the plots, the rank correlation gets weaker in the latter (i.e., rS = 0.8679 → 0.7873; 9.3% reduction), suggesting the enhanced variability in the precipitation data. Comparison with the divergence, however, yields the results that contradict this because the value of the latter period is smaller than the former (i.e., DKL = 6.095 × 10−2 nat→ 4.944 × 10−2 nat); note that the contradiction cannot be relieved by the comparison in the Hellinger distances (DH = 2.725 × 10−2 nat → 2.471 × 10−2 nat).
- (3)
- The scattergrams of the second differences in the world temperatures are shown in Figure 5a (Period II versus Period I) and in Figure 5b (Period III versus Period II). In the rank correlations (rS = 0.9148→0.9176), as well as the Hellinger distances (DH = 1.843 × 10−2 nat → 1.752 × 10−2 nat), there is no significant difference. In summary, as long as we focus our attention on the second differences, variabilities in the world temperatures are too small to reveal significance in the climatic fluctuations.
- (4)
- The scattergrams of the third differences in the world temperatures are shown in Figure 6a (Period II versus Period I) and in Figure 6b (Period III versus Period II). As seen in the plots, the rank correlation gets weaker in the latter (i.e., rS = 0.7310 → 0.6534; 10.6% reduction), indicating a tipping point in the temperature data, owing to the snow/ice-albedo feedback in the regions with the higher latitudes, in particular, on the Northern Hemisphere. The effect can be explained by an increasing light absorption arising from degenerating cover of snow and ice that shows, in comparison with the seawater and the ground, relatively higher reflectivity of sunlight. In synchronism with the decrease in the correlation, both for the Kullback--Leibler divergence (DKL = 4.224 × 10−2 nat → 6.242 × 10−2 nat) and for the Hellinger distance (DH = 1.976 × 10−2 nat→ 2.985 × 10−2 nat), the values of the divergence measures increase considerably in the latter period. In contrast to the precipitation counterpart, for the world temperatures, one finds consistency among the three results. The results here are consistent with those obtained by our previous methods [34,36], suggesting the reliability of the present methodology.
- (5)
- The scattergrams of the second differences in the Japanese precipitations are shown in Figure 7a (Period II versus Period I) and in Figure 7b (Period III versus Period II). As is evident in the plots, the rank correlation becomes substantially weaker in the latter (i.e., rS = 0.8230 → 0.6547; 20.4% reduction), indicating the remarkable variability in the precipitation data. The substantial reduction larger than the above-mentioned world counterpart (9.3%) can be explained by a humid climate of the Japanese Islands. Consistent with the decrease in the rank correlation, for the Hellinger distance, the value increases substantially in the latter period (DH = 6.991 × 10−2 nat→ 1.617 × 10−1 nat). Contrary to the world counterpart, for the domestic precipitations, we can find compatibilities in both results.
- (6)
- The scattergrams of the third differences in the Japanese temperatures are shown in Figure 8a (Period II versus Period I) and in Figure 8b (Period III versus Period II). In the plots, the Spearman’s correlation gets weaker in the latter (i.e., rS = 0.7812 → 0.6910; 11.5% reduction), indicating the increasing variability and a tipping point in the temperature data. Note that the reduction is comparable to the world counterpart (10.6%) given above. In synchronism with the reduction in the rank correlation, for the Hellinger distance, the value becomes longer in the latter period (DH = 1.646 × 10−1 nat→ 2.210 × 10−1 nat), indicating that consistent with the world counterpart, for the domestic temperatures as well, there is no contradiction between the two results.
5. Discussion
= −x (n − 3) + 5 x (n − 2) − 10 x (n − 1) + 10 x(n) − 5 x (n + 1) + x (n + 2).
6. Comparison with Other Methods
7. Estimating Circumstances on Greenland and Antarctic
- Egedesminde (68°42′ N, 52°45′ W; h = 47 m),
- Angmagssalik (65°36′ N, 37°38′ W; h = 52 m), and
- Prins Christian Sund (60°02′ N, 43°07′ W; h = 19 m),
- Nuuk (64°10′ N, 51°45′ W; h = 80 m),
- Vostok (78°27′ S, 106°52′ E; h = 3488 m; from Russia) and
- Showa (69°00′ S, 39°35′ E; h = 18 m; from Japan).
- θ = 2.65° for Egedesminde,
- θ = 9.74° for Angmagssalik, and
- θ = 4.05° for Prins Christian Sund.
- 001111010011 for Ushuaia,
- 111110110000 for Showa, and
- 011000011000 for Vostok.
- H = 6 between Ushuaia and Showa,
- H = 7 between Ushuaia and Vostok, and
- H = 5 between Showa and Vostok.
8. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Weart, S.R. The Discovery of Global Warming; Harvard University Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Berger, J.J. Climate Peril; Northbrae: Berkeley, CA, USA, 2014. [Google Scholar]
- Wadhams, P. A Farewell to Ice: A Report from the Arctic; Penguin Books: London, UK, 2016. [Google Scholar]
- HadCRUT4 Dataset Produced by the Met Office and the Climatic Research Unit at the University of East Anglia; Global Climate in Context as the World Approaches 1 °C above Pre-Industrial for the First Time. 2015. Available online: https://www.metoffice.gov.uk/research/news/2015/global-average-temperature-2015 (accessed on 19 July 2020).
- GOSAT Project, the National Institute for Environmental Studies, Japan. A Prompt Report on the Monthly Mean Carbon-Dioxide Concentration Averaged over the Entire Atmosphere. 2016. Available online: http://www.gosat.nies.go.jp/recent-global-co2.html (accessed on 19 July 2020).
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Climate Change 2013: The Physical Science Basis (Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change); Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- von Storch, H.; Navarra, A. (Eds.) Analysis of Climate Variability: Applications of Statistical Techniques, 2nd ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Király, A.; Jánosi, I.M. Stochastic modeling of daily temperature fluctuations. Phys. Rev. E 2002, 65, 051102. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.-L.; Li, W.J.; Zhou, Y. Analysis of trends in air temperature at Chinese stations considering the long-range correlation effect. Phys. A 2019, 533, 122034. [Google Scholar] [CrossRef]
- Lind, P.G.; Mora, A.; Gallas, J.A.C.; Haase, M. Reducing stochasticity in the North Atlantic Oscillation index with coupled Langevin equations. Phys. Rev. E 2005, 72, 056706. [Google Scholar] [CrossRef] [PubMed]
- Redner, S.; Petersen, M.R. Role of global warming on the statistics of record-breaking temperatures. Phys. Rev. E 2006, 74, 061114. [Google Scholar] [CrossRef] [Green Version]
- Newman, W.I.; Malamud, B.D.; Turcotte, D.L. Statistical properties of record-breaking temperatures. Phys. Rev. E 2010, 82, 066111. [Google Scholar] [CrossRef] [Green Version]
- Tamazian, A.; Ludescher, J.; Bunde, A. Significance of trends in long-term correlated records. Phys Rev E 2015, 91, 032806. [Google Scholar] [CrossRef] [Green Version]
- Verdes, P.F. Global warming is driven by anthropogenic emissions: A time series analysis approach. Phys. Rev. Lett. 2007, 99, 048501. [Google Scholar] [CrossRef]
- Rossi, A.; Massei, N.; Laignel, B. A synthesis of the time-scale variability of commonly used climate indices using continuous wavelet transform. Glob. Planet. Chang. 2011, 78, 1–13. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, P.; Fraedrich, K.; Zhou, X.; Wang, G. Reconstruction of driving forces from nonstationary time series including stationary regions and application to climate change. Phys. A 2017, 473, 337–343. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lim, G.; Chang, K.-H.; Jung, J.W.; Kim, K.; Park, C.H. Multifractal analysis of rainfalls in Korean Peninsula. J. Korean Phys. Soc. 2008, 52, 669. [Google Scholar] [CrossRef]
- Millán, H.; Kalauzi, A.; Cukic, M.; Biondi, R. Nonlinear dynamics of meteorological variables: Multifractality and chaotic invariants in daily records from Pastaza, Ecuador. Theor. Appl. Clim. 2010, 102, 75–85. [Google Scholar] [CrossRef]
- Moon, W.; Agarwal, S.; Wettlaufer, J.S. Intrinsic pink-noise multidecadal global climate dynamics mode. Phys. Rev. Lett. 2018, 121, 108701. [Google Scholar] [CrossRef] [Green Version]
- da Silva, H.S.; Silva, J.R.S.; Stosic, T. Multifractal analysis of air temperature in Brazil. Phys. A 2020, 549, 124333. [Google Scholar] [CrossRef]
- Saco, P.M.; Carpi, L.C.; Figliola, A.; Serrano, E.; Rosso, O.A. Entropy analysis of the dynamics of El Niño/Southern oscillation during the Holocene. Phys. A 2010, 389, 5022–5027. [Google Scholar] [CrossRef]
- Balasis, G.; Donner, R.V.; Potirakis, S.M.; Runge, J.; Papadimitriou, C.; Daglis, I.A.; Eftaxias, K.; Kurths, J. Statistical mechanics and information-theoretic perspectives on complexity in the earth system. Entropy 2013, 15, 4844–4888. [Google Scholar] [CrossRef] [Green Version]
- Garland, J.; Jones, T.R.; Neuder, M.; White, J.W.C.; Bradley, E. An information-theoretic approach to extracting climate signals from deep polar ice cores. Chaos 2019, 29, 101105. [Google Scholar] [CrossRef]
- Ikuyajolu, O.J.; Falasca, F.; Bracco, A. Information entropy as quantifier of potential predictability in the tropical Indo-Pacific basin. Front. Clim. 2021, 3, 675840. [Google Scholar] [CrossRef]
- Balzter, H.; Tate, N.J.; Kaduk, J.; Harper, D.; Page, S.; Morrison, R.; Muskulus, M.; Jones, P. Multi-scale entropy analysis as a method for time-series analysis of climate data. Climate 2015, 3, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Primo, C.; Galván, A.; Sordo, C.; Gutiérrez, J.M. Statistical linguistic characterization of variability in observed and synthetic daily precipitation series. Phys. A 2007, 374, 389–402. [Google Scholar] [CrossRef]
- Vindel, J.M.; Polo, J. Markov processes and Zipf’s law in daily solar irradiation at earth’s surface. J. Atmos. Sol.-Terrestr. Phys. 2014, 107, 42–47. [Google Scholar] [CrossRef]
- Huang, X.; Hassani, H.; Ghodsi, M.; Mukherjee, Z.; Gupta, R. Do trend extraction approaches affect causality detection in climate change studies? Phys. A 2017, 469, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Matcharashvili, T.; Zhukova, N.; Chelidze, T.; Founda, D.; Gerasopoulos, E. Analysis of long-term variation of the annual number of warmer and colder days using Mahalanobis distance metrics: A case study for Athens. Phys. A 2017, 487, 22–31. [Google Scholar] [CrossRef]
- Hassani, H.; Silva, E.S.; Gupta, R.; Das, S. Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models. Phys. A 2018, 509, 121–139. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Li, Q. Emergence of urban clustering among U.S. cities under environmental stressors. Sustain. Cities Soc. 2020, 63, 102481. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Sun, L. Early-warning signals for critical temperature transitions. Geophys. Res. Lett. 2020, 47, e2020GL088503. [Google Scholar] [CrossRef]
- Hayata, K. Global-scale synchronization in the meteorological data: A vectorial analysis that includes higher-order differences. Climate 2020, 8, 128. [Google Scholar] [CrossRef]
- Das, M.; Kantz, H. Stochastic resonance and hysteresis in climate with state-dependent fluctuations. Phys. Rev. E 2020, 101, 062145. [Google Scholar] [CrossRef] [PubMed]
- Hayata, K. An attempt to appreciate climate change impacts from a rank-size rule perspective. Front. Phys. 2022, 9, 687900. [Google Scholar] [CrossRef]
- Daw, C.S.; Finney, C.E.A.; Tracy, E.R. A review of symbolic analysis of experimental data. Rev. Sci. Instr. 2003, 74, 915–930. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.T.; Marshall, A.G.; Ricca, T.L. Clipped representations of Fourier-transform ion-cyclotron resonance mass spectra. Anal. Chim. Acta 1985, 178, 27–41. [Google Scholar] [CrossRef]
- Hao, B. Symbolic dynamics and characterization of complexity. Phys. D 1991, 51, 161–176. [Google Scholar] [CrossRef]
- Dolnik, M.; Bollt, E.M. Communication with chemical chaos in the presence of noise. Chaos 1998, 8, 702–710. [Google Scholar] [CrossRef]
- Godelle, J.; Letellier, C. Symbolic sequence statistical analysis for free liquid jets. Phys. Rev. E 2000, 62, 7973. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.C.-C.; Hseu, S.S.; Yien, H.W.; Goldberger, A.L.; Peng, C.-K. Linguistic analysis of the human heartbeat using frequency and rank order statistics. Phys. Rev. Lett. 2003, 90, 108103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zunino, L.; Soriano, M.C.; Rosso, O.A. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys. Rev. E 2012, 86, 046210. [Google Scholar] [CrossRef] [Green Version]
- Pisarchik, A.N.; Huerta-Cuellar, G.; Kulp, C.W. Statistical analysis of symbolic dynamics in weakly coupled chaotic oscillators. Commun. Nonlinear Sci. Numer. Simulat. 2018, 62, 134–145. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, F.; Yang, A.C.; Ahn, A.C.; Fan, L.; Peng, C.-K. Symbolic dynamics of electroencephalography is associated with the sleep depth and overall sleep quality in healthy adults. Phys. A 2019, 513, 22–31. [Google Scholar] [CrossRef]
- Zhang, W.; Lim, C.; Szymanski, B.K. Analytic treatment of tipping points for social consensus in large random networks. Phys. Rev. E 2012, 86, 061134. [Google Scholar] [CrossRef] [Green Version]
- Doyle, C.; Sreenivasan, S.; Szymanski, B.K.; Korniss, G. Social consensus and tipping points with opinion inertia. Phys. A 2016, 443, 316–323. [Google Scholar] [CrossRef]
- Doyle, C.; Szymanski, B.K.; Korniss. Effects of communication burstiness on consensus formation and tipping points in social dynamics. Phys. Rev. E 2017, 95, 062303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Zhao, Y.; Small, M. Identification and prediction of bifurcation tipping points using complex networks based on quasi-isotropic mapping. Phys. A 2020, 560, 125108. [Google Scholar] [CrossRef]
- Donovan, G.M.; Brand, C. Spatial early warning signals for tipping points using dynamic mode decomposition. Phys. A 2022, 596, 127152. [Google Scholar] [CrossRef]
- Moghadam, N.N.; Ramamoorthy; Nazarimehr, F.; Rajagopal, K.; Jafari, S. Tipping points of a complex network biomass model: Local and global parameter variations. Phys. A 2022, 592, 126845. [Google Scholar] [CrossRef]
- Meng, Y.; Jiang, J.; Grebogi, C.; Lai, Y.C. Noise-enabled species recovery in the aftermath of a tipping point. Phys. Rev. E 2020, 101, 012206. [Google Scholar] [CrossRef] [Green Version]
- Jayman, M.; Glazzard, J.; Rose, A. Tipping point: The staff wellbeing crisis in higher education. Front. Educ. 2022, 7, 590. [Google Scholar] [CrossRef]
- Pierini, S. Stochastic tipping points in climate dynamics. Phys. Rev. E 2012, 85, 027101. [Google Scholar] [CrossRef] [Green Version]
- Bentley, R.A.; Maddison, E.J.; Ranner, P.H.; Bissell, J.; Caiado, C.C.S.; Bhatanacharoen, P.; Clark, T.; Botha, M.; Akinbami, F.; Hollow, M.; et al. Social tipping points and earth systems dynamics. Front. Environ. Sci. 2014, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Corner, S.; Jones, C. Tipping points: Climate surprises. Front. Young Minds 2021, 9, 703610. [Google Scholar] [CrossRef]
- Blaustein, R. Warning signs of tipping point for Greenland ice sheet. Physics 2021, 14, 80. [Google Scholar] [CrossRef]
- The National Astronomical Observatory, Japan (Ed.) Chronological Scientific Tables; Maruzen: Tokyo, Japan, 1985; Volume 59, pp. 196–365. [Google Scholar]
- The National Astronomical Observatory, Japan (Ed.) Chronological Scientific Tables; Maruzen: Tokyo, Japan, 1992; Volume 66, pp. 196–365. [Google Scholar]
- The National Astronomical Observatory, Japan (Ed.) Chronological Scientific Tables; Maruzen: Tokyo, Japan, 2017; Volume 91, pp. 184–319. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Dover: New York, NY, USA, 1997; pp. 6–7. [Google Scholar]
- Pardo, L. (Ed.) New Developments in Statistical Information Theory Based on Entropy and Divergence Measures; MDPI AG: Lausanne, Switzerland, 2019; p. 51. [Google Scholar]
- Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; Wiley: New York, NY, USA, 1999; pp. 314–321. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Broeke, M.V.D.; Box, J.; Fettweis, X.; Hanna, E.; Noël, B.; Tedesco, M.; van As, D.; van de Berg, W.J.; van Kampenhout, L. Greenland ice sheet surface mass loss: Recent developments in observation and modeling. Curr. Clim. Chang. Rep. 2017, 3, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Trusel, L.D.; Das, S.B.; Osman, M.B.; Evans, M.J.; Smith, B.E.; Fettweis, X.; McConnell, J.R.; Noël, B.P.Y.; Broeke, M.R.V.D. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 2018, 564, 104–108. [Google Scholar] [CrossRef]
- Pattyn, F.; Ritz, C.; Hanna, E.; Asay-Davis, X.; DeConto, R.; Durand, G.; Favier, L.; Fettweis, X.; Goelzer, H.; Golledge, N.R.; et al. The Greenland and Antarctic ice sheets under 1.5°C global warming. Nat. Clim. Chang. 2018, 8, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Thackeray, C.W.; Fletcher, C.G. Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Prog. Phys. Geogr. Earth Environ. 2016, 40, 392–408. [Google Scholar] [CrossRef]
- Scambos, T.A.; Hulbe, C.; Fahnestock, M.; Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 2017, 46, 516–530. [Google Scholar] [CrossRef] [Green Version]
- Clem, K.R.; Fogt, R.L.; Turner, J.; Lintner, B.R.; Marshall, G.J.; Miller, J.R.; Renwick, J.A. Record warming at the South Pole during the past three decades. Nat. Clim. Chang. 2020, 10, 762–770. [Google Scholar] [CrossRef]
- Cordero, R.R.; Sepúlveda, E.; Feron, S.; Damiani, A.; Fernandoy, F.; Neshyba, S.; Rowe, P.M.; Asencio, V.; Carrasco, J.; Alfonso, J.A.; et al. Black carbon footprint of human presence in Antarctica. Nat. Commun. 2022, 13, 984. [Google Scholar] [CrossRef]
(a) | <Period I> | <Period II> | ||
6-Bit Code | f (Frequency) | u (Rank) | g (Frequency) | v (Rank) |
#01:000000 | 5 | 61.5 | 1 | 63 |
#02:000001 | 7 | 57.5 | 1 | 63 |
#03:000010 | 6 | 60 | 2 | 61 |
#04:000011 | 12 | 51 | 5 | 57 |
#05:000100 | 2 | 64 | 3 | 59.5 |
#06:000101 | 11 | 53.5 | 13 | 47 |
#07:000110 | 12 | 51 | 13 | 47 |
#08:000111 | 15 | 45.5 | 7 | 54 |
#09:001000 | 3 | 63 | 7 | 54 |
#10:001001 | 17 | 38.5 | 9 | 51.5 |
#11:001010 | 27 | 15.5 | 22 | 28 |
#12:001011 | 26 | 18 | 25 | 21.5 |
#13:001100 | 16 | 41.5 | 13 | 47 |
#52:110011 | 25 | 20.5 | 37 | 5.5 |
#53:110100 | 22 | 29.5 | 17 | 39.5 |
#54:110101 | 31 | 9 | 37 | 5.5 |
#55:110110 | 23 | 26 | 35 | 7.5 |
#56:110111 | 23 | 26 | 22 | 28 |
#57:111000 | 16 | 41.5 | 13 | 47 |
#58:111001 | 30 | 11.5 | 33 | 11.5 |
#59:111010 | 26 | 18 | 20 | 34 |
#60:111011 | 16 | 41.5 | 26 | 19 |
#61:111100 | 22 | 29.5 | 23 | 25.5 |
#62:111101 | 17 | 38.5 | 22 | 28 |
#63:111110 | 15 | 45.5 | 20 | 34 |
#64:111111 | 16 | 41.6 | 19 | 37.5 |
(b) | <Period I> | <Period II> | ||
6-Bit Code | f (Frequency) | u (Rank) | g (Frequency) | v (Rank) |
#01:000000 | 11 | 60 | 16 | 48.5 |
#02:000001 | 25 | 20.5 | 32 | 9 |
#03:000010 | 27 | 14.5 | 34 | 4 |
#04:000011 | 32 | 7 | 32 | 9 |
#05:000100 | 30 | 9 | 31 | 12 |
#06:000101 | 23 | 30 | 33 | 6.5 |
#07:000110 | 17 | 48 | 19 | 39.5 |
#08:000111 | 35 | 4.5 | 30 | 14.5 |
#09:001000 | 18 | 45 | 24 | 26.5 |
#10:001001 | 29 | 11 | 28 | 18.5 |
#11:001010 | 17 | 48 | 25 | 23 |
#12:001011 | 29 | 11 | 34 | 23 |
#13:001100 | 22 | 34.5 | 15 | 50.5 |
#52:110011 | 15 | 52 | 38 | 60.5 |
#53:110100 | 20 | 38.5 | 20 | 35 |
#54:110101 | 24 | 24.5 | 17 | 45.5 |
#55:110110 | 14 | 54.5 | 10 | 57.5 |
#56:110111 | 4 | 64 | 4 | 64 |
#57:111000 | 35 | 4.5 | 46 | 1 |
#58:111001 | 12 | 58.5 | 11 | 55.5 |
#59:111010 | 28 | 13 | 5 | 43 |
#60:111011 | 5 | 63 | 26 | 63 |
#61:111100 | 24 | 24.5 | 33 | 6.5 |
#62:111101 | 25 | 20.5 | 6 | 62 |
#63:111110 | 23 | 30 | 19 | 39.5 |
#64:111111 | 8 | 61.5 | 8 | 60.5 |
(a) 6-Bit Coding | Period I–II | Period II–III | |
---|---|---|---|
Kul.-Leib.: DKL (nat) | 6.095 × 10−2 | > | 4.944 × 10−2 |
Hellinger: DH (nat) | 2.725 × 10−2 | > | 2.471 × 10−2 |
Spearman: rS | 0.8679 | > | 0.7873 |
Kendall: rK | 0.6958 | > | 0.6250 |
5-bit coding | Period I–II | Period II–III | |
Kul.-Leib.: DKL (nat) | 3.352 × 10−2 | > | 2.581 × 10−2 |
Hellinger: DH (nat) | 1.478 × 10−2 | > | 1.302 × 10−2 |
Spearman: rS | 0.8943 | > | 0.7606 |
Kendall: rK | 0.7653 | > | 0.5975 |
4-bit coding | Period I–II | Period II–III | |
Kul.-Leib.: DKL (nat) | 1.717 × 10−2 | > | 1.530 × 10−2 |
Hellinger: DH (nat) | 7.485 × 10−3 | < | 7.642 × 10−3 |
Spearman: rS | 0.9631 | > | 0.8215 |
Kendall: rK | 0.8899 | > | 0.7187 |
(b) 6-bit coding | Period I–II | Period II–III | |
Kul.-Leib.: DKL (nat) | 4.224 × 10−2 | < | 6.242 × 10−2 |
Hellinger: DH (nat) | 1.976 × 10−2 | < | 2.985 × 10−2 |
Spearman: rS | 0.7310 | < | 0.6534 |
Kendall: rK | 0.5628 | > | 0.4889 |
5-bit coding | Period I–II | Period II–III | |
Kul.-Leib.: DKL (nat) | 1.717 × 10−2 | < | 2.591 × 10−2 |
Hellinger: DH (nat) | 8.481 × 10−3 | < | 1.254 × 10−2 |
Spearman: rS | 0.7727 | > | 0.7524 |
Kendall: rK | 0.6025 | > | 0.5449 |
4-bit coding | Period I–II | Period II–III | |
Kul.-Leib.: DKL (nat) | 7.326 × 10−3 | > | 6.321 × 10−3 |
Hellinger: DH (nat) | 3.641 × 10−3 | > | 3.165 × 10−3 |
Spearman: rS | 0.8907 | > | 0.8195 |
Kendall: rK | 0.7490 | > | 0.6414 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayata, K. Revealing a Tipping Point in the Climate System: Application of Symbolic Analysis to the World Precipitations and Temperatures. Climate 2022, 10, 195. https://doi.org/10.3390/cli10120195
Hayata K. Revealing a Tipping Point in the Climate System: Application of Symbolic Analysis to the World Precipitations and Temperatures. Climate. 2022; 10(12):195. https://doi.org/10.3390/cli10120195
Chicago/Turabian StyleHayata, Kazuya. 2022. "Revealing a Tipping Point in the Climate System: Application of Symbolic Analysis to the World Precipitations and Temperatures" Climate 10, no. 12: 195. https://doi.org/10.3390/cli10120195
APA StyleHayata, K. (2022). Revealing a Tipping Point in the Climate System: Application of Symbolic Analysis to the World Precipitations and Temperatures. Climate, 10(12), 195. https://doi.org/10.3390/cli10120195