Using High-Resolution Climate Models to Identify Climate Change Hotspots in the Middle East: A Case Study of Iran
Abstract
:1. Introduction
2. Method
2.1. Study Area
2.2. Climatic Data and Models
2.3. Hotspot Formulation
3. Results
3.1. SED Variations
3.2. Variations in Climate Indicators
3.3. Climate Change over All Provinces of Iran
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Diffenbaugh, N.S.; Giorgi, F.; Raymond, L.; Bi, X. Indicators of 21st century socioclimatic exposure. Proc. Natl. Acad. Sci. USA 2007, 104, 20195–20198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diffenbaugh, N.S.; Giorgi, F.; Pal, J.S. Climate change hotspots in the United States. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Mohammed, S.; Gill, A.R.; Alsafadi, K.; Hijazi, O.; Yadav, K.K.; Hasan, M.A.; Khan, A.H.; Islam, S.; Cabral-Pinto, M.M.; Harsanyi, E. An overview of greenhouse gases emissions in Hungary. J. Clean. Prod. 2021, 314, 127865. [Google Scholar] [CrossRef]
- Kermanshah, A.; Derrible, S.; Berkelhammer, M. Using climate models to estimate urban vulnerability to flash floods. J. Appl. Meteorol. Climatol. 2017, 56, 2637–2650. [Google Scholar] [CrossRef]
- Kermanshah, A.; Sotoudeheian, S.; Tajrishy, M. Satellite and ground-based assessment of Middle East meteorological parameters impact on dust activities in western Iran. Sci. Iran. 2016, 23, 2478–2493. [Google Scholar] [CrossRef] [Green Version]
- Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Chang. 2002, 54, 269–293. [Google Scholar] [CrossRef]
- Miksa, O.; Chen, X.; Baležentienė, L.; Streimikiene, D.; Balezentis, T. Ecological challenges in life cycle assessment and carbon budget of organic and conventional agroecosystems: A case from Lithuania. Sci. Total Environ. 2020, 714, 136850. [Google Scholar] [CrossRef]
- Baettig, M.B.; Wild, M.; Imboden, D.M. A climate change index: Where climate change may be most prominent in the 21st century. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Hulme, M.; Mahony, M. Climate change: What do we know about the IPCC? Prog. Phys. Geogr. 2010, 34, 705–718. [Google Scholar] [CrossRef]
- Adopted, I. Climate Change 2014 Synthesis Report; IPCC: Geneva, Szwitzerland, 2014. [Google Scholar]
- McGushin, A.; Tcholakov, Y.; Hajat, S. Climate change and human health: Health impacts of warming of 1.5 °C and 2 °C. Int. J. Environ. Res. Public Health 2018, 15, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayomi, N.; Fernandez, J.E. Towards sustainable energy trends in the Middle East: A study of four major emitters. Energies 2019, 12, 1615. [Google Scholar] [CrossRef] [Green Version]
- Union of Concerned Scientists. Each Country’s Share of CO2 Emissions; Union of Concerned Scientists: Cambridge, MA, USA, 2019. [Google Scholar]
- Mansouri Daneshvar, M.R.; Ebrahimi, M.; Nejadsoleymani, H. An overview of climate change in Iran: Facts and statistics. Environ. Syst. Res. 2019, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Vaghefi, S.A.; Keykhai, M.; Jahanbakhshi, F.; Sheikholeslami, J.; Ahmadi, A.; Yang, H.; Abbaspour, K.C. The future of extreme climate in Iran. Sci. Rep. 2019, 9, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyravi, M.; Marzaleh, M.A. The Effect of the US Sanctions on Humanitarian Aids during the Great Flood of Iran in 2019. Prehospital Disaster Med. 2020, 35, 233–234. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://reliefweb.int/disaster/ff-2022-000274-irn (accessed on 1 July 2022).
- Ashraf, S.; Nazemi, A.; AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021, 11, 9135. [Google Scholar] [CrossRef]
- Saemian, P.; Tourian, M.J.; AghaKouchak, A.; Madani, K.; Sneeuw, N. How much water did Iran lose over the last two decades? J. Hydrol. Reg. Stud. 2022, 41, 101095. [Google Scholar] [CrossRef]
- Sotoudeheian, S.; Salim, R.; Arhami, M. Impact of Middle Eastern dust sources on PM10 in Iran: Highlighting the impact of Tigris-Euphrates basin sources and Lake Urmia desiccation. J. Geophys. Res. Atmos. 2016, 121, 14018–14034. [Google Scholar] [CrossRef]
- Jalilvand, E.; Tajrishy, M.; Hashemi, S.A.G.Z.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Sotoudeheian, S.; Arhami, M. Estimating ground-level PM2. 5 concentrations by developing and optimizing machine learning and statistical models using 3 km MODIS AODs: Case study of Tehran, Iran. J. Environ. Health Sci. Eng. 2021, 19, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ghotbi, S.; Sotoudeheian, S.; Arhami, M. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model. Atmos. Environ. 2016, 141, 333–346. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mpandeli, S.; Nhamo, L.; Moeletsi, M.; Masupha, T.; Magidi, J.; Tshikolomo, K.; Liphadzi, S.; Naidoo, D.; Mabhaudhi, T. Assessing climate change and adaptive capacity at local scale using observed and remotely sensed data. Weather Clim. Extrem. 2019, 26, 100240. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [Google Scholar] [CrossRef] [Green Version]
- de Sherbinin, A. Climate change hotspots mapping: What have we learned? Clim. Chang. 2014, 123, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, L.J.; Pitman, A.; Perkins, S.; Zimmermann, N.E.; Yoccoz, N.G.; Thuiller, W. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. USA 2011, 108, 2306–2311. [Google Scholar] [CrossRef] [Green Version]
- Hlásny, T.; Trombik, J.; Dobor, L.; Barcza, Z.; Barka, I. Future climate of the Carpathians: Climate change hot-spots and implications for ecosystems. Reg. Environ. Chang. 2016, 16, 1495–1506. [Google Scholar] [CrossRef]
- Busby, J.W.; Cook, K.H.; Vizy, E.K.; Smith, T.G.; Bekalo, M. Identifying hot spots of security vulnerability associated with climate change in Africa. Clim. Chang. 2014, 124, 717–731. [Google Scholar]
- Byers, E.; Gidden, M.; Leclère, D.; Balkovic, J.; Burek, P.; Ebi, K.; Greve, P.; Grey, D.; Havlik, P.; Hillers, A. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 2018, 13, 055012. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Turco, M.; Palazzi, E.; Von Hardenberg, J.; Provenzale, A. Observed climate change hotspots. Geophys. Res. Lett. 2015, 42, 3521–3528. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Abbasian, M.S.; Najafi, M.R.; Abrishamchi, A. Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitation–temperature deciles index. J. Hydrol. 2021, 592, 125586. [Google Scholar] [CrossRef]
- Jamali, S.; Abrishamchi, A.; Marino, M.A.; Abbasnia, A. Climate Change Impact Assessment on Hydrology of Karkheh Basin, Iran; Institution of Civil Engineers-Water Management: London, UK, 2013; pp. 93–104. [Google Scholar]
- Madani, K. Water management in Iran: What is causing the looming crisis? J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Azarderakhsh, M.; Prakash, S.; Zhao, Y.; AghaKouchak, A. Satellite-based analysis of extreme land surface temperatures and diurnal variability across the hottest place on Earth. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2025–2029. [Google Scholar] [CrossRef]
- Wisetjindawat, W.; Kermanshah, A.; Derrible, S.; Fujita, M. Stochastic modeling of road system performance during multihazard events: Flash floods and earthquakes. J. Infrastruct. Syst. 2017, 23, 04017031. [Google Scholar] [CrossRef]
- Wisetjindawat, W.; Derrible, S.; Kermanshah, A. Modeling the effectiveness of infrastructure and travel demand management measures to improve traffic congestion during typhoons. Transp. Res. Rec. 2018, 2672, 43–53. [Google Scholar] [CrossRef]
- Yadollahie, M. The flood in Iran: A consequence of the global warming? Int. J. Occup. Environ. Med. 2019, 10, 54. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotoudeheian, S.; Jalilvand, E.; Kermanshah, A. Using High-Resolution Climate Models to Identify Climate Change Hotspots in the Middle East: A Case Study of Iran. Climate 2022, 10, 161. https://doi.org/10.3390/cli10110161
Sotoudeheian S, Jalilvand E, Kermanshah A. Using High-Resolution Climate Models to Identify Climate Change Hotspots in the Middle East: A Case Study of Iran. Climate. 2022; 10(11):161. https://doi.org/10.3390/cli10110161
Chicago/Turabian StyleSotoudeheian, Saeed, Ehsan Jalilvand, and Amirhassan Kermanshah. 2022. "Using High-Resolution Climate Models to Identify Climate Change Hotspots in the Middle East: A Case Study of Iran" Climate 10, no. 11: 161. https://doi.org/10.3390/cli10110161
APA StyleSotoudeheian, S., Jalilvand, E., & Kermanshah, A. (2022). Using High-Resolution Climate Models to Identify Climate Change Hotspots in the Middle East: A Case Study of Iran. Climate, 10(11), 161. https://doi.org/10.3390/cli10110161