Potential Climate Impacts of Hydrological Alterations and Discharge Variabilities of the Mura, Drava, and Danube Rivers on the Natural Resources of the MDD UNESCO Biosphere Reserve
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Empirical Probability Analyses
2.3. Mann–Kendall Test
2.4. Standard Normal Homogeneity Test
2.5. Indicators of Hydrologic Alteration (IHA)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- UNESCO. Mura-Drava-Danube Transboundary Biosphere Reserve. Croatia/Hungary. Available online: https://en.unesco.org/biosphere/eu-na/mura-drava-danube (accessed on 13 May 2022).
- Csagoly, P.; Magnin, G.; Mohl, A. Danube, Drava, and Mura Rivers: The “Amazon of Europe”. In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- WWF. Assessment of the River and Floodplain Restoration Potential in the Transboundary UNESCO Biosphere Reserve “Mura-Drava-Danube”; WWF: Vienna, Austria, 2013. [Google Scholar]
- Kalocsa, B.; Zsuffa, I. A Duna magyar szakaszának vízállásváltozásai. J. Hungar. Hydrol. Soc. 1997, 77, 183–192. [Google Scholar]
- Goda, L.; Kalocsa, B.; Tamás, E.A. Riverbed erosion on the Hungarian section of the Danube. J. Environ. Sci. Sustain. Soc. 2007, 1, 47–54. [Google Scholar]
- Tamás, E.A.; Đorđević, D.; Kalocsa, B.; Vujanović, A. Hydrological indicators of the riverbed incision along the free-flowing Danube River reach from Budapest to Slankamen relevant for the lateral connectivity between the river channel and floodplains. In Proceedings of the 43rd IAD Conference Rivers and Floodplains in the Anthropocene—Upcoming Challenges in the Danube River Basin, Virtual Conference, 9–11 June 2021. [Google Scholar]
- Bonacci, O.; Oskoruš, D. The changes in the lower Drava River water level, discharge and suspended sediment regime. Environ. Earth Sci. 2009, 59, 1661–1670. [Google Scholar] [CrossRef]
- Tadić, L.; Brleković, T. Hydrological characteristics of the Drava river in Croatia. In The Drava River; Lóczy, D., Ed.; Springer Geography: Berlin/Heidelberg, Germany, 2019; ISBN 9783319928159. [Google Scholar] [CrossRef]
- Globevnik, L.; Kaligaric, M. Hydrological changes of the Mura River in Slovenia. accompanied with habitat deterioration in riverine space. Mater. Geoenviron. 2005, 52, 45–49. [Google Scholar]
- Šraj, M.; Horvat, A.; Koprivšek, M.; Vidmar, A.; Brilly, M. Analysis of water regime of the Mura River by homogenized discharge data. In Proceedings of the XXVth Conference of Danubian Countires, Budapest, Hungary, 16–17 June 2011. [Google Scholar]
- Poff, N.L.; Zimmerman, J.K. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef]
- WFD; European Commission. Directive 2000/60/EC, Establishing a framework for community action in the field of water policy. Off. J. Eur. Communities 2000, L327, 1–71. [Google Scholar]
- European Commision. Ecological Flows in the Implementation of the Water Framework Directive. Guidance Document No. 31; European Commission: Brussels, Belgium, 2015. [Google Scholar] [CrossRef]
- Bussatini, M.; Percopo, C.; Lastoria, B.; Mariani, S. A Method for Characterizing the Stream Flow Regime in Europe. In Engineering Geology for Society and Territory—Volume 3; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.C., Grant, G., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Smakhtin, V.; Revenga, C.; Döll, P. A Pilot Global Assessment of Environmental Water Requirements and Scarcity. Water Int. 2004, 29, 307–317. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Mathews, R.; Richter, B.D. Application of the indicators of hydrologic alteration software in environmental flow settings. J. Am. Water Resour. Assoc. 2007, 43, 1400–1413. [Google Scholar] [CrossRef]
- Gao, Y.; Vogel, R.M.; Kroll, C.N.; Poff, N.L.; Olden, J.D. Development of representative indicators of hydrologic alteration. J. Hydrol. 2009, 374, 136–147. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, X.; Zhao, H.; Ma, K. Development of a revised method for indicators of hydrologic alteration for analyzing the cumulative impacts of cascading reservoirs on flow regime. Hydrol. Earth Syst. Sci. 2020, 24, 4091–4107. [Google Scholar] [CrossRef]
- Pardo-Loaiza, J.; Solera, A.; Bergillos, R.J.; Paredes-Arquiola, J.; Andreu, J. Improving Indicators of Hydrological Alteration in Regulated and Complex Water Resources Systems: A Case Study in the Duero River Basin. Water 2021, 13, 2676. [Google Scholar] [CrossRef]
- Lee, A.; Cho, S.; Kang, D.K.; Kim, S. Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration. J. Hydro-Environ. Res. 2013, 8, 234–247. [Google Scholar] [CrossRef]
- Maskey, M.L.; Dourado, G.F.; Rallings, A.M.; Rheinheimer, D.E.; Medellín-Azuara, J.; Viers, J.H. Assessing Hydrological Alteration Caused by Climate Change and Reservoir Operations in the San Joaquin River Basin, California. Front. Environ. Sci. 2022, 10, 765426. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Monico, V.; Solera, A.; Bergillos, R.J.; Paredes-Arquiola, J.; Andreu, J. Effects of environmental flows on hydrological alteration and reliability of water demands. Sci. Total Environ. 2022, 810, 151630. [Google Scholar] [CrossRef]
- George, R.; McManamay, R.; Perry, D.; Sabo, J.; Ruddell, B.L. Indicators of hydro-ecological alteration for the rivers of the United States. Ecol. Indic. 2020, 120, 106908. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin & Company Limited: London, UK, 1962. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather. Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Salmi, T.; Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; Publications on Air Quality No. 31; Finnish Meteorological Institute: Helsinki, Finland, 2002. [Google Scholar]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Clim. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Pandžić, K.; Kobold, M.; Oskoruš, D.; Biondić, B.; Biondić, R.; Bonacci, O.; Likso, T.; Curić, O. Standard normal homogeneity test as a tool to detect change points in climate-related river discharge variation: Case study of the Kupa River Basin. Hydrol. Sci. J. 2020, 65, 227–241. [Google Scholar] [CrossRef]
- Ho Ming, K.; Yusof, F. Homogeneity Tests on Daily Rainfall Series in Peninsular Malaysia. Int. J. Contemp. Math. Sci. 2012, 7, 9–22. [Google Scholar]
- Ahmed, K.; Shahid, S.; Ismail, T.; Nawaz, N.; Wang, X.-J. Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmósfera 2018, 31, 301–316. [Google Scholar] [CrossRef]
- Mihaljević, M.; Stević, F.; Horvatić, J.; Kutuzović, B.H. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park. Croatia). Hydrobiologia 2009, 618, 77–88. [Google Scholar] [CrossRef]
- Nováky, B.; Bálint, G. Shifts and Modification of the Hydrological Regime Under Climate Change in Hungary. In Climate Change—Realities, Impacts Over Ice Cap, Sea Level and Risks; Singh, B.R., Ed.; IntechOpen: London, UK, 2013; p. 524. [Google Scholar] [CrossRef]
- Pletterbauer, F.; Melcher, A.; Graf, W. Climate Change Impacts in Riverine Ecosystems. In Riverine Ecosystem Management: Science for Governing towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Aqatic Book Series (AQEC. volume 8); Springer: Cham, Switzerland, 2018; Chapter 11; pp. 203–223. [Google Scholar] [CrossRef]
- Stagl, J.C.; Hattermann, F.F. Impacts of Climate Change on the Hydrological Regime of the Danube River and Its Tributaries Using an Ensemble of Climate Scenarios. Water 2015, 7, 6139–6172. [Google Scholar] [CrossRef]
- IPCC (The Intergovernmental Panel on Climate Change). Climate Change 2022: Impacts. Adaptation and Vulnerability. Summary Policymakers. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (accessed on 1 September 2022).
- Mikhailov, V.N.; Morozov, V.N.; Cheroy, N.I.; Mikhailova, M.V.; Zayalova, Y.F. Extreme Flood on the Danube River in 2006. Russ. Meteorol. Hydrol. 2008, 33, 48–54. [Google Scholar] [CrossRef]
- ICPDR. 2014: Record flooding in the Danube River Basin. 2014. Available online: https://www.icpdr.org/main/resources/2002-floods-danube-river-basin (accessed on 23 June 2022).
- ICPDR. The 2015 Droughts in the Danube River Basin. 2016. Available online: https://www.icpdr.org/main/sites/default/files/nodes/documents/icpdr_report_on_2015_droughts_in_the_danube_river_final.pdf (accessed on 20 June 2022).
- Woodward, G.; Bonada, N.; Brown, L.E.; Death, R.G.; Durance, I.; Gray, C.; Hladyz, S.; Ledger, M.E.; Milner, A.M.; Ormerod, S.J.; et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150274. [Google Scholar] [CrossRef]
- Tockner, K.; Pannetzdorfer, D.; Reiner, N.; Scheiner, F.; Ward, J.V. Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river–floodplain system (Danube. Austria). Freshw. Biol. 1999, 415, 21–535. [Google Scholar] [CrossRef]
- Stević, F.; Mihaljević, M.; Špoljarić, D. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 2013, 709, 143–158. [Google Scholar] [CrossRef]
- Mihaljević, M.; Špoljarić, D.; Stević, F.; Cvijanović, V.; Kutuzović, B.H. The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: Shift to a clear state. Limnologica 2010, 40, 260–268. [Google Scholar] [CrossRef]
- Schöll, K. Spatial and Temporal Diversity Patterns of Planktonic Rotifer Assemblages in Water Bodies of the Floodplain Gemenc (Duna-Dráva National Park, Hungary). Int. Rev. Hydrobiol. 2010, 95, 450–460. [Google Scholar] [CrossRef]
- Schöll, K.; Kiss, A.; Dinka, M.; Berczik, A. Flood-Pulse Effects on Zooplankton Assemblages in a River-Floodplain System (Gemenc Floodplain of the Danube, Hungary). Int. Rev. Hydrobiol. 2012, 97, 41–54. [Google Scholar] [CrossRef]
- Turić, N.; Temunović, M.; Radović, A.; Vignjević, G.; Bogojević, M.S.; Merdić, E. Flood pulses drive the temporal dynamics of assemblages of aquatic insects (Heteroptera and Coleoptera) in a temperate floodplain. Freshw. Biol. 2015, 60, 2051–2065. [Google Scholar] [CrossRef]
- Stojković Piperac, M.; Milošević, D.; Čerba, D.; Simić, V. Fish Communities Over the Danube Wetlands in Serbia and Croatia. In Small Water Bodies of the Western Balkans; Pešić, V., Milošević, D., Miliša, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 337–349. [Google Scholar] [CrossRef]
- Sommerwerk, N.; Bloesch, J.; Baumgartner, C.; Bittl, T.; Čerba, D.; Csányi, B.; Davideanu, G.; Dokulil, M.; Frank, G.; Grecu, L.; et al. The Danube River Basin. In Rivers of Europe; Tockner, K., Zarfl, C., Robinson, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 81–180. [Google Scholar] [CrossRef]
- Zeiringer, B.; Seliger, C.; Greimel, F.; Schmutz, S. Chapter 4—River Hydrology, Flow Alteration, and Environmental Flow. In Riverine Ecosystem Management: Science for Governing towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Aqatic Book Series (AQEC. volume 8); Springer: Cham, Switzerland, 2018; pp. 67–89. [Google Scholar] [CrossRef]
River Section | Data Series | Distance from River Mouth (km) | Catchment Area (km2) | Longitude and Latitude |
---|---|---|---|---|
Mura River (Letenye) | 1960–2020 | 35.60 | 13,148 | 46°26′ N 16°43′ E |
Drava River (T. Polje) | 1962–2019 | 152.30 | 33,916 | 45°57′ N 17°28′ E |
Drava River (D. Miholjac) | 1926–2019 | 77.00 | 37,142 | 45°48′ N 18°21′ E |
Danube River (Baja) | 1930–2017 | 1478.70 | 189,092 | 46°10′ N 18°55′ E |
Danube River (Bezdan) | 1950–2020 | 1425.59 | 210,250 | 45°51′ N 18°51′ E |
Danube River (Bogojevo) | 1950–2017 | 1367.25 | 251,593 | 45°31′ N 19°54′ E |
Parameter Group 1 | |
---|---|
October November December January February March | Magnitude of monthly water conditions (m3/s). |
Parameter Group 2 | |
April May June July August September | Magnitude of monthly water conditions (m3/s). |
Parameter Group 3 | |
1-day minimum 3-day minimum 7-day minimum 30-day minimum 90-day minimum Number of zero-flow days Base flow index Julian date of annual 1-day minimum | Magnitude and duration of low extreme water condition (m3/s) and timing of annual extreme water conditions (Julian date). |
Parameter Group 4 | |
1-day maximum 3-day maximum 7-day maximum 30-day maximum 90-day maximum Julian date of annual 1-day maximum | Magnitude and duration of high extreme water condition (m3/s) and timing of annual extreme water conditions (Julian date). |
Parameter Group 5 | |
Low pulse count Low pulse duration High pulse count High pulse duration Rise rate Fall rate Number of reversals | Frequency (number) and duration of low and high pulses (days). Rate (m3/s/day) and frequency of water condition changes (number). |
Hydrological Status | GI Value Range |
---|---|
Slightly altered or not altered | 0.75 to 1.0 |
Moderately altered | 0.5 to 0.75 |
Altered | 0.25 to 0.5 |
Very altered | 0 to 0.25 |
River Section | Annual Discharge (m3/s) | ||
---|---|---|---|
Minimum | Mean | Maximum | |
Mura River (Letenye) | Y= −0.217X + 508 R2 = 0.047 | Y= −0.619X + 195 R2 = 0.09 | Y= −1.761X + 4158 R2 = 0.09 |
Drava River (T. Polje) | Y= −0.285X + 786 R2 = 0.013 | Y= −1.373X + 557 R2 = 0.065 | Y= −4.179X + 9771 R2 = 0.028 |
Danube River (Baja) | Y= −0.234X + 1684 R2 = 0.0006 | Y= −3.18X + 2475 R2 = 0.019 | Y= 5.233X − 5169 R2 = 0.014 |
Time Series | Mura River Leteny | Drava River T. Polje | Drava River D. Miholjac | Danube River Baja | Danube River Bezdan | Danube River Bogojevo | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test Z | Signif. 1 | Test Z | Signif. 1 | Test Z | Signif. 1 | Test Z | Signif. | Test Z | Signif. 1 | Test Z Signif. | ||
Oct | −0.666 | −0.307 | 0.101 | 0.05 | 1.127 | 0.394 | ||||||
Nov | −0.548 | 0.968 | −0.353 | −0.78 | 0.953 | −0.035 | ||||||
Dec | −1.276 | 0.451 | −0.173 | 0.28 | 0.928 | −0.052 | ||||||
Jan | −2.229 | * | −0.759 | −0.977 | −0.04 | 1.539 | 1.402 | |||||
Feb | −2.035 | * | −0.804 | −1.352 | −1.57 | 0.139 | 0.632 | |||||
Mar | −1.195 | −0.007 | −0.794 | −0.13 | 1.355 | 0.979 | ||||||
Apr | −2.085 | * | −1.870 | + | −0.719 | −1.11 | −0.963 | 0.139 | ||||
May | −1.270 | −2.224 | * | −1.362 | −0.22 | −0.596 | −0.655 | |||||
Jun | −1.948 | + | −2.380 | * | −2.348 | * | −1.71 | + | −0.695 | −0.886 | ||
Jul | −2.079 | * | −2.681 | ** | −1.999 | * | −1.84 | + | −2.035 | * | −2.005 | * |
Aug | −0.647 | −1.354 | −1.303 | −1.73 | + | −0.923 | −2.034 | * | ||||
Sep | −0.286 | −0.824 | 0.467 | 0.43 | 1.246 | 0.533 | ||||||
Annual | −2.477 | * | −1.792 | + | −1.522 | −0.99 | 0.124 | −0.394 | ||||
Winter | −2.116 | * | −0.288 | −0.846 | −0.65 | 1.057 | 1.025 | |||||
Spring | −2.072 | * | −1.681 | + | −1.336 | −0.61 | −0.119 | 0.098 | ||||
Summer | −1.736 | + | −2.649 | ** | −2.437 | * | −1.45 | −1.296 | −1.755 | + | ||
Autumn | −0.118 | 0.504 | 0.474 | 0.16 | 1.703 | + | 0.481 |
Mura River | Drava River | Danube River | ||||
---|---|---|---|---|---|---|
Leteny | T. Polje | D. Miholjac | Baja | Bezdan | Bogojevo | |
Parameter Group 1 | ||||||
October | H | H | H | H | H | H |
November | H | H | H | H | H | H |
December | H | H | H | H | H | H |
January | NH | NH | H | H | H | H |
February | H | H | H | H | H | H |
March | H | H | H | H | H | H |
Parameter Group 2 | ||||||
April | H | H | H | H | H | H |
May | H | H | H | H | H | H |
June | H | H | NH | H | H | H |
July | H | H | H | H | H | H |
August | H | H | H | H | H | H |
September | H | H | H | H | H | H |
Parameter Group 3 | ||||||
1-day min. | H | H | NH | H | H | NH |
3-day min. | H | H | NH | H | H | NH |
7-day min. | H | H | NH | H | H | NH |
30-day min. | NH | H | NH | H | H | NH |
90-day min. | NH | H | NH | H | H | NH |
No. of zero-flow days | H | H | H | H | H | H |
Base flow index | H | H | H | H | H | H |
Julian date of annual 1-day min. | H | H | H | H | H | H |
Parameter Group 4 | ||||||
1-day max. | H | H | H | H | H | H |
3-day max | H | H | H | H | H | H |
7-day max. | H | H | H | H | H | H |
30-day max. | H | H | H | H | H | H |
90-day max. | H | H | H | H | H | H |
Julian date of annual 1-day max. | NH | H | H | H | H | H |
Parameter Group 5 | ||||||
Low pulse count | H | NH | NH | H | H | NH |
Low pulse duration | H | NH | NH | H | H | NH |
High pulse count | H | H | H | H | H | H |
High pulse duration | H | H | H | H | H | H |
Rise rate | H | H | H | NH | NH | H |
Fall rate | NH | H | NH | NH | NH | NH |
Number of reversals | H | NH | NH | NH | NH | NH |
Mura River | Drava River | Danube River | ||||
---|---|---|---|---|---|---|
Global Indicator | Letenye | Terezino Polje | D. Miholjac | Baja | Bezdan | Bogojevo |
0.609 | 0.607 | 0.698 | 0.540 | 0.519 | 0.639 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadić, L.; Tamás, E.A.; Mihaljević, M.; Janjić, J. Potential Climate Impacts of Hydrological Alterations and Discharge Variabilities of the Mura, Drava, and Danube Rivers on the Natural Resources of the MDD UNESCO Biosphere Reserve. Climate 2022, 10, 139. https://doi.org/10.3390/cli10100139
Tadić L, Tamás EA, Mihaljević M, Janjić J. Potential Climate Impacts of Hydrological Alterations and Discharge Variabilities of the Mura, Drava, and Danube Rivers on the Natural Resources of the MDD UNESCO Biosphere Reserve. Climate. 2022; 10(10):139. https://doi.org/10.3390/cli10100139
Chicago/Turabian StyleTadić, Lidija, Enikő Anna Tamás, Melita Mihaljević, and Josip Janjić. 2022. "Potential Climate Impacts of Hydrological Alterations and Discharge Variabilities of the Mura, Drava, and Danube Rivers on the Natural Resources of the MDD UNESCO Biosphere Reserve" Climate 10, no. 10: 139. https://doi.org/10.3390/cli10100139
APA StyleTadić, L., Tamás, E. A., Mihaljević, M., & Janjić, J. (2022). Potential Climate Impacts of Hydrological Alterations and Discharge Variabilities of the Mura, Drava, and Danube Rivers on the Natural Resources of the MDD UNESCO Biosphere Reserve. Climate, 10(10), 139. https://doi.org/10.3390/cli10100139