Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors
Abstract
:1. Introduction
2. Model and SLS Estimation
3. Optimal SLS Estimator
4. Simulation Studies
4.1. Comparison with Quasi-MLE
4.2. Comparison with Estimating Function Estimators
5. Application
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Regularity Conditions
Appendix A.2. Proof of Theorem 1
Appendix A.3. Proof of Theorem 2
Appendix A.4. Proof of Theorem 3
References
- Abarin, Taraneh, and Liqun Wang. 2009. Second-order least squares estimation of censored regression models. Journal of Statistical Planning and Inference 139: 125–35. [Google Scholar] [CrossRef]
- Bollerslev, Tim, and Jeffrey M. Wooldridge. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews 11: 143–72. [Google Scholar] [CrossRef]
- Bose, Mausumi, and Rahul Mukerjee. 2015. Optimal design measures under asymmetric errors, with application to binary design points. Journal of Statistical Planning and Inference 159: 28–36. [Google Scholar] [CrossRef] [Green Version]
- Davidson, James. 1994. Stochastic Limit Theory: An Introduction for Econometricians. Oxford: Oxford University Press. [Google Scholar]
- Durairajan, T. M. 1992. Optimal estimating function for non-orthogonal model. Journal of Statistical Planning and Inference 33: 381–84. [Google Scholar] [CrossRef]
- Enders, Walter. 2010. Applied Econometric Time Series. New York: Wiley. [Google Scholar]
- Engle, Robert F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50: 987–1007. [Google Scholar] [CrossRef]
- Engle, Robert F., and Gloria Gonzalez-Rivera. 1991. Semiparametric ARCH models. Journal of Business & Economic Statistics 9: 345–59. [Google Scholar]
- Franses, Philip Hans, and Dick Van Dijk. 2000. Non-Linear Time Series Models in Empirical Finance. Cambridge: Cambridge University Press. [Google Scholar]
- Gao, Lucy L., and Julie Zhou. 2017. D-optimal designs based on the second-order least squares estimator. Statistical Papers 58: 77–94. [Google Scholar] [CrossRef]
- He, Lei, and Rong-Xian Yue. 2019. R-optimality criterion for regression models with asymmetric errors. Journal of Statistical Planning and Inference 199: 318–26. [Google Scholar] [CrossRef]
- Ibragimov, I. A., and Yu V. Linnik. 1971. Independent and Stationary Sequences of Random Variables. Gröningen: Wolters-Noordhoff. [Google Scholar]
- Jennrich, Robert I. 1969. Asymptotic properties of non-linear least squares estimators. The Annals of Mathematical Statistics 40: 633–43. [Google Scholar] [CrossRef]
- Kim, Mijeong, and Yanyuan Ma. 2012. The efficiency of the second-order nonlinear least squares estimator and its extension. Annals of the Institute of Statistical Mathematics 64: 751–64. [Google Scholar] [CrossRef] [Green Version]
- Koul, Hira L., and Shiqing Ling. 2006. Fitting an error distribution in some heteroscedastic time series models. The Annals of Statistics 34: 994–1012. [Google Scholar] [CrossRef] [Green Version]
- Li, David X., and Harry J. Turtle. 2000. Semiparametric ARCH models: An estimating function approach. Journal of Business & Economic Statistics 18: 174–86. [Google Scholar]
- Li, Wai Keung, Shiqing Ling, and Michael McAleer. 2002. Recent theoretical results for time series models with GARCH errors. Journal of Economic Surveys 16: 245–69. [Google Scholar] [CrossRef]
- Lindner, Alexander M. 2009. Stationarity, Mixing, Distributional Properties and Moments of GARCH (p, q)–Processes. Handbook of Financial Time Series; Berlin: Springer, pp. 43–69. [Google Scholar]
- Ling, Shiqing. 2003. Adaptive estimators and tests of stationary and nonstationary short-and long-memory ARFIMA–GARCH models. Journal of the American Statistical Association 98: 955–67. [Google Scholar] [CrossRef]
- Ling, Shiqing, and Michael McAleer. 2003. On adaptive estimation in nonstationary ARMA models with GARCH errors. The Annals of Statistics 31: 642–74. [Google Scholar] [CrossRef]
- Meitz, Mika, and Pentti Saikkonen. 2008. Stability of nonlinear AR-GARCH models. Journal of Time Series Analysis 29: 453–75. [Google Scholar] [CrossRef] [Green Version]
- Rao, Calyampudi Radhakrishna. 1973. Linear Statistical Inference and Its Applications. New York: Wiley. [Google Scholar]
- Rosadi, D, and Peter Filzmoser. 2019. Robust second-order least-squares estimation for regression models with autoregressive errors. Statistical Papers 60: 105–22. [Google Scholar] [CrossRef]
- Rosadi, Dedi, and Shelton Peiris. 2014. Second-order least-squares estimation for regression models with autocorrelated errors. Computational Statistics 29: 931–43. [Google Scholar] [CrossRef]
- Salamh, Mustafa, and Liqun Wang. 2021. Second-order least squares method for dynamic panel data models with application. Journal of Risk and Financial Management 14: 410. [Google Scholar] [CrossRef]
- Wang, Liqun. 2003. Estimation of nonlinear Berkson-type measurement error models. Statistica Sinica 13: 1201–10. [Google Scholar]
- Wang, Liqun. 2004. Estimation of nonlinear models with Berkson measurement errors. The Annals of Statistics 32: 2559–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, Liqun. 2007. A unified approach to estimation of nonlinear mixed effects and Berkson measurement error models. Canadian Journal of Statistics 35: 233–48. [Google Scholar] [CrossRef]
- Wang, Liqun, and Alexandre Leblanc. 2008. Second-order nonlinear least squares estimation. Annals of the Institute of Statistical Mathematics 60: 883–900. [Google Scholar] [CrossRef]
- Weiss, Andrew A. 1986. Asymptotic theory for ARCH models: Estimation and testing. Econometric Theory 2: 107–31. [Google Scholar] [CrossRef] [Green Version]
- White, Halbert. 1996. Estimation, Inference and Specification Analysis. Cambridge, UK: Cambridge University Press. [Google Scholar]
- White, Halbert. 2001. Asymptotic Theory for Econometricians. New York: Academic Press. [Google Scholar]
- White, Halbert, and Ian Domowitz. 1984. Nonlinear regression with dependent observations. Econometrica 52: 143–61. [Google Scholar] [CrossRef] [Green Version]
- Yin, Yue, and Julie Zhou. 2017. Optimal designs for regression models using the second-order least squares estimator. Statistica Sinica 27: 1841–56. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Ke, and Wai Keung Li. 2015. A new Pearson-type QMLE for conditionally heteroskedastic models. Journal of Business and Economic Statistics 33: 552–65. [Google Scholar] [CrossRef] [Green Version]
Gamma (2) | OSLS | 0.83 | 2.89 | 0.81 | 1.23 | 0.24 | 2.77 | 0.19 | 1.23 |
QML | 1.35 | 4.48 | 1.63 | 2.02 | 0.42 | 4.48 | 0.38 | 2.03 | |
ML | 0.15 | 0.25 | 0.08 | 0.14 | 0.04 | 0.06 | 0.04 | 0.13 | |
Gamma (8) | OSLS | 0.97 | 2.08 | 0.88 | 0.94 | 0.31 | 2.06 | 0.22 | 0.94 |
QML | 1.18 | 2.52 | 1.09 | 1.15 | 0.38 | 2.51 | 0.28 | 1.14 | |
ML | 0.87 | 1.44 | 0.69 | 0.64 | 0.27 | 1.35 | 0.19 | 0.62 | |
Gamma (12) | OSLS | 1.02 | 2.00 | 0.90 | 0.90 | 0.32 | 1.99 | 0.23 | 0.90 |
QML | 1.17 | 2.30 | 1.05 | 1.04 | 0.37 | 2.29 | 0.27 | 1.04 | |
ML | 0.97 | 1.58 | 0.79 | 0.69 | 0.30 | 1.50 | 0.21 | 0.72 | |
Gamma (20) | OSLS | 1.06 | 1.93 | 0.91 | 0.88 | 0.34 | 1.93 | 0.24 | 0.88 |
QML | 1.15 | 2.11 | 1.00 | 0.96 | 0.37 | 2.11 | 0.26 | 0.96 | |
ML | 1.03 | 1.67 | 0.86 | 0.73 | 0.33 | 1.62 | 0.23 | 0.75 | |
t (5) | OSLS | 1.34 | 6.32 | 1.51 | 2.86 | 0.37 | 6.26 | 0.29 | 2.86 |
QML | 1.56 | 6.32 | 2.34 | 2.86 | 0.41 | 6.26 | 0.41 | 2.86 | |
ML | 1.05 | 2.44 | 1.04 | 1.11 | 0.29 | 2.41 | 0.21 | 1.11 | |
t (7) | OSLS | 1.26 | 3.30 | 1.26 | 1.51 | 0.37 | 3.32 | 0.29 | 1.51 |
QML | 1.30 | 3.30 | 1.41 | 1.51 | 0.38 | 3.32 | 0.32 | 1.51 | |
ML | 1.10 | 2.31 | 1.05 | 1.05 | 0.32 | 2.34 | 0.25 | 1.05 | |
t (13) | OSLS | 1.20 | 2.31 | 1.08 | 1.06 | 0.37 | 2.33 | 0.26 | 1.06 |
QML | 1.20 | 2.31 | 1.10 | 1.06 | 0.37 | 2.33 | 0.26 | 1.06 | |
ML | 1.15 | 2.12 | 1.03 | 0.97 | 0.36 | 2.17 | 0.24 | 0.97 |
T | |||||||||
---|---|---|---|---|---|---|---|---|---|
(a): | (b):, | ||||||||
60 | QMLE | 0.21 | 0.149 | 0.30 | 0.213 | 0.19 | 0.152 | 0.58 | 0.163 |
FSLS | 0.21 | 0.119 | 0.27 | 0.172 | 0.19 | 0.121 | 0.59 | 0.136 | |
100 | QMLE | 0.20 | 0.116 | 0.25 | 0.169 | 0.20 | 0.121 | 0.58 | 0.134 |
FSLS | 0.20 | 0.091 | 0.23 | 0.138 | 0.20 | 0.094 | 0.59 | 0.108 | |
1000 | QMLE | 0.20 | 0.038 | 0.20 | 0.063 | 0.20 | 0.040 | 0.60 | 0.037 |
FSLS | 0.20 | 0.029 | 0.20 | 0.052 | 0.20 | 0.028 | 0.60 | 0.030 | |
10,000 | QMLE | 0.20 | 0.012 | 0.20 | 0.020 | 0.20 | 0.013 | 0.60 | 0.012 |
OSLS | 0.20 | 0.009 | 0.20 | 0.016 | 0.20 | 0.009 | 0.60 | 0.010 | |
(c):, | (d):, | ||||||||
60 | QMLE | 0.77 | 0.098 | 0.29 | 0.215 | 0.77 | 0.097 | 0.59 | 0.161 |
FSLS | 0.78 | 0.073 | 0.27 | 0.178 | 0.78 | 0.077 | 0.59 | 0.139 | |
100 | QMLE | 0.78 | 0.074 | 0.25 | 0.172 | 0.78 | 0.071 | 0.58 | 0.128 |
FSLS | 0.79 | 0.054 | 0.23 | 0.140 | 0.79 | 0.054 | 0.59 | 0.106 | |
1000 | QMLE | 0.80 | 0.021 | 0.20 | 0.062 | 0.80 | 0.021 | 0.60 | 0.038 |
FSLS | 0.80 | 0.016 | 0.19 | 0.050 | 0.80 | 0.015 | 0.60 | 0.030 | |
10,000 | QMLE | 0.80 | 0.007 | 0.20 | 0.020 | 0.80 | 0.007 | 0.60 | 0.012 |
OSLS | 0.80 | 0.005 | 0.20 | 0.016 | 0.80 | 0.005 | 0.60 | 0.010 |
Coefficients | Error df | ||||||
---|---|---|---|---|---|---|---|
Const | Shape | T | |||||
0.76546 | 0.02887 | 0.02525 | 0.78692 | 4785 | |||
0.79952 | 0.02078 | 0.01013 | 0.00962 | 0.70135 | 4785 |
Coef. | Model-I | Model-II | ||||
---|---|---|---|---|---|---|
LS | QMLE | FSLS | QMLE | FSLS | ||
Conditional Mean Equation | ||||||
(0.016) | (0.015) | (0.014) | (0.015) | (0.013) | ||
(0.141) | (0.1) | (0.093) | (0.096) | (0.086) | ||
0.050 | – | – | ||||
(0.095) | (0.086) | (0.081) | ||||
−0.158 | – | – | ||||
(0.148) | (0.101) | (0.094) | ||||
(0.184) | (0.108) | (0.101) | (0.116) | (0.104) | ||
(0.101) | (0.094) | (0.088) | (0.094) | (0.084) | ||
(0.018) | (0.017) | (0.016) | (0.017) | (0.015) | ||
Conditional Variance Equation | ||||||
0.000 | ||||||
(0.000) | (0.000) | (0.000) | (0.000) | |||
0.093 | 0.021 | – | – | |||
(0.134) | (0.126) | |||||
0.000 | 0.000 | – | – | |||
(0.077) | (0.072) | |||||
0.100 | 0.102 | – | – | |||
(0.146) | (0.137) | |||||
0.553 | ||||||
(0.252) | (0.235) | (0.308) | (0.281) | |||
Diagnostic Statistics of the Standardized Innovations | ||||||
Q1(5) | 0.9 (0.97) | 1.0 (0.96) | 2.1 (0.83) | 2.0 (0.85) | 1.9 (0.86) | |
Q1(10) | 4.4 (0.93) | 7.4 (0.68) | 6.4 (0.78) | 8.4 (0.59) | 8.5 (0.58) | |
Q1(15) | 12.8 (0.62) | 16.1 (0.38) | 14.1 (0.52) | 19.6 (0.19) | 18.7 (0.23) | |
Q2(5) | 3.7 (0.59) | 4.4 (0.50) | 0.4 (0.99) | 6.5 (0.26) | 6.4 (0.27) | |
Q2(10) | 5.7 (0.84) | 6.9 (0.74) | 1.3 (0.99) | 8.2 (0.61) | 8.1 (0.62) | |
Q2(15) | 9.2 (0.87) | 9.8 (0.83) | 2.7 (0.99) | 9.1 (0.87) | 9.4 (0.85) | |
Skewness | 0.78 | 0.61 | 1.67 | 0.73 | 0.99 | |
Kurtosis | 4.07 | 3.49 | 8.48 | 3.73 | 4.27 | |
JB | 5.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamh, M.; Wang, L. Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors. Econometrics 2021, 9, 41. https://doi.org/10.3390/econometrics9040041
Salamh M, Wang L. Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors. Econometrics. 2021; 9(4):41. https://doi.org/10.3390/econometrics9040041
Chicago/Turabian StyleSalamh, Mustafa, and Liqun Wang. 2021. "Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors" Econometrics 9, no. 4: 41. https://doi.org/10.3390/econometrics9040041
APA StyleSalamh, M., & Wang, L. (2021). Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors. Econometrics, 9(4), 41. https://doi.org/10.3390/econometrics9040041