Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter
Abstract
:1. Introduction
2. Realized Stochastic Volatility Models
2.1. Model
2.2. Realized Kernel Estimator
3. QML Estimation via Kalman Filter
3.1. QML Estimation
3.2. Finite Sample Property of QML Estimator
4. Empirical Analysis
4.1. Estimation Results
4.2. Forecasting Performance
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2fRSVt-A | Two-factor realized asymmetric stochastic volatility with standardized t distribution |
2SML | Two-step simulated maximum likelihood |
GARCH | Generalized autoregressive conditional heteroskedasticity |
MCMC | Markov chain Monte Carlo |
MSFE | Mean squared forecast error |
QLIKE | Quasi-likelihood |
QLR | Quasi-likelihood ratio |
QML | Quasi-maximum likelihood |
RK | Realized kernel |
RSV | Realized stochastic volatility |
RSV-A | Realized asymmetric stochastic volatility |
RSVt | Realized stochastic volatility with standardized t distribution |
RSVt-A | Realized asymmetric stochastic volatility with standardized t distribution |
S&P | Standard and Poor’s |
SML | Simulated maximum likelihood |
SV | Stochastic volatility |
Appendix A. Kalman Filtering and Smoothing
Appendix B. Two-Step SML (2SML) Estimation
Appendix B.1. Framework
Appendix B.2. Estimation for Model without Asymmetric Effect
Appendix B.3. Estimation for Model with Asymmetric Effect
References
- Abramowitz, Milton, and Irene A. Stegun. 1970. Handbook of Mathematical Functions. Mineola: Dover Publications. [Google Scholar]
- Asai, Manabu. 2008. Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models. Journal of Empirical Finance 15: 332–41. [Google Scholar] [CrossRef]
- Asai, Manabu. 2009. Bayesian analysis of stochastic volatility models with mixture-of-normal distributions. Mathematics and Computers in Simulation 79: 2579–96. [Google Scholar] [CrossRef]
- Asai, Manabu, and Michael McAleer. 2009. The structure of dynamic correlations in multivariate stochastic volatility models. Journal of Econometrics 150: 182–92. [Google Scholar] [CrossRef] [Green Version]
- Asai, Manabu, Chia-Lin Chang, and Michael McAleer. 2017. Realized stochastic volatility with general asymmetry and long memory. Journal of Econometrics 199: 202–12. [Google Scholar] [CrossRef] [Green Version]
- Asai, Manabu, Michael McAleer, and Marcelo C. Medeiros. 2012a. Asymmetry and long memory in volatility modeling. Journal of Financial Econometrics 10: 495–512. [Google Scholar] [CrossRef]
- Asai, Manabu, Michael McAleer, and Marcelo C. Medeiros. 2012b. Estimation and forecasting with noisy realized volatility. Computational Statistics & Data Analysis 56: 217–30. [Google Scholar]
- Asmussen, Søren, and Peter W. Glynn. 2007. Stochastic Simulation: Algorithms and Analysis. New York: Springer. [Google Scholar]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2002. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B 64: 253–80. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, Ole E., Peter Reinhard Hansen, Asger Lunde, and Neil Shephard. 2008. Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise. Econometrica 76: 1481–36. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, Ole E., P. Reinhard Hansen, Asger Lunde, and Neil Shephard. 2009. Realised kernels in practice: Trades and quotes. Econometrics Journal 12: C1–C32. [Google Scholar] [CrossRef]
- Bollerslev, Tim, and Hao Zhou. 2006. Volatility puzzles: A simple framework for gauging return-volatility regressions. Journal of Econometrics 131: 123–50. [Google Scholar] [CrossRef]
- Chib, S., Y. Omori, and M. Asai. 2009. Multivariate stochastic volatility. In Handbook of Financial Time Series. Edited by T. G. Andersen, R. A. Davis, J. P. Kreiss and T. Mikosch. New York: Springer, pp. 365–400. [Google Scholar]
- De Jong, Piet. 1989. Smoothing and interpolation with the state-space model. Journal of the American Statistical Association 84: 1085–88. [Google Scholar] [CrossRef]
- Dunsmuir, W. 1979. A central limit theorem for parameter estimation in stationary vector time series and its applications to models for a signal observed with noise. Annals of Statistics 7: 490–506. [Google Scholar] [CrossRef]
- Durbin, James, and Siem Jan Koopman. 2001. Time Series Analysis by State-Space Methods. Oxford: Oxford University Press. [Google Scholar]
- Engle, Robert F., and Giampiero M. Gallo. 2006. A multiple indicators model for volatility using intra-daily data. Journal of Econometrics 131: 3–27. [Google Scholar] [CrossRef] [Green Version]
- Hansen, Peter Reinhard, and Zhuo Huang. 2016. Exponential GARCH modeling with realized measures of volatility. Journal of Business & Economic Statistics 34: 269–87. [Google Scholar]
- Hansen, P. R., Z. Huang, and H. H. Shek. 2012. Realized GARCH: A complete model of returns and realized measures of volatility. Journal of Applied Econometrics 27: 877–906. [Google Scholar] [CrossRef]
- Hansen, Peter R., Asger Lunde, and James M. Nason. 2011. The model confidence set. Econometrica 79: 453–97. [Google Scholar] [CrossRef] [Green Version]
- Harvey, Andrew C., and Neil Shephard. 1996. Estimation of an asymmetric stochastic volatility model for asset returns. Journal of Business and Economic Statistics 14: 429–34. [Google Scholar]
- Harvey, Andrew, Esther Ruiz, and Neil Shephard. 1994. Multivariate stochastic variance models. Review of Economic Studies 61: 247–64. [Google Scholar] [CrossRef] [Green Version]
- Koopman, Siem Jan, and Marcel Scharth. 2013. The analysis of stochastic volatility in the presence of daily realized measures. Journal of Financial Econometrics 11: 76–115. [Google Scholar] [CrossRef]
- Liesenfeld, Roman, and Robert C. Jung. 2000. Stochastic volatility models: Conditional normality versus heavy-tailed distributions. Journal of Applied Econometrics 15: 137–60. [Google Scholar] [CrossRef]
- Patton, Andrew J. 2011. Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160: 246–56. [Google Scholar] [CrossRef] [Green Version]
- Sandmann, Gleb, and Siem Jan Koopman. 1998. Estimation of stochastic volatility models via Monte Carlo maximum likelihood. Journal of Econometrics 87: 271–301. [Google Scholar] [CrossRef]
- Shephard, Neil, and Kevin Sheppard. 2010. Realising the future: Forecasting with high frequency-based volatility (HEAVY) models. Journal of Applied Econometrics 25: 197–231. [Google Scholar] [CrossRef] [Green Version]
- Shirota, Shinichiro, Takayuki Hizu, and Yasuhiro Omori. 2014. Realized stochastic volatility with leverage and long memory. Computational Statistics & Data Analysis 76: 618–41. [Google Scholar]
- Takahashi, Makoto, Yasuhiro Omori, and Toshiaki Watanabe. 2009. Estimating stochastic volatility models using daily returns and realized volatility simultaneously. Computational Statistics & Data Analysis 53: 2404–26. [Google Scholar]
- Taniguchi, Masanobu, and Yoshihide Kakizawa. 2000. Asymptotic Theory of Statistical Inference for Time Series. New York: Springer. [Google Scholar]
- Train, Kenneth E. 2003. Discrete Choice Methods with Simulation. Cambridge: Cambridge University Press. [Google Scholar]
- Yu, Jun. 2005. On leverage in a stochastic volatility model. Journal of Econometrics 127: 165–78. [Google Scholar] [CrossRef]
Parameter | True | QML | 2SML | ||||
---|---|---|---|---|---|---|---|
Mean | Std. Dev. | RMSE | Mean | Std. Dev. | RMSE | ||
0.98 | 0.9786 | (0.0042) | [0.0045] | 0.9784 | (0.0045) | [0.0048] | |
0.05 | 0.0501 | (0.0034) | [0.0675] | 0.0501 | (0.0035) | [0.0703] | |
0.10 | 0.1002 | (0.0444) | [0.4442] | 0.0928 | (0.0290) | [0.2988] | |
0.05 | 0.0500 | (0.0027) | [0.0545] | 0.0500 | (0.0029) | [0.0572] | |
c | 0.40 | 0.3998 | (0.2021) | [0.5055] | 0.4092 | (0.2216) | [0.5545] |
−0.30 | −0.3020 | (0.0298) | [0.0994] | −0.2999 | (0.0280) | [0.0932] |
Parameter | True | QML | 2SML | ||||
---|---|---|---|---|---|---|---|
Mean | Std. Dev. | RMSE | Mean | Std. Dev. | RMSE | ||
0.98 | 0.9786 | (0.0044) | [0.0048] | 0.9787 | (0.0045) | [0.0047] | |
0.05 | 0.0500 | (0.0033) | [0.0653] | 0.0500 | (0.0033) | [0.0658] | |
0.10 | 0.0899 | (0.0645) | [0.6523] | 0.0584 | (0.4538) | [4.5541] | |
0.05 | 0.0500 | (0.0028) | [0.0564] | 0.0500 | (0.0028) | [0.0569] | |
c | 0.40 | 0.4022 | (0.2268) | [0.5671] | 0.4289 | (0.5024) | [1.2579] |
10.00 | 10.365 | (4.0983) | [0.4114] | 10.547 | (0.8452) | [0.0998] |
Data | Mean | Std. Dev. | Skewness | Kurtosis |
---|---|---|---|---|
Return | 0.0222 | 1.3138 | −0.2989 | 14.419 |
RK | 1.0535 | 8.5195 | 14.260 | 359.30 |
log(RK) | −0.8240 | 1.3799 | 0.5697 | 3.5821 |
Std. Var. | 0.1316 | 1.1649 | −0.0053 | 2.6944 |
Parameter | SV | RSV | RSV-A | RSVt | RSVt-A | 2fRSVt-A |
---|---|---|---|---|---|---|
c | −0.4605 | −0.4588 | −0.3243 | −0.3843 | −0.2946 | −0.2113 |
(0.0045) | (0.0029) | (0.0023) | (0.0033) | (0.0028) | (0.0029) | |
0.9820 | 0.9539 | 0.9583 | 0.9542 | 0.9583 | 0.9714 | |
(0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | |
0.0411 | 0.0989 | 0.0761 | 0.0982 | 0.0760 | 0.0482 | |
(0.0002) | (0.0002) | (0.0001) | (0.0002) | (0.0001) | (0.0001) | |
−0.6034 | −0.6048 | −0.5737 | ||||
(0.0007) | (0.0007) | (0.0009) | ||||
0.2188 | ||||||
(0.0015) | ||||||
0.2128 | ||||||
(0.0005) | ||||||
−0.1216 | ||||||
(0.0006) | ||||||
−0.1807 | −0.1927 | −0.2553 | −0.2207 | −0.1950 | ||
(0.0009) | (0.0009) | (0.0018) | (0.0017) | (0.0011) | ||
0.1567 | 0.1839 | 0.1572 | 0.1840 | 0.0026 | ||
(0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0005) | ||
15.0751 | 37.8286 | 102.1949 | ||||
(0.2884) | (1.9073) | (6.6828) | ||||
QLogLike | −5734.4 | −7756.8 | −7641.5 | −7756.3 | −7641.4 | −7590.8 |
1 factor | ||||||
QLR test | 230.61 | 0.9698 | 229.80 | 101.27 | ||
[0.0000] | [0.3247] | [0.0000] | [0.0000] |
MSFE | QLIKE | |||
---|---|---|---|---|
Model | ||||
SV (QML) | 5.7010 [0.000] | 9.0803 [0.000] | 1.0754 [0.000] | 1.2688 [0.000] |
RSV (QML) | 0.0816 [0.750] | 0.0817 [0.750] | −0.5990 [0.337] | −0.6043 [1.000] |
RSV-A (QML) | 0.0800 [0.967] | 0.0813 [0.750] | −0.5937 [0.337] | −0.5978 [0.337] |
RSVt (QML) | 0.0817 [0.750] | 0.0817 [0.750] | −0.5989 [0.337] | −0.6042 [0.426] |
RSVt-A (QML) | 0.0800 [0.967] | 0.0812 [0.750] | −0.5938 [0.337] | −0.5979 [0.426] |
2fRSVt-A (QML) | 0.0799 [1.000] | 0.0841 [0.750] | −0.5905 [0.337] | −0.5956 [0.337] |
RSV (2SML) | 0.0829 [0.750] | 0.0824 [0.750] | −0.5964 [0.337] | −0.6017 [0.426] |
RSV-A (2SML) | 0.0815 [0.750] | 0.0821 [0.750] | −0.5904 [0.242] | −0.5972 [0.337] |
RSVt (2SML) | 0.0829 [0.750] | 0.0824 [0.750] | −0.5964 [0.337] | −0.6017 [0.426] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asai, M. Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter. Econometrics 2023, 11, 18. https://doi.org/10.3390/econometrics11030018
Asai M. Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter. Econometrics. 2023; 11(3):18. https://doi.org/10.3390/econometrics11030018
Chicago/Turabian StyleAsai, Manabu. 2023. "Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter" Econometrics 11, no. 3: 18. https://doi.org/10.3390/econometrics11030018
APA StyleAsai, M. (2023). Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter. Econometrics, 11(3), 18. https://doi.org/10.3390/econometrics11030018