Fault Diagnosis in IoT Applications: Advances, Challenges, and Future Directions
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Hendriks, J.; Azarm, M.; Dumond, P. Structured Data Ontology for AI in Industrial Asset Condition Monitoring. J. Sens. Actuator Netw. 2024, 13, 23. https://doi.org/10.3390/jsan13020023.
- Kaliyannan, D.; Thangamuthu, M.; Pradeep, P.; Gnansekaran, S.; Rakkiyannan, J.; Pramanik, A. Tool Condition Monitoring in the Milling Process Using Deep Learning and Reinforcement Learning. J. Sens. Actuator Netw. 2024, 13, 42. https://doi.org/10.3390/jsan13040042.
- Patanè, L.; Sapuppo, F.; Napoli, G.; Xibilia, M. Predictive Models for Aggregate Available Capacity Prediction in Vehicle-to-Grid Applications. J. Sens. Actuator Netw. 2024, 13, 49. https://doi.org/10.3390/jsan13050049.
- Zero, E.; Sallak, M.; Sacile, R. Predictive Maintenance in IoT-Monitored Systems for Fault Prevention. J. Sens. Actuator Netw. 2024, 13, 57. https://doi.org/10.3390/jsan13050057.
- Kim, D.; Kareem, A.; Domingo, D.; Shin, B.; Hur, J. Advanced Data Augmentation Techniques for Enhanced Fault Diagnosis in Industrial Centrifugal Pumps. J. Sens. Actuator Netw. 2024, 13, 60. https://doi.org/10.3390/jsan13050060.
- Lee, J.; Okwuosa, C.; Shin, B.; Hur, J. A Spectral-Based Blade Fault Detection in Shot Blast Machines with XGBoost and Feature Importance. J. Sens. Actuator Netw. 2024, 13, 64. https://doi.org/10.3390/jsan13050064.
- Jammalamadaka, K.; Chokara, B.; Jammalamadaka, S.; Duvvuri, B. Making IoT Networks Highly Fault-Tolerant Through Power Fault Prediction, Isolation and Composite Networking in the Device Layer. J. Sens. Actuator Netw. 2025, 14, 24. https://doi.org/10.3390/jsan14020024.
- Janeliukstis, R.; Ratnika, L.; Gaile, L.; Rucevskis, S. Environmental Factors in Structural Health Monitoring—Analysis and Removal of Effects from Resonance Frequencies. J. Sens. Actuator Netw. 2025, 14, 33. https://doi.org/10.3390/jsan14020033.
- Ma, A.; Karande, A.; Dahlquist, N.; Ferrero, F.; Nguyen, N. Sensor Fusion Enhances Anomaly Detection in a Flood Forecasting System. J. Sens. Actuator Netw. 2025, 14, 34. https://doi.org/10.3390/jsan14020034.
- Del Priore, E.; Lampani, L. Real-Time Damage Detection and Localization on Aerospace Structures Using Graph Neural Networks. J. Sens. Actuator Netw. 2025, 14, 89. https://doi.org/10.3390/jsan14050089.
References
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 1–21. [Google Scholar] [CrossRef]
- Salih, K.O.M.; Rashid, T.A.; Radovanovic, D.; Bacanin, N. A comprehensive survey on the Internet of Things with the industrial marketplace. Sensors 2022, 22, 730. [Google Scholar] [CrossRef] [PubMed]
- Coito, T.; Firme, B.; Martins, M.S.; Vieira, S.M.; Figueiredo, J.; Sousa, J.M. Intelligent sensors for real-Time decision-making. Automation 2021, 2, 62–82. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Mahmmod, B.M.; Alwhelat, A.; Shehada, D.; Shihab, Z.I.; Mohammed, H.J.; Abdulameer, T.H.; Alsabah, M.; Fadel, M.H.; Ali, S.K.; et al. A Comprehensive Review of Sensor Technologies in IoT: Technical Aspects, Challenges, and Future Directions. Computers 2025, 14, 342. [Google Scholar] [CrossRef]
- De Vita, F.; Bruneo, D.; Das, S.K. On the use of a full stack hardware/software infrastructure for sensor data fusion and fault prediction in industry 4.0. Pattern Recognit. Lett. 2020, 138, 30–37. [Google Scholar] [CrossRef]
- Atassi, R.; Alhosban, F. Predictive Maintenance in IoT: Early Fault Detection and Failure Prediction in Industrial Equipment. J. Intell. Syst. Internet Things 2023, 9, 231–238. [Google Scholar] [CrossRef]
- Zheng, D.; Fu, X.; Liu, X.; Xing, L.; Peng, R. Modeling and Analysis of Cascading Failures in Industrial Internet of Things Considering Sensing-Control Flow and Service Community. IEEE Trans. Reliab. 2024, 74, 2723–2737. [Google Scholar] [CrossRef]
- Kumar, S.S.; Agarwal, S. Rule based complex event processing for IoT applications: Review, classification and challenges. Expert Syst. 2024, 41, e13597. [Google Scholar] [CrossRef]
- Bablu, T.A.; Rashid, M.T. Edge computing and its impact on real-time data processing for IoT-driven applications. J. Adv. Comput. Syst. 2025, 5, 26–43. [Google Scholar]
- Islam, U.; Alatawi, M.N.; Alqazzaz, A.; Alamro, S.; Shah, B.; Moreira, F. A hybrid fog-edge computing architecture for real-time health monitoring in IoMT systems with optimized latency and threat resilience. Sci. Rep. 2025, 15, 25655. [Google Scholar] [CrossRef]
- Qian, C.; Liu, X.; Ripley, C.; Qian, M.; Liang, F.; Yu, W. Digital twin—Cyber replica of physical things: Architecture, applications and future research directions. Future Internet 2022, 14, 64. [Google Scholar] [CrossRef]
- Al Zami, M.B.; Shaon, S.; Quy, V.K.; Nguyen, D.C. Digital twin in industries: A comprehensive survey. IEEE Access 2025, 13, 47291–47336. [Google Scholar] [CrossRef]
- Cicceri, G.; Tricomi, G.; Benomar, Z.; Longo, F.; Puliafito, A.; Merlino, G. Dilocc: An approach for distributed incremental learning across the computing continuum. In Proceedings of the 2021 IEEE International Conference on Smart Computing (SMARTCOMP), Irvine, CA, USA, 23–27 August 2021; pp. 113–120. [Google Scholar]
- Zhang, L.; Lei, X.; Shi, Y.; Huang, H.; Chen, C. Federated learning for iot devices with domain generalization. IEEE Internet Things J. 2023, 10, 9622–9633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicceri, G.; De Vita, F. Fault Diagnosis in IoT Applications: Advances, Challenges, and Future Directions. J. Sens. Actuator Netw. 2025, 14, 104. https://doi.org/10.3390/jsan14060104
Cicceri G, De Vita F. Fault Diagnosis in IoT Applications: Advances, Challenges, and Future Directions. Journal of Sensor and Actuator Networks. 2025; 14(6):104. https://doi.org/10.3390/jsan14060104
Chicago/Turabian StyleCicceri, Giovanni, and Fabrizio De Vita. 2025. "Fault Diagnosis in IoT Applications: Advances, Challenges, and Future Directions" Journal of Sensor and Actuator Networks 14, no. 6: 104. https://doi.org/10.3390/jsan14060104
APA StyleCicceri, G., & De Vita, F. (2025). Fault Diagnosis in IoT Applications: Advances, Challenges, and Future Directions. Journal of Sensor and Actuator Networks, 14(6), 104. https://doi.org/10.3390/jsan14060104
