Enabling LPWANs for Coexistence and Diverse IoT Applications in Smart Cities Using Lightweight Heterogenous Multihomed Network Model
Abstract
:1. Introduction
- To integrate a manageable license-free LPWAN that will coexist with 5G private and public cellular networks.
- To develop an LHM-N model for enabling the coexistence of different LPWANs.
- To provide a very cost-effective solution model in a heterogeneous dense smart city environment.
- To develop a secured, lightweight, energy-efficient packet-size forwarding engine (PSFE) algorithm.
- Proposing a model with a low error rate that improves the data throughput by a magnitude of over five times more than the conventional quadrature amplitude modulation (QAM) protocol scheme with reduced energy cost for medium- to high-bandwidth industrial IoT (IIoT) applications.
- Optimizing the Physical (PHY) layer protocol of 5G reduced capability (RedCap) IoT devices to operate comparatively with LPWAN in terms of signal-to-noise ratio (SNR) symbol energy while maintaining medium to high data throughput.
- Designing and implementing a lightweight heterogenous multihomed network (LHM-N) model for diverse smart city applications.
- Advocating and incorporating a manageable license-free LPWAN coexistence with 5G private and public cellular networks to provide a very cost-effective solution model in a heterogeneous dense smart city environment.
- Proposing a packet-size forwarding engine (PSFE) algorithm for secured lightweight energy-efficient and minimized errors in packet forwarding.
- Integrating a 5G reduced capability (RedCap) IoT device in the multihomed LPWAN solution model, thereby supporting high-bandwidth smart cities applications, such as industrial wireless sensors (smart manufacturing/smart factory), video surveillance, etc.
2. Related Works
3. Architecture and Design Methodology of the LHM-N Model
3.1. Lightweight Heterogenous Multihomed Network (LHM-N) Architecture
- (i)
- The usual cellular network topology, in which EDs communicate directly with gateway/base station (BS), then from BS to network server/entity, and then to the IoT cloud.
- (ii)
- The communication of EDs with the gateway, then from the gateway directly to the cloud, and then to the server.
3.2. Design Methodology of the LHM-N Model
3.2.1. Overview of Technologies Adopted
- 5G NR U: specifically, the 1.9 GHz band advocated by the Multifire Alliance
- Private 5G network
- 5G RedCap IoT
- RX-TCM
3.2.2. Design Methodology
- (i)
- The payload must attain a general minimum threshold size denoted as or a block of general minimum threshold packet length.
- (ii)
- The specific port address must be known, which is denoted as .
- (iii)
- The block of the originating packet length must move to the block of the packet forwarding state, denoted as .
Algorithm 1: Packet-size forwarding engine (PSFE) algorithm. |
1. Initializes→ ; ; % Block of originating, general minimum threshold, and forwarding packet length, respectively; 2. For <= ; 3. Move packet block to forwarding state; 4. if >= ; 5. Determine interface port address; 6. if < ; 7. re-route or find appropriate interface; 8. else if = && >= && <= ; 9. Forward to RedCap; 10. else if = && >= && <= ; 11. Forward to NB2-IoT; 12. else if = && >= && <= 13. Forward to LoRaWAN; 14. else if = && >= && <= 15. Forward to Sigfox; 16. While < ; 17. No packet forwarding; 18. If ; %increment by 1 by additional packet length. 19. Move to appropriate interface packet threshold. 20. else; 21. Wait for attainment to any interface packet threshold before forwarding; 22. While >= ; 23.Forward incremented to appropriate interface; 24. else; 25. Move to initialize then to state 26. end if; 27.end; end; end; end; end; |
- : Block of originating packet length
- : Block of general minimum packet threshold
- : Block of packet forwarding state
- : Block of minimum packet threshold for RedCap interface
- : Port address
- : RedCap port address
- : Block of minimum packet threshold for Sigfox interface
- Minimized packet-error forwarding
- Energy-efficient packet forwarding
- Lightweight and less overhead packet forwarding
- Reliable network packet forwarding
- Mitigation of session hijacking and injection attacks
4. Implementation of the LHM-N Model
4.1. Implementation Overview
4.2. The TCM Encoder Implementation
4.3. Throughput
4.4. Simulation Experimental Setup
- (1)
- Evaluation with respect to BER and SNR over a Rayleigh fading channel.
- (2)
- Evaluation with respect to throughput and SNR over a Rayleigh fading channel.
- (3)
- Evaluation with respect to bit error rate (BER) and latency over a Rayleigh fading channel.
5. Result and Analysis
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qadir, Q.M.; Rashid, T.A.; Al-Salihi, N.K.; Ismael, B.; Kist, A.A.; Zhang, Z. Low power wide area networks: A survey of enabling technologies, applications and interoperability needs. IEEE Access 2018, 28, 77454–77473. [Google Scholar] [CrossRef]
- Ismail, N.L.; Kassim, M.; Ismail, M.; Mohamad, R. A review of low power wide area technology in the licensed and unlicensed spectrum for IoT use cases. Bull. Electr. Eng. Inform. 2018, 7, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Boulogeorgos, A.A.A.; Diamantoulakis, P.D.; Karagiannidis, G.K. Low Power Wide Area Networks (LPWANs) for Internet of Things (IoT) Applications: Research Challenges and Future Trends. arXiv 2016, arXiv:1611.07449. [Google Scholar]
- Smail, B.; Sanchez, D.T.; Peconcillo, L.B., Jr.; De Vera, J.V.; Horteza, A.D.; Jawarneh, M. Investigating different applications of Internet of Things towards identification of vulnerabilities, attacks and threats. Int. J. Next-Gener. Comput. 2022, 13. [Google Scholar] [CrossRef]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.qualcomm.com/news/onq/2022/03/just-3gpp-completes-5g-nr-release-17 (accessed on 25 May 2022).
- Moloudi, S.; Mozaffari, M.; Veedu, S.N.; Kittichokechai, K.; Wang, Y.P.; Bergman, J.; Höglund, A. Coverage evaluation for 5G reduced capability new radio (NR-RedCap). IEEE Access 2021, 9, 45055–45067. [Google Scholar] [CrossRef]
- De Poorter, E.; Hoebeke, J.; Strobbe, M.; Moerman, I.; Latré, S.; Weyn, M.; Lannoo, B.; Famaey, J. Sub-GHz LPWAN network coexistence, management, and virtualization: An overview and open research challenges. Wirel. Pers. Commun. 2017, 95, 187–213. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.S.; Neto, E.P.; Oliveira, H.; Rosário, D.; Cerqueira, E.; Both, C.; Zeadally, S.; Neto, A.V. A survey on long-range wide-area network technology optimizations. IEEE Access 2021, 9, 106079–106106. [Google Scholar] [CrossRef]
- Fadeyi, J.; Markus, E.D.; Abu-Mahfouz, A.M. Technology coexistence in LPWANs-A comparative analysis for spectrum optimization. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 2244–2249. [Google Scholar]
- Hattab, G.; Visotsky, E.; Cudak, M.; Ghosh, A. Uplink Interference Mitigation Techniques for Coexistence of 5G mmWave Users with Incumbents at 70 and 80 GHz. In Proceedings of the IEEE Global Communication Conference, Singapore, 1–2 November 2017. [Google Scholar]
- Sandeep, P.A. Comparative Analysis of Optimization Techniques in Cognitive Radio (QoS). Int. J. Eng. Adv. Technol. (IJEAT) 2017, 6, 2249–8958. [Google Scholar]
- Onumanyi, A.J.; Abu-Mahfouz, A.M.; Hancke, G.P. Low power wide area network, cognitive radio and the Internet of Things: Potentials for integration. Sensors 2020, 20, 6837. [Google Scholar] [CrossRef]
- Ogbodo, E.U.; Dorrell, D.G.; Abu-Mahfouz, A.M. Improved resource allocation and network connectivity in CRSN-based smart grid for efficient grid automation. In Proceedings of the 2019 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 6 March 2019; pp. 1–6. [Google Scholar]
- Nurelmadina, N.; Hasan, M.K.; Memon, I.; Saeed, R.A.; Zainol Ariffin, K.A.; Ali, E.S.; Mokhtar, R.A.; Islam, S.; Hossain, E.; Hassan, M.A. A systematic review on cognitive radio in low power wide area network for industrial IoT applications. Sustainability 2021, 13, 338. [Google Scholar] [CrossRef]
- Ogbodo, E.U.; Dorrell, D.G.; Abu-Mahfouz, A.M. Radio resource allocation improvements in a cognitive radio sensor network for smart grid: Investigative study and solutions. Int. J. Sens. Wirel. Commun. Control 2021, 11, 666–688. [Google Scholar] [CrossRef]
- Hayashi, H.; Ueda, T. Standardization of Wireless Coexistence in Industrial Automation: Application for Hydrogen Station. SICE J. Control. Meas. Syst. Integr. 2016, 9, 44–49. [Google Scholar] [CrossRef]
- Chiwewe, T.M.; Mbuya, C.F.; Hancke, G.P. Using cognitive radio for interference-resistant industrial wireless sensor networks: An overview. IEEE Trans. Ind. Inform. 2015, 11, 1466–1481. [Google Scholar] [CrossRef] [Green Version]
- Javed, Q.; Prakash, R. Chameleon: A framework for coexistence of wireless technologies in an unlicensed band. Wirel. Pers. Commun. 2014, 7, 777–808. [Google Scholar] [CrossRef]
- Bembe, M.; Abu-Mahfouz, A.; Masonta, M.; Ngqondi, T. A survey on low-power wide area networks for IoT applications. Telecommun. Syst. 2019, 71, 249–274. [Google Scholar] [CrossRef]
- Ogbodo, E.U.; Dorrell, D.G.; Abu-Mahfouz, A.M. Performance analysis of correlated multi-channels in cognitive radio sensor network-based smart grid. In Proceedings of the 2017 IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 1599–1604. [Google Scholar]
- Masoudi, M.; Azari, A.; Yavuz, E.A.; Cavdar, C. Grant-free radio access IoT networks: Scalability analysis in coexistence scenarios. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar]
- Mikhaylov, K.; Stusek, M.; Masek, P.; Petrov, V.; Petajajarvi, J.; Andreev, S.; Pokorny, J.; Hosek, J.; Pouttu, A.; Koucheryavy, Y. Multi-RAT LPWAN in smart cities: Trial of LoRaWAN and NB-IoT integration. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Ogbodo, E.U.; Dorrell, D.G.; Abu-Mahfouz, A.M. Performance measurements of communication access technologies and improved cognitive radio model for smart grid communication. Trans. Emerg. Telecommun. Technol. 2019, 30, e3653. [Google Scholar] [CrossRef]
- Almeida, R.; Oliveira, R.; Sousa, D.; Luis, M.; Senna, C.; Sargento, S. A multi-technology opportunistic platform for environmental data gathering on smart cities. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar]
- Navarro-Ortiz, J.; Sendra, S.; Ameigeiras, P.; Lopez-Soler, J.M. Integration of LoRaWAN and 4G/5G for the Industrial Internet of Things. IEEE Commun. Mag. 2018, 56, 60–67. [Google Scholar] [CrossRef]
- Kim, D.H.; Lim, J.Y.; Kim, J.D. Low-power, long-range, high-data transmission using Wi-Fi and LoRa. In Proceedings of the 2016 6th International Conference on IT Convergence and Security (ICITCS), Bangkok, Thailand, 23–26 September 2016; pp. 1–3. [Google Scholar]
- Haghighi, M.; Qin, Z.; Carboni, D.; Adeel, U.; Shi, F.; McCann, J.A. Game theoretic and auction-based algorithms towards opportunistic communications in LPWA LoRa networks. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 735–740. [Google Scholar]
- Afolabi, I.; Taleb, T.; Samdanis, K.; Ksentini, A.; Flinck, H. Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 2018, 20, 2429–2453. [Google Scholar] [CrossRef]
- Dawaliby, S.; Bradai, A.; Pousset, Y. Distributed network slicing in large scale IoT based on coalitional multi-game theory. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1567–1580. [Google Scholar] [CrossRef]
- Huawei Technologies Co., Ltd. Huawei-up-Comsoc 5G Training Workshop; University of Pretoria: Pretoria, South Africa, 2019. [Google Scholar]
- Al Homssi, B.; Dakic, K.; Maselli, S.; Wolf, H.K.; Eepan, S.; Al-Hourani, A. IoT network design using open-source LoRa coverage emulator. IEEE Access 2021, 9, 53636–53646. [Google Scholar] [CrossRef]
- Robyns, P.; Quax, P.; Lamotte, W.; Thenaers, W. A Multi-Channel Software Decoder for the LoRa Modulation Scheme. In Proceedings of the IoTBDS 2018, Madeira, Portugal, 19–21 March 2018; pp. 2244–2249. [Google Scholar]
- Valck, P.D.; Moerman, I.; Croce, D.; Giuliano, F.; Tinnirello, I.; Garlisi, D.; Poorter, E.D.; Jooris, B. Exploiting programmable architectures for WiFi/ZigBee inter-technology cooperation. Eurasip J. Wirel. Commun. Netw. 2014, 2014, 212. [Google Scholar] [CrossRef]
- Semasinghe, P.; Maghsudi, S.; Hossain, E. Game theoretic mechanisms for resource management in massive wireless IoT systems. IEEE Commun. Mag. 2017, 55, 121–127. [Google Scholar] [CrossRef]
- Kufakunesu, R.; Hancke, G.P.; Abu-Mahfouz, A.M. A survey on adaptive data rate optimization in lorawan: Recent solutions and major challenges. Sensors 2020, 20, 5044. [Google Scholar] [CrossRef]
- Sallum, E.; Pereira, N.; Alves, M.; Santos, M. Improving quality-of-service in LoRa low-power wide-area networks through optimized radio resource management. J. Sens. Actuator Netw. 2020, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Iborra, R.; Sanchez-Gomez, J.; Ballesta-Viñas, J.; Cano, M.D.; Skarmeta, A.F. Performance evaluation of LoRa considering scenario conditions. Sensors 2018, 18, 772. [Google Scholar] [CrossRef] [Green Version]
- Al-Kashoash, H.A.; Kemp, A.H. Comparison of 6LoWPAN and LPWAN for the Internet of Things. Aust. J. Electr. Electron. Eng. 2016, 13, 268–274. [Google Scholar] [CrossRef]
- Available online: https://www.businesswire.com/news/home/20210622005377/en/MulteFire-Alliance-MFA-Simplifies-Path-to-5G-Private-Network-Deployment-for-Enterprise (accessed on 20 June 2022).
- Multefire Release 1.1 White Paper. Available online: https://www.mfa-tech.org/2021/06/22/mfa-simplifies-path-to-5g-private-network-deployment-for-enterprise/ (accessed on 15 May 2022).
- Ogbodo, E.U.; Abu-Mahfouz, A.M.; Kurien, A.M. A Survey on 5G and LPWAN-IoT for Improved Smart Cities and Remote Area Applications: From the Aspect of Architecture and Security. Sensors 2022, 22, 6313. [Google Scholar] [CrossRef]
- Ungerboeck, G. Trellis-coded modulation with redundant signal sets Part I: Introduction. IEEE Commun. Mag. 1987, 25, 5–11. [Google Scholar] [CrossRef]
- Berrou, C.; Glavieux, A. Near optimum error correcting coding and decoding: Turbo-codes. IEEE Trans. Commun. 1996, 44, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Larouche, J.-B. Using Trellis Coded Modulation Techniques to Decrease Bit Error Rate Without Bandwidth Compromise. White Paper, Nutaq. Available online: https://www.nutaq.com/wp-content/uploads/2017/12/Using-TCM-Techniques-to-Decrease-BER-Without-Bandwidth-Compromise.pdf (accessed on 15 May 2022).
- Wawale, S.G.; Jawarneh, M.; Kumar, P.N.; Felix, T.; Bhola, J.; Raj, R.; Eswaran, S.; Boddu, R. Minimizing the Error Gap in Smart Framing by Forecasting Production and Demand Using ARIMA Model. J. Food Qual. 2022, 2022, 1139440. [Google Scholar] [CrossRef]
- Gao, H.; Kareem, A.; Jawarneh, M.; Ofori, I.; Raffik, R.; Kishore, K.H. Metaheuristics Based Modeling and Simulation Analysis of New Integrated Mechanized Operation Solution and Position Servo System. Math. Probl. Eng. 2022, 2022, 1466775. [Google Scholar] [CrossRef]
Trellis State | Asymptotic Gain (dB) for 16-QAM | |||||
---|---|---|---|---|---|---|
4 | 5 | 2 | - | - | 4 | 4.4 |
8 | 11 | 2 | 4 | - | 5 | 5.3 |
16 | 23 | 4 | 16 | - | 6 | 6.1 |
32 | 41 | 6 | 10 | - | 6 | 6.1 |
64 | 101 | 16 | 64 | - | 7 | 6.8 |
Parameters | Value |
---|---|
Simulation runs | 100,000 |
Channel fading | Rayleigh |
Modulation size | 16-QAM |
SNR | 0:5:50 (dB) |
Channel bandwidth (CB) | 20 MHz |
Tx | 1 |
Rx | 2 |
Encoder | TCM |
Frequency | 1.9 GHz |
Trellis state | 8 |
Trellis structure | Poly2trellis |
Polynomial generator (gi) | g0, g1 |
Device type | 5G RedCap |
Combiner type | MRC |
Simulation runtime for overhead computation | 100 s |
Total packet length | 1642 Byte |
Minimum payload | 64 Byte |
Maximum payload | 1500 Byte |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogbodo, E.U.; Abu-Mahfouz, A.M.; Kurien, A.M. Enabling LPWANs for Coexistence and Diverse IoT Applications in Smart Cities Using Lightweight Heterogenous Multihomed Network Model. J. Sens. Actuator Netw. 2022, 11, 87. https://doi.org/10.3390/jsan11040087
Ogbodo EU, Abu-Mahfouz AM, Kurien AM. Enabling LPWANs for Coexistence and Diverse IoT Applications in Smart Cities Using Lightweight Heterogenous Multihomed Network Model. Journal of Sensor and Actuator Networks. 2022; 11(4):87. https://doi.org/10.3390/jsan11040087
Chicago/Turabian StyleOgbodo, Emmanuel Utochukwu, Adnan M. Abu-Mahfouz, and Anish M. Kurien. 2022. "Enabling LPWANs for Coexistence and Diverse IoT Applications in Smart Cities Using Lightweight Heterogenous Multihomed Network Model" Journal of Sensor and Actuator Networks 11, no. 4: 87. https://doi.org/10.3390/jsan11040087
APA StyleOgbodo, E. U., Abu-Mahfouz, A. M., & Kurien, A. M. (2022). Enabling LPWANs for Coexistence and Diverse IoT Applications in Smart Cities Using Lightweight Heterogenous Multihomed Network Model. Journal of Sensor and Actuator Networks, 11(4), 87. https://doi.org/10.3390/jsan11040087