Fog Computing, Cloud Computing and IoT Environment: Advanced Broker Management System
Abstract
:1. Introduction
1.1. Cloud Computing
1.2. Internet of Things (IoT)
1.3. Fog Computing
- The most time-sensitive data: the fog node analyzes these types of data near the things (e.g., sensor systems) that produce the data.
- Data that can be delayed for minutes or seconds for response or actions: these data are directed to an aggregation node for analysis, evaluation, and action.
- Data that are less time-sensitive to delay are forwarded to the cloud for archiving and historical analysis, long-term storage, and Big Data analytics.
- Proposal of a new Dynamic Congestion Management Brokering (DCMB) system which is essentially adopted from Cisco queuing models. The DCMB can handle urgent requests (jobs) from the fog layer.
- Additionally, this system can manage the enormous volume of cloud requesters while taking into account the QoS requirements of the customers as enforced by the SLA.
- Finally, the DCMB system is used to provide cloud providers with jobs and monitor their progress.
2. Literature Review
3. System Model
3.1. Part 1: The Cloud Users
3.2. Part 2: The Broker of Cloud Service
3.3. Part 3: The Broker of Fog Service
3.4. Part 4: The Cloud Service Providers
4. Experiments and Results
4.1. Requirements
4.2. Simulation Details
4.3. Simulation Details
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alouffi, B.; Hasnain, M.; Alharbi, A.; Alosaimi, W.; Alyami, H.; Ayaz, M. A Systematic Literature Review on Cloud Computing Security: Threats and Mitigation Strategies. IEEE Access 2021, 9, 57792–57807. [Google Scholar] [CrossRef]
- Alwada’n, T.; Al-Zitawi, O.; Khawaldeh, S.; Almasarweh, M. Privacy and Control in Mobile Cloud Systems. Int. J. Comput. Appl. 2015, 113, 12–15. [Google Scholar]
- Stergiou, C.; Psannis, K.E.; Gupta, B.B.; Ishibashi, Y. Security, privacy & efficiency of sustainable Cloud Computing for Big Data & IoT. Sustain. Comput. Inform. Syst. 2018, 19, 174–184. [Google Scholar] [CrossRef]
- Mbarek, N. Service Level Management in the Cloud. Serv. Level Manag. Emerg. Environ. 2021, 20, 45–81. [Google Scholar]
- Washizaki, H.; Xia, T.; Kamata, N.; Fukazawa, Y.; Kanuka, H.; Kato, T.; Yoshino, M.; Okubo, T.; Ogata, S.; Kaiya, H.; et al. Systematic Literature Review of Security Pattern Research. Information 2021, 12, 36. [Google Scholar] [CrossRef]
- Nayyar, A. Handbook of Cloud Computing: Basic to Advance Research on the Concepts and Design of Cloud Computing; BPB Publications: Noida, India, 2019. [Google Scholar]
- Butpheng, C.; Yeh, K.H.; Xiong, H. Security and privacy in IoT-cloud-based e-health systems—A comprehensive re-view. Symmetry 2020, 12, 1191. [Google Scholar] [CrossRef]
- De Sousa, N.F.; Perez, D.A.; Rosa, R.V.; Santos, M.A.; Rothenberg, C.E. Network service orchestration: A survey. Comput. Commun. 2019, 142, 69–94. [Google Scholar] [CrossRef] [Green Version]
- Alwada’n, T. Mobility in Cloud Systems. Int. J. Comput. Trends Technol. (IJCTT) 2015, 11, 202–205. [Google Scholar] [CrossRef]
- Bello, S.A.; Oyedele, L.O.; Akinade, O.O.; Bilal, M.; Delgado, J.M.D.; Akanbi, L.A.; Ajayi, A.O.; Owolabi, H.A. Cloud computing in construction industry: Use cases, benefits and challenges. Autom. Constr. 2021, 122, 103441. [Google Scholar] [CrossRef]
- Services, A.W. Aws Economics Center. May 2012. Available online: https://aws.amazon.com/economics/ (accessed on 28 October 2022).
- Sanger, A.K.; Johari, R. Survey of Security Issues in Cloud. In Proceedings of the 2022 International Mobile and Embedded Technology Conference (MECON), Noida, India, 10 March 2022; pp. 490–493. [Google Scholar]
- The Office of the Privacy Commissioner of Canada, O.: Introduction to Cloud Computing. October 2011. Available online: https://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.asp (accessed on 28 October 2022).
- Chawla, I. Cloud Computing Environment: A Review. J. Int. J. Comput. Technol. 2018, 17. [Google Scholar] [CrossRef]
- Jamsa, K. Cloud Computing; Jones & Bartlett Learning Publisher: Burlington, VT, USA, 2022; ISBN 9781284233971. [Google Scholar]
- Alwada’n, T.; Al-Zitawi, O.; Atoum, J. Cloud Computing: Privacy, Mobility and Resources Utilization. Int. J. Comput. Trends Technol. (IJCTT) 2016, 41, 29–36. [Google Scholar] [CrossRef]
- Mohammad, H.; Zaman, K.R. A Systematic Review on Cloud Computing. Int. J. Comput. Sci. Eng. 2018, 6, 632–639. [Google Scholar]
- Alwada’n, T. Cloud Computing Topology: Towards Enhancing the Performance. Int. J. Comput. Sci. Inf. Secur. 2016, 14, 654–658. [Google Scholar]
- Alwada’n, T. Cloud Computing and Multi-Agent System: Monitoring and Services. J. Theor. Appl. Inf. Technol. 2018, 96, 2435–2444. [Google Scholar]
- Ahluwalia, J.K.; Mouradian, C.; Alam, M.N.; Glitho, R. A Cloud Infrastructure as a Service for an Efficient Usage of Sensing and Actuation Capabilities in Internet of Things. In Proceedings of the NOMS 2022–2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–6. [Google Scholar]
- Quattra Inc. Quattra Cloud Vision and Frame Work Value. March 2017, pp. 1–5. Available online: https://silo.tips/download/quattra-s-cloud-vision-framework-value (accessed on 8 December 2022).
- Yasrab, R. Platform-as-a-Service (PaaS): The Next Hype of Cloud Computing. arXiv 2018, arXiv:1804.10811. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutorials 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Nalin, M.; Baroni, I.; Mazzara, M. A Holistic Infrastructure to Support Elderlies’ Independent Living. In Encyclopedia of E-Health and Telemedicine; IGI Global: Hershey, PA, USA, 2016. [Google Scholar]
- Salikhov, D.; Khanda, K.; Gusmanov, K.; Mazzara, M.; Mavridis, N. Microservice-based IoT for Smart Buildings. In Proceedings of the 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), Taipei, Taiwan, 27–29 March 2017. [Google Scholar]
- Salikhov, D.; Khanda, K.; Gusmanov, K.; Mazzara, M.; Mavridis, N. Jolie Good Buildings: Internet of things for smart building infrastructure supporting concurrent apps utilizing distributed microservices. In Proceedings of the 1st International Conference on Convergent Cognitive Information Technologies, Moscow, Russia, 25–26 November 2016; pp. 48–53. [Google Scholar]
- De Donno, M.; Giaretta, A.; Dragoni, N.; Bucchiarone, A.; Mazzara, M. Cyber-Storms Come from Clouds: Security of Cloud Computing in the IoT Era. Futur. Internet 2019, 11, 127. [Google Scholar] [CrossRef] [Green Version]
- Yashodhan, A.; Sridhar, K. A Device-Independent Efficient Actigraphy Signal-Encoding System for Applications in Monitoring Daily Human Activities and Health. Sensors 2018, 18, 2966. [Google Scholar] [CrossRef] [Green Version]
- Atlam, H.F.; Alenezi, A.; Alharthi, A.; Walters, R.; Wills, G. Integration of cloud computing with Internet of things: Challenges and open issues. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; pp. 670–675. [Google Scholar]
- Ai, Y.; Peng, M.; Zhang, K. Edge cloud computing technologies for Internet of things: A primer. Digit. Commun. Netw. 2017; in press. [Google Scholar]
- Atlam, H.F.; Walters, R.J.; Wills, G.B. Fog Computing and the Internet of Things: A Review. Big Data Cogn. Comput. 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2020, 22, 869–904. [Google Scholar] [CrossRef] [Green Version]
- Peter, N. FOG Computing and Its Real Time Applications. Int. J. Emerg. Technol. Adv. Eng. 2015, 5, 266–269. [Google Scholar]
- Wen, Z.; Yang, R.; Garraghan, P.; Lin, T.; Xu, J.; Rovatsos, M. Fog Orchestration for Internet of Things Services. IEEE Internet Comput. 2017, 21, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y. FA2ST: Fog as a Service Technology. In Proceedings of the 2017 IEEE 41st IEEE Annual Computer Software and Applications Conference, Turin, Italy, 4–8 July 2017; p. 708. [Google Scholar]
- Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016, 3, 854–864. [Google Scholar] [CrossRef]
- Cisco, Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are. April 2015. Available online: https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf (accessed on 14 July 2020).
- Al-Ayyoub, M.; Jararweh, Y.; Daraghmeh, M.; Althebyan, Q. Multi-agent based dynamic resource provisioning and monitoring for cloud computing systems infrastructure. Clust. Comput. 2015, 18, 919–932. [Google Scholar] [CrossRef]
- Goudarzi, M.; Ilager, S.; Buyya, R. Cloud Computing and Internet of Things: Recent Trends and Directions. In New Frontiers in Cloud Computing and Internet of Things; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–29. ISBN 978-3-031-05528-7. [Google Scholar]
- Dastjerdi, A.V.; Gupta, H.; Calheiros, R.N.; Ghosh, S.K.; Buyya, R. Fog Computing: Principles, architectures, and applications. In Internet of Things: Principles and Paradigms; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2016; pp. 61–75. [Google Scholar]
- Suárez-Albela, M.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. A practical evaluation of a high-security ener-gy-efficient gateway for IoT fog computing applications. Sensors 2017, 17, 1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; Tan, J.; Huang, J.; Chen, G.; Wang, S.; Jin, X.; Zeng, P.; Khan, M.K.; Das, S.K. Edge-Computing-Driven Internet of Things: A Survey. ACM Comput. Surv. 2022; Just Accepted. [Google Scholar] [CrossRef]
- Agarwal, K.; Singh, S. A Survey on Infrastructure Platform Issues in Cloud Computing. Int. J. Sci. Eng. Res. 2012, 3. [Google Scholar]
- Alwada’n, T.; Al-Tamimi, A.; Mohammad, A.H.; Salem, M.; Muhammad, Y. Dynamic Congestion Management System for Cloud Service Broker. Int. J. Electr. Comput. Eng. (IJECE). Febr. 2023, 13, 872–883. [Google Scholar] [CrossRef]
- Bellavista, P.; Berrocal, J.; Corradi, A.; Das, S.K.; Foschini, L.; Zanni, A. A survey on fog computing for the internet of things. Pervasive Mob. Comput. 2019, 52, 71–99. [Google Scholar] [CrossRef]
- Pérez, J.; Díaz, J.; Berrocal, J.; López-Viana, R.; González-Prieto, Á. Edge computing. Computing 2022, 104, 2711–2747. [Google Scholar] [CrossRef]
- Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [Google Scholar] [CrossRef]
- Kubiak, K.; Dec, G.; Stadnicka, D. Possible Applications of Edge Computing in the Manufacturing Industry—Systematic Literature Review. Sensors 2022, 22, 2445. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, E.I.; Theodosiou, T.; Margetis, G.; Dimitriou, N.; Charalampous, P.; Tzovaras, D.; Samakovlis, I. Short Survey of Artificial Intelligent Technologies for Defect Detection in Manufacturing. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Singh, H. Implementing Cisco Networking Solutions: Configure, Implement, and Manage Complex Network Designs; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Tuli, S.; Mahmud, R.; Tuli, S.; Buyya, R. FogBus: A Blockchain-based Lightweight Framework for Edge and Fog Computing. J. Syst. Softw. 2019, 154, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, R.; Buyya, R. Modeling and Simulation of Fog and Edge Computing Environments Using iFogSim Toolkit. In Fog and Edge Computing: Principles and Paradigms; Wiley: New York, NY, USA, 2019; pp. 433–465. [Google Scholar] [CrossRef]
- Mahmud, R.; Pallewatta, S.; Goudarzi, M.; Buyya, R. iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. J. Syst. Softw. 2022, 190, 111351. [Google Scholar] [CrossRef]
Attribute | Size/Quantity |
---|---|
Quantity | 3 |
VM types | 4 |
Computer’s raw CPU processing power | 1000 |
No. PEs | 1 |
RAM space | 512 |
Frequency range | 100 Mbit/s |
Storage size | 5 GB |
Attribute | Size/Quantity |
---|---|
No. hosts | 1 |
VM types | 4 |
Computer’s raw CPU processing power | 1000 |
No. PEs | 2 |
RAM space | 2048 |
Frequency | 1 Gbit/s |
Storage size | 10 GB |
Attribute | Size/Quantity |
---|---|
No. cloudlets | 400 |
Job length | 1000 |
File volume | 300 |
Output volume | 300 |
Number of PEs | 1 |
Attribute | Size/Quantity |
---|---|
Level | 0 |
Uplink bandwidth | 1000 |
Downlink bandwidth | 1200 |
MIPS of CPU | 5000 |
RAM capacity | 45,000 |
Rata/MIPS | 1000 |
Attribute | Size/Quantity |
---|---|
Type | EEG |
Distribution type | Normal |
Mean | 10 |
StdDev | 5 |
Attribute | Size/Quantity |
---|---|
Distribution type | Uniform |
Min | 20 |
Max | 100 |
Distribution type | Uniform |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Masarweh, M.; Alwada’n, T.; Afandi, W. Fog Computing, Cloud Computing and IoT Environment: Advanced Broker Management System. J. Sens. Actuator Netw. 2022, 11, 84. https://doi.org/10.3390/jsan11040084
Al Masarweh M, Alwada’n T, Afandi W. Fog Computing, Cloud Computing and IoT Environment: Advanced Broker Management System. Journal of Sensor and Actuator Networks. 2022; 11(4):84. https://doi.org/10.3390/jsan11040084
Chicago/Turabian StyleAl Masarweh, Mohammed, Tariq Alwada’n, and Waleed Afandi. 2022. "Fog Computing, Cloud Computing and IoT Environment: Advanced Broker Management System" Journal of Sensor and Actuator Networks 11, no. 4: 84. https://doi.org/10.3390/jsan11040084
APA StyleAl Masarweh, M., Alwada’n, T., & Afandi, W. (2022). Fog Computing, Cloud Computing and IoT Environment: Advanced Broker Management System. Journal of Sensor and Actuator Networks, 11(4), 84. https://doi.org/10.3390/jsan11040084