Mobile Edge Computing in Space-Air-Ground Integrated Networks: Architectures, Key Technologies and Challenges
Abstract
:1. Introduction
- Considering the complex and varying application scenarios of the SAGIN, this paper presents a three-layer network architecture and service framework, and analyzes its advantages in solving the following three challenges: inaccessibility, optimization difficulty, and incompleteness.
- To the best of our knowledge, we are the first to classify and summarize the MEC technology of SAGIN from the aspects of MEC deployment, network resources, optimization objectives and decision algorithms.
2. Background
2.1. Related Networks
2.1.1. Terrestrial Mobile Network
2.1.2. Air-Ground Network
2.1.3. Space-Ground Network
- Multi-layer constellation networks. The space-based networks that have been built so far are all single-layer constellations. However, multi-layer constellation networks have more robust performance than single-layer constellation networks in terms of all-around performance, network anti-blocking, and survivability.
- Space-based network expands to multi-function. With the development of technologies such as communication and satellite payloads, the functions of space-based networks will be extended from the original single communication function to the multi-functional expansion of communication, navigation enhancement, earth observation, and IoT.
- Deep integration of space and ground. It includes the integration of heterogeneous networks in space and the ground and the smoother inter-satellite link connection between constellations.
2.2. Mobile Edge Computing
3. MEC in SAGIN
3.1. Network Architecture
3.2. Resource Service Framework
3.3. Characteristics
3.4. Neural Network Progress
3.5. Advantages
- Solving the problem of “Ground edge service inaccessible”
- 2.
- Solving the problem of “Single service pattern unoptimizable”
- For users with high cell users’ density and saturated ground edge services, SAGIN edge servers will replace remote cloud computing centers to provide services with low latency, which is suitable for delay-sensitive service types;
- When local resources are limited or communication is blocked, space-based or space-based edge services are used to optimize user quality of service.
- 3.
- Solving the problem of “System optimization objective incompleteness”.
4. Key Technologies
4.1. Deployment of MEC
4.1.1. Single MEC
4.1.2. Double MEC
4.1.3. Multi MEC
4.1.4. Offloading Schemes
4.2. Network Resources Services
4.2.1. Computation Offloading
4.2.2. Communication Traffic Offloading
4.2.3. Cache Resource Distribution
4.2.4. Joint Resource Service
4.3. Edge Intelligence
4.3.1. AI for Edge
4.3.2. AI on Edge
4.4. Optimization Objective
4.4.1. Minimized Energy Consumption
4.4.2. Minimizing the Delay
4.4.3. Multi-Dimensional Joint Optimization
4.4.4. Specific Optimization Objectives
4.5. Key Algorithms
4.5.1. Reinforcement Learning
4.5.2. Mathematical Programming
4.5.3. Game Theory
4.5.4. Other Algorithms
5. Challenges
5.1. High Dynamicity
5.2. Random Access Requirements
5.3. Task Relay and Migration
5.4. Network Security and Reliability
6. Future Research Directions
6.1. Wider Range of Emerging Businesses
6.2. Space-Air Information Service
6.3. Better Guaranteed QoS of Users
6.4. Satellite Networks Assistance
6.5. Higher Security
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mitra, R.N.; Agrawal, D.P. 5G mobile technology: A survey. Ict. Express 2015, 1, 132–137. [Google Scholar] [CrossRef]
- Panwar, N.; Sharma, S.; Singh, A.K. A survey on 5G: The next generation of mobile communication. Phys. Commun. 2016, 18, 64–84. [Google Scholar] [CrossRef]
- Cisco Annual Internet Report (2018–2023) White Paper[EB/OL]. 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 1 July 2022).
- Duan, T.; Dinavahi, V. Starlink space network-enhanced cyber–physical power system. IEEE Trans. Smart Grid. 2021, 12, 3673–3675. [Google Scholar] [CrossRef]
- Chien, W.; Lai, C.; Hossain, M.S.; Muhammad, G. Heterogeneous space and terrestrial integrated networks for IoT: Architecture and challenges. IEEE Netw. 2019, 33, 15–21. [Google Scholar] [CrossRef]
- Space-Enabled 5G links Japan and Europe[EB/OL]. 2022. Available online: https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Space-enabled_5G_links_Japan_and_Europe (accessed on 1 July 2022).
- Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [Google Scholar] [CrossRef]
- Elgendy, I.A.; Zhang, W.; Zeng, Y.; He, H.; Tian, Y.; Yang, Y. Efficient and secure multi-user multi-task computation offloading for mobile-edge computing in mobile IoT networks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2410–2422. [Google Scholar] [CrossRef]
- Samdanis, K.; Taleb, T. The road beyond 5G: A vision and insight of the key technologies. IEEE Netw. 2020, 34, 135–141. [Google Scholar] [CrossRef]
- Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet Things J. 2021, 8, 11891–11915. [Google Scholar] [CrossRef]
- Saarnisaari, H.; Dixit, S.; Alouini, M.; Chaoub, A.; Giordani, M.; Kliks, A.; Matinmikko-Blue, M.; Zhang, N.; Agrawal, A.; Andersson, M.; et al. A 6G white paper on connectivity for remote areas. arXiv 2020, arXiv:2004.14699. [Google Scholar]
- Latva-aho, M.; Leppänen, K.; Clazzer, F.; Munari, A. Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence; Oulu University Library: Oulu, Finland, 2020. [Google Scholar]
- Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2019, 34, 134–142. [Google Scholar] [CrossRef]
- Yao, H.; Wang, L.; Wang, X.; Lu, Z.; Liu, Y. The space-terrestrial integrated network: An overview. IEEE Commun. Mag. 2018, 56, 178–185. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Zhang, X.; Yan, Z.; Evans, B.G.; Wang, W. Convergence of satellite and terrestrial networks: A comprehensive survey. IEEE Access 2019, 8, 5550–5588. [Google Scholar] [CrossRef]
- Niephaus, C.; Kretschmer, M.; Ghinea, G. QoS provisioning in converged satellite and terrestrial networks: A survey of the state-of-the-art. IEEE Commun. Surv. Tutor. 2016, 18, 2415–2441. [Google Scholar] [CrossRef]
- Kodheli, O.; Lagunas, E.; Maturo, N.; Sharma, S.K.; Shankar, B. Satellite communications in the new space era: A survey and future challenges. IEEE Commun. Surv. Tutor. 2020, 23, 70–109. [Google Scholar] [CrossRef]
- Ren, T.; Niu, J.; Qiu, Y. Enhancing generalization of computation offloading policies in novel mobile edge computing environments by exploiting experience utility. J. Syst. Archit. 2022, 125, 102444. [Google Scholar] [CrossRef]
- Wei, X.; Lv, R.; Yu, S.; Hu, Y.; Lu, R. Edge Computing Empowered Satellite-Territorial Networks: Service Architecture, Use Case, and Open Issues. In Proceedings of the International Conference on Wireless and Satellite Systems; Springer: Cham, Switzerland, 2020; pp. 308–323. [Google Scholar]
- Feng, B.; Zhou, H.; Zhang, H.; Li, G.; Li, H.; Yu, S.; Chao, H. HetNet: A flexible architecture for heterogeneous satellite-terrestrial networks. IEEE Netw. 2017, 31, 86–92. [Google Scholar] [CrossRef]
- Wang, Y.; Ru, Z.Y.; Wang, K.; Huang, P. Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing. IEEE Trans. Cybern. 2019, 50, 3984–3997. [Google Scholar] [CrossRef]
- Pfandzelter, T.; Hasenburg, J.; Bermbach, D. Towards a computing platform for the LEO edge. In Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking, Edinburgh, UK, 26 April 2021; pp. 43–48. [Google Scholar]
- Wang, X.; Lin, H.; Zhang, H.; Miao, D.; Miao, Q.; Liu, W. Intelligent Drone-assisted Fault Diagnosis for B5G-enabled Space-Air-Ground-Space Networks. IEEE Trans. Netw. Sci. Eng. 2020, 8, 2849–2860. [Google Scholar] [CrossRef]
- Hui, Y.; Cheng, N.; Huang, Y.; Chen, R.; Xiao, X.; Li, C.; Mao, G. Personalized Vehicular Edge Computing in 6G. IEEE Netw. 2021, 35, 278–284. [Google Scholar] [CrossRef]
- Shang, B.; Yi, Y.; Liu, L. Computing over space-air-ground integrated networks: Challenges and opportunities. IEEE Netw. 2021, 35, 302–309. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Kumar, N.; Liu, L. Space-air-ground integrated multi-domain network resource orchestration based on virtual network architecture: A DRL method. IEEE Trans. Intell. Transp. Syst. 2021, 23, 2798–2808. [Google Scholar] [CrossRef]
- Xu, C.; Ishikawa, N.; Rajashekar, R.; Sugiura, S.; Maunder, R.G.; Wang, Z.; Yang, L.; Hanzo, L. Sixty years of coherent versus non-coherent tradeoffs and the road from 5G to wireless futures. IEEE Access 2019, 7, 178246–178299. [Google Scholar] [CrossRef]
- Qiu, C.; Yao, H.; Yu, F.R.; Xu, F.; Zhao, C. Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks. IEEE Trans. Veh. Technol. 2019, 68, 5871–5883. [Google Scholar] [CrossRef]
- Marchiori, A. Maximizing coverage in low-power wide-area IoT networks. In Proceedings of the 2017 IEEE International Conference on Pervasive computing and Communications Workshops (Percom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 467–472. [Google Scholar]
- Qiu, C.; Tian, T.; Song, Q.; Zhao, C.; Xu, F. Sleeping mode of multi-controller in green software-defined networking. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 282. [Google Scholar] [CrossRef]
- Evans, B.G. The role of satellites in 5G. In Proceedings of the 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), Livorno, Italy, 8–10 September 2014; pp. 197–202. [Google Scholar]
- Bi, Y.; Han, G.; Xu, S.; Wang, X.; Lin, C.; Yu, Z.; Sun, P. Software defined space-terrestrial integrated networks: Architecture, challenges, and solutions. IEEE Netw. 2019, 33, 22–28. [Google Scholar] [CrossRef]
- Suzhi, C.; Junyong, W.; Hao, H.; Yi, Z.; Shuling, Y.; Lei, Y.; Shaojun, W. Space edge cloud enabling network slicing for 5G satellite network. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Gong Yongsheng Tangier, Morocco, 24–28 June 2019; pp. 787–792. [Google Scholar]
- Liu, M.; Wang, Y.; Li, Z.; Lyu, X.; Chen, Y. Joint optimization of resource allocation and multi-UAV trajectory in space-air-ground IoRT networks. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Virtual conference, Seoul, Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Wang, Z.; Zhou, Z.; Zhang, H.; Zhang, G.; Ding, H. AI-Based Cloud-Edge-Device Collaboration in 6G Space-Air-Ground Integrated Power IoT. IEEE Wirel. Commun. 2022, 29, 16–23. [Google Scholar] [CrossRef]
- Zhou, Z.; Feng, J.; Tan, L.; He, Y.; Gong, J. An air-ground integration approach for mobile edge computing in IoT. IEEE Commun. Mag. 2018, 56, 40–47. [Google Scholar] [CrossRef]
- Lyu, F.; Wu, F.; Zhang, Y.; Xin, J.; Zhu, X. Virtualized and micro services provisioning in space-air-ground integrated networks. IEEE Wirel. Commun. 2020, 27, 68–74. [Google Scholar] [CrossRef]
- Cheng, N.; Xu, W.; Shi, W.; Zhou, Y.; Lu, N.; Zhou, H.; Shen, X. Air-ground integrated mobile edge networks: Architecture, challenges, and opportunities. IEEE Commun. Mag. 2018, 56, 26–32. [Google Scholar] [CrossRef]
- Geist, A.; Brewer, C.; Davis, M.; Franconi, N.; Heyward, S.; Wise, T.; Crum, G.; Petrick, D.; Ripley, R.; Wilson, C.; et al. SpaceCube v3. 0 NASA Next-Generation High-Performance Processor for Science Applications; National Aeronautics and Space Administration: Washington, DC, USA, 2019. [Google Scholar]
- Furano, G.; Meoni, G.; Dunne, A.; Moloney, D.; Ferlet-Cavrois, V.; Tavoularis, A.; Byrne, J.; Buckley, L.; Psarakis, M.; Voss, K.; et al. Towards the use of artificial intelligence on the edge in space systems: Challenges and opportunities. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 44–56. [Google Scholar] [CrossRef]
- Denby, B.; Lucia, B. Orbital edge computing: Machine inference in space. IEEE Comput. Archit. Lett. 2019, 18, 59–62. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Yu, F.R.; Ji, H.; Zhang, H.; Leung, V.C.M. Grouping and cooperating among access points in user-centric ultra-dense networks with non-orthogonal multiple access. IEEE J. Sel. Areas Commun. 2017, 35, 2295–2311. [Google Scholar] [CrossRef]
- Laser Communication in Space[EB/OL]. Available online: https://mynaric.com/products/space/ (accessed on 1 July 2022).
- Li, T.; Zhou, H.; Luo, H.; Yu, S. SERvICE: A software defined framework for integrated space-terrestrial satellite communication. IEEE Trans. Mob. Comput. 2017, 17, 703–716. [Google Scholar] [CrossRef]
- Qu, H.; Xu, X.; Zhao, J.; Yue, P. An SDN-based space-air-ground integrated network architecture and controller deployment strategy. In Proceedings of the 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 14–16 August 2020; pp. 138–142. [Google Scholar]
- Guo, H.; Li, J.; Liu, J.; Tian, N.; Kato, N. A survey on space-air-ground-sea integrated network security in 6G. IEEE Commun. Surv. Tutor. 2021, 24, 53–87. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y.; Fadlullah, Z.M.; Kato, N. Space-air-ground integrated network: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2714–2741. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, G.; Zhang, S.; Niu, Z.; Shen, X.S. Bidirectional mission offloading for agile space-air-ground integrated networks. IEEE Wirel. Commun. 2019, 26, 38–45. [Google Scholar] [CrossRef]
- ETSI, G. Network functions virtualisation (nfv): Architectural framework. ETsI Gs NFV 2013, 2, V1. [Google Scholar]
- Alwattar, T.A.; Mian, A. Development of an elastic material model for BCC lattice cell structures using finite element analysis and neural networks approaches. J. Compos. Sci. 2019, 3, 33. [Google Scholar] [CrossRef]
- Alwattar, T.A.; Mian, A. Developing an equivalent solid material model for BCC lattice cell structures involving vertical and horizontal struts. J. Compos. Sci. 2020, 4, 74. [Google Scholar] [CrossRef]
- Al-wattar, T.A.A. Developing Equivalent Solid Model for Lattice Cell Structure Using Numerical Approaches. Ph.D. Thesis, Wright State University, Dayton, OH, USA, 2020. [Google Scholar]
- Tang, Q.; Fei, Z.; Li, B.; Han, Z. Computation offloading in leo satellite networks with hybrid cloud and edge computing. IEEE Internet Things J. 2021, 8, 9164–9176. [Google Scholar] [CrossRef]
- Yu, S.; Gong, X.; Shi, Q.; Wang, X.; Chen, X. EC-SAGINs: Edge-Computing-Enhanced Space–Air–Ground-Integrated Networks for Internet of Vehicles. IEEE Internet Things J. 2021, 9, 5742–5754. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, J.; Liu, X.; Sun, Z.; Cao, W.; Nowak, R.M.; Lv, Z. Edge–Cloud Resource Scheduling in Space–Air–Ground-Integrated Networks for Internet of Vehicles. IEEE Internet Things J. 2021, 9, 5765–5772. [Google Scholar] [CrossRef]
- Mao, B.; Tang, F.; Kawamoto, Y.; Kato, N. Optimizing computation offloading in satellite-UAV-served 6G IoT: A deep learning approach. IEEE Netw. 2021, 35, 102–108. [Google Scholar] [CrossRef]
- Peng, K.; Zhao, B.; Bilal, M.; Xu, X. Reliability-Aware Computation Offloading for Delay-Sensitive Applications in MEC-Enabled Aerial Computing. IEEE Trans. Green Commun. Netw. 2022, 6, 1511–1519. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Ma, X.; Sun, Q.; Wang, H.; Cao, S.; Yang, F. Service coverage for satellite edge computing. IEEE Internet Things J. 2021, 9, 695–705. [Google Scholar] [CrossRef]
- Liao, H.; Zhou, Z.; Zhao, X.; Wang, Y. Learning-based queue-aware task offloading and resource allocation for space–air–ground-integrated power IoT. IEEE Internet Things J. 2021, 8, 5250–5263. [Google Scholar] [CrossRef]
- Yang, T.; Gao, S.; Li, J.; Qin, M.; Sun, X.; Zhang, R.; Wang, M.; Wang, M.; Li, X. Multi-Armed Bandits Learning for Task Offloading in Maritime Edge Intelligence Networks. IEEE Trans. Veh. Technol. 2022, 71, 4212–4224. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Chen, Y.; Jia, H. Joint stochastic computational resource and UAV trajectory for wireless-powered space-air-ground IoRT networks. IEEE Access 2020, 8, 193728–193743. [Google Scholar] [CrossRef]
- Cassará, P.; Gotta, A.; Marchese, M.; Patrone, F. Orbital Edge Offloading on Mega-LEO Satellite Constellations for Equal Access to Computing. IEEE Commun. Mag. 2022, 60, 32–36. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, C.; Liu, L.; Lan, D.; Wan, S. Orbital collaborative learning in 6G space-air-ground integrated networks. Neurocomputing 2022, 497, 94–109. [Google Scholar] [CrossRef]
- Cao, S.; Han, H.; Wei, J.; Yang, Y.Z.S.; Yan, L. Space Cloud-Fog Computing: Architecture, Application and Challenge. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China, 22–24 October 2019; pp. 1–7. [Google Scholar]
- Zhou, C.; Wu, W.; He, H.; Yang, P.; Lyu, F.; Cheng, N.; Shen, X. Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN. IEEE Trans. Wirel. Commun. 2020, 20, 911–925. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, B.; Sun, L.; Wang, Y. Intelligent Task Offloading for 6G-Enabled Maritime IoT Based on Reinforcement Learning. In Proceedings of the 2021 International Conference on Security, Pattern Analysis and Cybernetics (SPAC), Chengdu, China, 18–20 June 2021; pp. 566–570. [Google Scholar]
- Yang, J.; Zhang, T.; Wu, X.; Liang, T.; Zhang, Q. Efficient Scheduling in Space-Air-Ground Integrated Localization Networks. IEEE Internet Things J. 2022, 9, 17689–17704. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Wang, P.; Liu, L.; Wang, Y. Double-edge intelligent integrated satellite terrestrial networks. China Commun. 2020, 17, 128–146. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Tseng, F.H. Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques. IEEE Netw. 2019, 33, 70–76. [Google Scholar] [CrossRef]
- Tong, M.; Wang, X.; Li, S.; Peng, L. Joint Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Network. Symmetry 2022, 14, 564. [Google Scholar] [CrossRef]
- Nguyen, V.; Khanh, T.T.; van Nam, P.; Thu, N.T.; Hong, C.S.; Huh, E. Towards flying mobile edge computing. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 723–725. [Google Scholar]
- Ghobaei-Arani, M.; Souri, A.; Rahmanian, A.A. A space-air-ground enabled edge computing architecture for the internet of things. In Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021; pp. 752–757. [Google Scholar]
- Wang, Z.; Yu, H.; Zhu, S.; Yang, B. Curriculum Reinforcement Learning-Based Computation Offloading Approach in Space-Air-Ground Integrated Network. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Virtual meeting, Hunan, China, 20–22 October 2021; pp. 1–6. [Google Scholar]
- Ding, C.; Wang, J.; Zhang, H.; Lin, M.; Li, G.Y. Joint optimization of transmission and computation resources for satellite and high altitude platform assisted edge computing. IEEE Trans. Wirel. Commun. 2021, 21, 1362–1377. [Google Scholar] [CrossRef]
- Fang, X.; Wang, Y.; Feng, W.; Chen, Y.; Ai, B. Power Allocation for Maritime Cognitive Satellite-UAV-Terrestrial Networks. In Proceedings of the 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), Beijing, China, 26–28 September 2020; pp. 139–143. [Google Scholar]
- Guo, Y.; Li, Q.; Li, Y.; Zhang, N.; Wang, S. Service Coordination in the Space-Air-Ground Integrated Network. IEEE Netw. 2021, 35, 168–173. [Google Scholar] [CrossRef]
- Cao, X.; Yang, B.; Huang, C.; Yuen, C.; Zhang, Y.; Niyato, D.; Han, Z. Converged reconfigurable intelligent surface and mobile edge computing for space information networks. IEEE Netw. 2021, 35, 42–48. [Google Scholar] [CrossRef]
- Liu, J.; Du, X.; Cui, J.; Pan, M.; Wei, D. Task-oriented intelligent networking architecture for the space–air–ground–aqua integrated network. IEEE Internet Things J. 2020, 7, 5345–5358. [Google Scholar] [CrossRef]
- Chen, Y.; Ai, B.; Niu, Y.; Zhang, H.; Han, Z. Energy-constrained computation offloading in space-air-ground integrated networks using distributionally robust optimization. IEEE Trans. Veh. Technol. 2021, 70, 12113–12125. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Guo, X.; Qu, Z. A game-theoretic approach to computation offloading in satellite edge computing. IEEE Access 2019, 8, 12510–12520. [Google Scholar] [CrossRef]
- Ding, C.; Wang, J.; Zhang, H.; Zhang, H.; Wang, J.; Lin, M. Joint Optimization of Radio and Computation Resources for Satellite-Aerial Assisted Edge Computing. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Wei, K.; Tang, Q.; Guo, J.; Zeng, M.; Fei, Z.; Cui, Q. Resource Scheduling and Offloading Strategy Based on LEO Satellite Edge Computing. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Virtual conference, Norman, OK, USA, 27–30 September 2021; pp. 1–6. [Google Scholar]
- Salmani, M.; Sohrabi, F.; Davidson, T.N.; Yu, W. Multiple Access Binary Computation Offloading via Reinforcement Learning. In Proceedings of the 2019 16th Canadian Workshop on Information Theory (CWIT), the campus of McMaster University, Hamilton, ON, Canada, 30 May–2 June 2019; pp. 1–6. [Google Scholar]
- Bi, S.; Zhang, Y.J. Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wirel. Commun. 2018, 17, 4177–4190. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Wu, S.; Jiang, C.; Hu, D.; Wang, W. Energy-efficient data offloading for multi-cell satellite-terrestrial networks. IEEE Commun. Lett. 2020, 24, 2265–2269. [Google Scholar] [CrossRef]
- Zhang, Y.; Di, B.; Wang, P.; Lin, J.; Song, L. HetMEC: Heterogeneous multi-layer mobile edge computing in the 6 G era. IEEE Trans. Veh. Technol. 2020, 69, 4388–4400. [Google Scholar] [CrossRef]
- Wei, J.; Han, J.; Cao, S. Satellite IoT Edge Intelligent Computing: A Research on Architecture. Electronics 2019, 8, 1247. [Google Scholar] [CrossRef]
- Willburger, K.; Schwenk, K.; Brauchle, J. AMARO—An On-Board Ship Detection and Real-Time Information System. Sensors 2020, 20, 1324. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Dong, Z.; Shen, X.; Shi, L. Earth observation brain (EOB): An intelligent earth observation system. Geo-Spat. Inf. Sci. 2017, 20, 134–140. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Zhang, X.; Liu, L.; Wang, Y.; Ouyan, L. Performance evaluation of double-edge satellite terrestrial networks on OPNET platform. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Beijing, China, 16–18 August 2018; pp. 37–42. [Google Scholar]
- Leyva-Mayorga, I.; Soret, B.; Röper, M.; Wübben, D.; Matthiesen, B.; Dekorsy, A.; Popovski, P. LEO small-satellite constellations for 5G and beyond-5G communications. IEEE Access 2020, 8, 184955–184964. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, M.; Wang, J.; Tsiftsis, T.A.; Wang, J. Energy efficient beamforming schemes for satellite-aerial-terrestrial networks. IEEE Trans. Commun. 2020, 68, 3863–3875. [Google Scholar] [CrossRef]
- Pan, G.; Ye, J.; Zhang, Y.; Alouini, M. Performance analysis and optimization of cooperative satellite-aerial-terrestrial systems. IEEE Trans. Wirel. Commun. 2020, 19, 6693–6707. [Google Scholar] [CrossRef]
- Akiyoshi, T.; Okamoto, E.; Tsuji, H.; Miura, A. Performance improvement of satellite/terrestrial integrated mobile communication system using unmanned aerial vehicle cooperative communications. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017; pp. 417–422. [Google Scholar]
- Tang, F.; Hofner, H.; Kato, N.; Kaneko, K.; Yamashita, Y.; Hangai, M. A Deep Reinforcement Learning-Based Dynamic Traffic Offloading in Space-Air-Ground Integrated Networks (SAGIN). IEEE J. Sel. Areas Commun. 2021, 40, 276–289. [Google Scholar] [CrossRef]
- Lyu, J.; Zeng, Y.; Zhang, R. Spectrum sharing and cyclical multiple access in UAV-aided cellular offloading. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Guo, H.; Liu, J. UAV-enhanced intelligent offloading for Internet of Things at the edge. IEEE Trans. Ind. Inform. 2019, 16, 2737–2746. [Google Scholar] [CrossRef]
- Jiang, C.; Zhu, X. Reinforcement learning based capacity management in multi-layer satellite networks. IEEE Trans. Wirel. Commun. 2020, 19, 4685–4699. [Google Scholar] [CrossRef]
- Zhong, C.; Gursoy, M.C.; Velipasalar, S. A deep reinforcement learning-based framework for content caching. In Proceedings of the 2018 52nd Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 21–23 March 2018; pp. 1–6. [Google Scholar]
- Chen, S.; Yao, Z.; Jiang, X.; Yang, J.; Hanzo, L. Multi-agent deep reinforcement learning-based cooperative edge caching for ultra-dense next-generation networks. IEEE Trans. Commun. 2020, 69, 2441–2456. [Google Scholar] [CrossRef]
- Li, J.; Xue, K.; Wei, D.S.L.; Liu, J.; Zhang, Y. Energy efficiency and traffic offloading optimization in integrated satellite/terrestrial radio access networks. IEEE Trans. Wirel. Commun. 2020, 19, 2367–2381. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.; Su, W.; Cui, E.; Lu, Z. SAG-EC: Edge Computing Platform Based on Space-Air-Ground Integrated Network. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; Volume 5, pp. 2685–2689. [Google Scholar]
- Gu, S.; Wang, Y.; Wang, N.; Wu, W. Towards data collection and transmission in 6G space-air-ground integrated networks: Cooperative HAP and LEO satellite schemes. IEEE Internet Things J. 2021, 9, 10516–10528. [Google Scholar]
- Jia, Z.; Sheng, M.; Li, J.; Han, Z. Intelligent optimization of availability and communication cost in satellite-UAV mobile edge caching system with fault-tolerant codes. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1230–1241. [Google Scholar]
- Zhou, Y.; Yu, F.R.; Chen, J.; Kuo, Y. Resource allocation for information-centric virtualized heterogeneous networks with in-network caching and mobile edge computing. IEEE Trans. Veh. Technol. 2017, 66, 11339–11351. [Google Scholar] [CrossRef]
- Fu, S.; Gao, J.; Zhao, L. Integrated resource management for terrestrial-satellite systems. IEEE Trans. Veh. Technol. 2020, 69, 3256–3266. [Google Scholar]
- Fu, S.; Wu, B.; Wu, S.; Fang, F. Multi-resources management in 6G-oriented terrestrial-satellite network. China Commun. 2021, 18, 24–36. [Google Scholar]
- Hou, X.; Wang, J.; Fang, Z.; Ren, Y.; Chen, K.; Hanzo, L. Edge Intelligence for Mission-Critical 6G Services in Space-Air-Ground Integrated Networks. IEEE Netw. 2022, 36, 181–189. [Google Scholar] [CrossRef]
- Wei, J.; Cao, S. Application of edge intelligent computing in satellite Internet of Things. In Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2019; pp. 85–91. [Google Scholar]
- Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge intelligence: The confluence of edge computing and artificial intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [Google Scholar] [CrossRef]
- Yao, J.; Han, T.; Ansari, N. On mobile edge caching. IEEE Commun. Surv. Tutor. 2019, 21, 2525–2553. [Google Scholar] [CrossRef]
- Chang, Z.; Lei, L.; Zhou, Z.; Mao, S.; Ristaniemi, T. Learn to cache: Machine learning for network edge caching in the big data era. IEEE Wirel. Commun. 2018, 25, 28–35. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Ma, C.; Wang, H.; Zhang, J.; Zheng, G. Deep learning-based edge caching for multi-cluster heterogeneous networks. Neural Comput. Appl. 2020, 32, 15317–15328. [Google Scholar] [CrossRef]
- Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.; Lillicrap, T.; Hunt, J.; Mann, T.; Weber, T.; Degris, T.; Coppin, B. Deep reinforcement learning in large discrete action spaces. arXiv 2015, arXiv:1512.07679. [Google Scholar]
- Zhong, C.; Gursoy, M.C.; Velipasalar, S. Deep reinforcement learning-based edge caching in wireless networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 48–61. [Google Scholar] [CrossRef]
- Brendan McMahan, H.; Moore, E.; Ramage, D.; Hampson, S.; Agüera y Arcas, B. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw. 2019, 33, 156–165. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Wang, F.; Zhang, M.; Wang, X.; Ma, X.; Liu, J. Deep learning for edge computing applications: A state-of-the-art survey. IEEE Access 2020, 8, 58322–58336. [Google Scholar] [CrossRef]
- Alwani, M.; Chen, H.; Ferdman, M.; Milder, P. Fused-layer CNN accelerators. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–12. [Google Scholar]
- Li, G.; Liu, L.; Wang, X.; Dong, X.; Zhao, P.; Feng, X. Auto-tuning neural network quantization framework for collaborative inference between the cloud and edge. In Proceedings of the International Conference on Artificial Neural Networks; Springer: Cham, Switzerland, 2018; pp. 402–411. [Google Scholar]
- Zhang, Y.; Miao, Y.; Pan, S.; Chen, S. Efficient and Energy-Saving Computation Offloading Mechanism with Energy Harvesting for IoT. Secur. Commun. Netw. 2021, 2021, 8167796. [Google Scholar] [CrossRef]
- Tong, Z.; Cai, J.; Mei, J.; Li, K.; Li, K. Dynamic Energy-Saving Offloading Strategy Guided by Lyapunov Optimization for IoT Devices. IEEE Internet Things J. 2022. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Y.; Hu, T. Robust Resource Scheduling for Air-Ground Cooperative Mobile Edge Computing. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; pp. 764–769. [Google Scholar]
- Jia, Z.; Sheng, M.; Li, J.; Niyato, D.; Han, Z. LEO-satellite-assisted UAV: Joint trajectory and data collection for Internet of remote things in 6G aerial access networks. IEEE Internet Things J. 2020, 8, 9814–9826. [Google Scholar] [CrossRef]
- Li, X.; Feng, W.; Chen, Y.; Wang, C.; Ge, N. Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks. IEEE Trans. Commun. 2020, 68, 2355–2369. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Sun, R.; Zhang, Y. Joint relay selection and power allocation for maximum energy efficiency in hybrid satellite-aerial-terrestrial systems. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–7 September 2016; pp. 1–6. [Google Scholar]
- Wang, D.; He, Y.; Yu, K.; Srivastava, G.; Nie, L.; Zhang, R. Delay-Sensitive Secure NOMA Transmission for Hierarchical HAP–LAP Medical-Care IoT Networks. IEEE Trans. Ind. Inform. 2021, 18, 5561–5572. [Google Scholar] [CrossRef]
- Li, J.; Liang, W.; Xu, W.; Xu, Z.; Jia, X.; Zhou, W.; Zhao, J. Maximizing user service satisfaction for delay-sensitive IoT applications in edge computing. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 1199–1212. [Google Scholar] [CrossRef]
- Boero, L.; Marchese, M.; Patrone, F. The impact of delay in software-defined integrated terrestrial-satellite networks. China Commun. 2018, 15, 11–21. [Google Scholar] [CrossRef]
- Xu, H.; Li, D.; Liu, M.; Han, G.; Huang, W.; Xu, C. A hybrid routing algorithm in terrestrial-satellite integrated network. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020; pp. 90–95. [Google Scholar]
- Mao, S.; He, S.; Wu, J. Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing. IEEE Syst. J. 2020, 15, 3992–4002. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, G.; Long, Y.; Wang, W. Joint computing and communication resource allocation for satellite communication networks with edge computing. China Commun. 2021, 18, 236–252. [Google Scholar] [CrossRef]
- Cheng, N.; Lyu, F.; Quan, W.; Zhou, C.; He, H.; Shi, W.; Shen, X. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach. IEEE J. Sel. Areas Commun. 2019, 37, 1117–1129. [Google Scholar] [CrossRef]
- Quan, W.; Liu, Y.; Zhang, H.; Yu, S. Enhancing crowd collaborations for software defined vehicular networks. IEEE Commun. Mag. 2017, 55, 80–86. [Google Scholar] [CrossRef]
- Pervez, F.; Zhao, L.; Yang, C. Joint User Association, Power Optimization and Trajectory Control in an Integrated Satellite-Aerial-Terrestrial Network. IEEE Trans. Wirel. Commun. 2021, 21, 3279–3290. [Google Scholar] [CrossRef]
- Wang, B.; Feng, T.; Huang, D. A joint computation offloading and resource allocation strategy for LEO satellite edge computing system. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020; pp. 649–655. [Google Scholar]
- Li, H.; Chen, C.; Li, C.; Liu, L.; Gui, G. Aerial Computing Offloading by Distributed Deep Learning in Collaborative Satellite-terrestrial Networks. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Hunan, China, 20–22 October 2021; pp. 1–6. [Google Scholar]
- Zhu, D.; Liu, H.; Li, T.; Sun, J.; Liang, J.; Zhang, H.; Geng, L.; Liu, Y. Deep reinforcement learning-based task offloading in satellite-terrestrial edge computing networks. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–7. [Google Scholar]
- Yan, L.; Fang, X.; Hao, L.; Fang, Y. Safety-oriented resource allocation for space-ground integrated cloud networks of high-speed railways. IEEE J. Sel. Areas Commun. 2020, 38, 2747–2759. [Google Scholar] [CrossRef]
- Hui, Y.; Cheng, N.; Su, Z.; Huang, Y.; Zhao, P.; Luan, T.H.; Li, C. Secure and personalized edge computing services in 6G heterogeneous vehicular networks. IEEE Internet Things J. 2021, 9, 5920–5931. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, D.; Wang, D.; Guan, L.; Zhang, C.; Zhang, M. A space-air-ground integrated network assisted maritime communication network based on mobile edge computing. In Proceedings of the 2020 IEEE World Congress on Services (SERVICES), Beijing, China, 18–23 October 2020; pp. 269–274. [Google Scholar]
- Xie, R.; Tang, Q.; Wang, Q.; Liu, X.; Yu, F.R.; Huang, T. Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues. IEEE Netw. 2020, 34, 224–231. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, Y.; Zhang, R.; Cheng, W.; Liu, C. Cooperative resource management for cognitive satellite-aerial-terrestrial integrated networks towards IoT. IEEE Access 2020, 8, 35759–35769. [Google Scholar] [CrossRef]
- Gineste, M.; Deleu, T.; Cohen, M.; Chuberre, N.; Saravanan, V.; Frascolla, V.; Mueck, M.; Strinati, E.C.; Dutkiewicz, E. Narrowband IoT service provision to 5G user equipment via a satellite component. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–4. [Google Scholar]
- Wang, F.; Jiang, D.; Qi, S.; Qiao, C.; Song, H. Fine-grained resource management for edge computing satellite networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.; Kim, D.I. Applications of deep reinforcement learning in communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [Google Scholar] [CrossRef]
- Xu, F.; Yang, F.; Zhao, C.; Wu, S. Deep reinforcement learning based joint edge resource management in maritime network. China Commun. 2020, 17, 211–222. [Google Scholar] [CrossRef]
- Luis, J.J.G.; Guerster, M.; del Portillo, I.; Crawley, E.; Cameron, B. Deep reinforcement learning for continuous power allocation in flexible high throughput satellites. In Proceedings of the 2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Cleveland, OH, USA, 25–26 June 2019; pp. 1–4. [Google Scholar]
- Gao, S.; Yang, T.; Ni, H.; Zhang, G. Multi-armed bandits scheme for tasks offloading in MEC-enabled maritime communication networks. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020; pp. 232–237. [Google Scholar]
- Tang, Q.; Fei, Z.; Li, B. Distributed deep learning for cooperative computation offloading in low earth orbit satellite networks. China Commun. 2022, 19, 230–243. [Google Scholar] [CrossRef]
- Cui, G.; Li, X.; Xu, L.; Wang, W. Latency and energy optimization for MEC enhanced SAT-IoT networks. IEEE Access 2020, 8, 55915–55926. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Zhou, H.; Long, K.; Leung, V.C.M. User Association, Subchannel and Power Allocation in Space-Air-Ground Integrated Vehicular Network with Delay Constraints. IEEE Trans. Netw. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 2015, 24, 2795–2808. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, D.; Qi, S.; Qiao, C.; Shi, L. A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. 2021, 26, 597–608. [Google Scholar] [CrossRef]
- Song, Z.; Hao, Y.; Liu, Y.; Sun, X. Energy-efficient multiaccess edge computing for terrestrial-satellite Internet of Things. IEEE Internet Things J. 2021, 8, 14202–14218. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, J.; Zeng, Y.; Ng, D.W.K.; Al-Dhahir, N.; Schober, R.; Swindlehurst, A.L. A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence. IEEE J. Sel. Areas Commun. 2021, 39, 2912–2945. [Google Scholar] [CrossRef]
- Xianghang, B.; Yongxing, C.; Chuang, D.; Chi, W.; Ke, J. Integrated Space-Air-Ground Early Detection Technologies and Applicationfor Potential Landslide of Transmission Line Corridor. In Proceedings of the 2021 4th International Conference on E-Business, Information Management and Computer Science, Hong Kong, China, 29–31 December 2021; pp. 513–519. [Google Scholar]
- Wang, Y.; Zhang, J.; Zhang, X.; Wang, P.; Liu, L. A computation offloading strategy in satellite terrestrial networks with double edge computing. In Proceedings of the 2018 IEEE international conference on communication systems (ICCS), Chengdu, China, 19–21 December 2018; pp. 450–455. [Google Scholar]
- Seyedi, Y.; Safavi, S.M. On the analysis of random coverage time in mobile LEO satellite communications. IEEE Commun. Lett. 2012, 16, 612–615. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Yuan, P.; Zhang, Q. Tcsc: A novel file distribution strategy in integrated leo satellite-terrestrial networks. IEEE Trans. Veh. Technol. 2020, 69, 5426–5441. [Google Scholar] [CrossRef]
- Bertaux, L.; Medjiah, S.; Berthou, P.; Abdellatif, S.; Hakiri, A.; Gelard, P.; Planchou, F.; Bruyere, M. Software defined networking and virtualization for broadband satellite networks. IEEE Commun. Mag. 2015, 53, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Zhen, L.; Bashir, A.K.; Yu, K.; Al-Otaibi, Y.D.; Foh, C.H.; Xiao, P. Energy-efficient random access for LEO satellite-assisted 6G internet of remote things. IEEE Internet Things J. 2020, 8, 5114–5128. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Huang, C.; Guo, Q.; Liu, L.; Yuen, C.; Guan, Y.L. User activity detection and channel estimation for grant-free random access in LEO satellite-enabled Internet of Things. IEEE Internet Things J. 2020, 7, 8811–8825. [Google Scholar] [CrossRef]
- Ren, C.; Hou, J. Edge Network Extension Based on Multi-domains Fusion and LEO Satellite. In Proceedings of the International Conference on Internet of Things as a Service; Springer: Cham, Switzerland, 2020; pp. 633–643. [Google Scholar]
- Han, H.; Wang, H.; Cao, S. Space Edge Cloud Enabling Service Migration for On-Orbit Service. In Proceedings of the 2020 12th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 12–15 June 2020; pp. 233–239. [Google Scholar]
- Di, B.; Zhang, H.; Song, L.; Li, Y.; Li, G.Y. Ultra-dense LEO: Integrating terrestrial-satellite networks into 5G and beyond for data offloading. IEEE Trans. Wirel. Commun. 2018, 18, 47–62. [Google Scholar] [CrossRef]
- Vassaki, S.; Poulakis, M.I.; Panagopoulos, A.D.; Constantinou, P. Power allocation in cognitive satellite terrestrial networks with QoS constraints. IEEE Commun. Lett. 2013, 17, 1344–1347. [Google Scholar] [CrossRef]
- Li, B.; Fei, Z.; Chu, Z.; Zhou, F.; Wong, K.; Xiao, P. Robust chance-constrained secure transmission for cognitive satellite–terrestrial networks. IEEE Trans. Veh. Technol. 2018, 67, 4208–4219. [Google Scholar] [CrossRef]
- Asheralieva, A.; Niyato, D. Distributed dynamic resource management and pricing in the IoT systems with blockchain-as-a-service and UAV-enabled mobile edge computing. IEEE Internet Things J. 2019, 7, 1974–1993. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Ni, J.; Zhang, N.; Shen, X. Blockchain-empowered space-air-ground integrated networks: Opportunities, challenges, and solutions. IEEE Commun. Surv. Tutor. 2021, 24, 160–209. [Google Scholar] [CrossRef]
- Kang, J.; Yu, R.; Huang, X.; Wu, M.; Maharjan, S.; Xie, S.; Zhang, Y. Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet Things J. 2018, 6, 4660–4670. [Google Scholar] [CrossRef]
Deployment Type | Objective | Considered Factors | Advantages | Disadvantages | Ref. | |
---|---|---|---|---|---|---|
Single MEC | UAV | Minimizing the latency and energy consumption | Complex marine environment | Flexible deployment in hot spots | Lower height, less resource | [60] |
Maximizing computing performance | Frequency division duplexing, CPU cycle, power control, UAV trajectory, joint stochastic scheme | Wide coverage for remote IoT | Limited computation capacities, high mobility | [61] | ||
Satellite | Better exploit the overall available distributed resources | Orbital edge offloading, mega-LEO satellite constellations | Better exploitation, more homogeneous distribution | More complex among different layers, long propagation delay | [62] | |
Minimize the long-term delay of all tasks | UAV collect and relay, task scheduling | Wider coverage, low delay under energy constraints | Path loss, high mobility | [65] | ||
Double MEC | UAV-BS | Minimizing energy and delay consumption | Maritime IoT, intelligent task offloading | Low delay, flexible deployment | Unstable link, finite resouces, intermittent service | [66] |
Minimizing power consumption | SAGIN resource allocation | Seamless coverage, high rate | Dynamic topology, uncertainty link | [67] | ||
Satellite-BS | Minimizing delay and energy, maximizing efficiency | Satellite MEC, high-speed network | Multi cooperative computation offloading | Not suitable for high cost task | [69] | |
Minimizing the completion delay of all users’ tasks | LEO edge server, or BS server sent by LEO | More flexible edge decision, global coverage | Rare inter-satellite cooperation | [70] | ||
Satellite-UAV | Enhancing edge service capbility | Intelligent-enhanced UAV, intelligent enhanced satellites | Flexible offloading options, seamless global coverage | High dynamic, unstable interactionlink | [72] | |
Minimizing delay of all tasks | Propagation time, transmit time, compute time | High data rate, less delay | Finite energy | [73] | ||
Minimizing the weighted sum energy consumption | Transmit precoding, task assignment, resource allocation | MIMO, more users, higher efficiency | Doppler effects | [74] | ||
Multi-MEC | Minimizing overall service delay and cost | Service coordination | Flexibly integrates and manages services | High allocation complexity | [76] | |
Maximizing data rate | SAG MEC, double benefits of comp. and comm. | More flexible offloading options | More security risks | [77] | ||
Four kind of objectives | Edge–cloud resource scheduling, SDN, NFV | Rich resources, joint optimization | Higher optimization difficulty | [55] |
Resource Types | Objective | Key Issues | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Computation offloading | Minimizing system delay under energy constraint | Data-driven approach describes the uncertainty of task arrival | High robustness of application completion | High energy consumption | [79] |
Minimizing inter-satellites process delay | Distributed intelligent on-board computing | On-board realtime image process | High inter-satellite link dependence | [87] | |
Maximizing resources allocation efficiency | Double-edge, customized service priority | High space-ground services efficiency | Uncertainty of connectivity | [90] | |
Communication traffic offloading | Improving end-to-end energy efficiency | Stochastic geometry, interference/no interference scenario | Cross-domain communication enhacing | Large path loss | [93] |
Maximizing the network transmission rate | Dual timeslot cooperative communication scheme | High space-ground signal quality | Complex inter-node interference | [94] | |
Maximizing all users’throughput | Double Q-learning traffic offloading | Better load balancing capability | Higher link dynamic | [95] | |
Minimizing overall energy consumption | Joint optimization of QoS and energy consumption | Higher overall network performance | Multi-layer unbalancedness | [97] | |
Cache distribution | Minimizing the cost of acquiring content | Cooperative content sharing, multi-agent data exchange | Higher data utilization of MEC | Excess communication load | [100] |
Maximizing system content availability | Caching system with fault-tolerant codes | Higher data reliability | Higher network cost | [104] | |
Joint resource service | maximizing joint objectives | Information-centric virtualized resources | Higher network overall utility | More optimization constraints | [105] |
Maximizing link time, minimizing energy cost | Block-chain, data security, double MEC | Higher throughput fairness | More difficult optimizations | [107] | |
Improving the service’s reliability | Adaptive resource scheduling framework, mission-critical services | More complete service guarantee | More complex channel effects | [108] |
Resource Types | Objective | Key Issues | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Minimum energy consumption | Minimizing computation energy of UAVs and UEs | Efficient and robust optimization problem | More stable energy reduction performance | Time-varying and random link channel | [124] |
Minimizing energy consumption of UAVs | Joint optimization of UAV trajectory and data transmission | Lower ground equipment requirements | High mobility, more constraints | [125] | |
Maximizing the energy efficiency | Joint relay selection and power allocation | Better collaboration performance | More complex connections | [127] | |
Lowest latency | Minimizing on-board image processing delay | Orbital edge intelligent framework, remote sensing | Lower backhaul load, higher bandwidth utilization of inter-satellite link | Limited application scenarios | [109] |
Minimizing the total weighted delay of uesrs | Joint computing and communication allocation | Higher fairness of multi users | Uncertain energy factor | [133] | |
Maximizing the average inter-user throughput | Joint user association, power optimization and trajectory control | Higher users’ throughput | More susceptible to interferences | [136] | |
Joint optimization | Minimizing weighted power consumption and latency | LEO edge computing system, joint computation offloading and resource allocation | Lower system average cost | Limited on-board resources, low versatility | [137] |
Improving reliability, energy efficiency, and load balancing | A two-stage reliability-aware offloading method | Higher network services reliability | More constraints, higher complexity | [57] | |
Maximizing the normalized value of weighted data rate, error rate and delay | Resource allocation priorities, network handover costs | High safety, more suitable for delay sensitive applications | Larger state space | [140] | |
Specific objectives | Optimizing the overall scheduling | An optimal bidding strategy by Nash game | Higher personalized service experience | Worse environmental impact | [141] |
Improving robustness and security | Using high trust mechanism to realize data transmission | Higher security level, lower network cost | More complex channel state information | [142] | |
Maximizing the number of users in the coverage area | Wide area connection, increasing user density | More stable continuity of service | Not suitable for high bandwidth applications | [145] |
Algorithm Types | Objective | Key Issues | Advantages | Disadvantages | Complexity | Ref. |
---|---|---|---|---|---|---|
Reinforcement learning methods | Minimizing the delay of computation and transmission | Edge-cloud collaborate, ratio of the service reward to the resouces renting cost | Easier to solve high-dimension problems | Slow convergence rate | N/A | [148] |
Improving dynamic energy Distribution of multi-beam satellites | Interaction with the environment to alternate sampling data | More stable policy implementation | Uncertain optimal strategy | N/A | [149] | |
Minimizing the cumulative regret value of marine users | The reward and cost of decisions, upper bound of the confidence interval | Better performance under different QoS | Harder to solve huge state space problems | N/A | [150] | |
Minimizing mission completion time and satellite resources | Learning optimal policies through behavioral cloning | Less action space, lower energy consumption for training | High requirements for training data | [54] | ||
Mathematical programming | Minimizing the overall energy consumption | Relax binary variables, the alternating direction method of multipliers | Low computational complexity | Large communication overhead | [53] | |
Maximizing the sum rate of IoVs | Optimize using the Lagrangian duality theory | Low system complexity | Low sample efficiency | N/A | [153] | |
Game theory | Minimizing the value of cost function | A computation offloading game framework, Nash equilibrium | Lower average energy consumption, high resource utilization | High balancing complexity | 1 | [80] |
Improving offloading performance under interference environment | Distributed Nash equilibrium offloading | Higher computational efficiency | More complex with high mobility | 2 | [154] | |
Others | Minimizing the maximum standard deviation of all clusters | Euclid distance, advanced K-means, breadth-first-search-based spanning tree | Stable continuity of control | Large memory consumption | N/A | [155] |
Improving service coverage and robustness | Lyapunov optimization, Gibbs sampling | Online fast optimization | Unstable training process | 3 | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Niu, J.; Zhu, X.; Zhu, K.; Yao, Y.; Ren, B.; Ren, T. Mobile Edge Computing in Space-Air-Ground Integrated Networks: Architectures, Key Technologies and Challenges. J. Sens. Actuator Netw. 2022, 11, 57. https://doi.org/10.3390/jsan11040057
Qiu Y, Niu J, Zhu X, Zhu K, Yao Y, Ren B, Ren T. Mobile Edge Computing in Space-Air-Ground Integrated Networks: Architectures, Key Technologies and Challenges. Journal of Sensor and Actuator Networks. 2022; 11(4):57. https://doi.org/10.3390/jsan11040057
Chicago/Turabian StyleQiu, Yuan, Jianwei Niu, Xinzhong Zhu, Kuntuo Zhu, Yiming Yao, Beibei Ren, and Tao Ren. 2022. "Mobile Edge Computing in Space-Air-Ground Integrated Networks: Architectures, Key Technologies and Challenges" Journal of Sensor and Actuator Networks 11, no. 4: 57. https://doi.org/10.3390/jsan11040057
APA StyleQiu, Y., Niu, J., Zhu, X., Zhu, K., Yao, Y., Ren, B., & Ren, T. (2022). Mobile Edge Computing in Space-Air-Ground Integrated Networks: Architectures, Key Technologies and Challenges. Journal of Sensor and Actuator Networks, 11(4), 57. https://doi.org/10.3390/jsan11040057