Design, Analysis, and Simulation of 60 GHz Millimeter Wave MIMO Microstrip Antennas
Abstract
:1. Introduction
2. Methodology
2.1. Phase A. Parameters of the Antennas
2.2. Phase B. Design of Antenna I
2.3. Phase C. Design of Antenna II
2.4. Phase D. Design of Antenna III
2.5. Phase E. Rapid Prototyping and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, A.; Ramer, R.; Gong, L.; Sachdeva, S. H-shaped microstrip antenna for broadband communications at 60 GHz. In Proceedings of the 2015 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Hyderabad, India, 27–29 November 2015; pp. 80–82. [Google Scholar] [CrossRef]
- Jackson, D.R.; Long, S.A. History of Microstrip and Dielectric Resonator Antennas. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Schulz, B. 802.11ad—WLAN at 60 GHz A Technology Introduction. Rohde & Schwarz, 2017. Available online: https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma220/1MA220_3e_WLAN_11ad_WP.pdf (accessed on 22 November 2021).
- Luis, A.M.; Andrés, M.A.; Luis, S.V.; Miguel, B. “Diseño e Implementación de Antena Microstrip,” IX Congreso De Microelectrónica Aplicada (UEA) 2018. 2018. Available online: http://latics.tecno.unca.edu.ar/ocs/index.php/uea2018/uea2018/schedConf/presentations (accessed on 25 November 2021).
- Imtiaj, S.; Bhattacharya, S. Performance Comparison between 2×1 and 2×2 Corporate Feed Antenna Array in X-band. In Proceedings of the 2020 IEEE Calcutta Conference (CALCON), Kolkata, India, 28–29 February 2020; pp. 189–193. [Google Scholar] [CrossRef]
- Lahmadi, S.; Tahar, J.B.H. Optimization of 60 GHz MIMO antenna by adding ground stub to reduce mutual coupling for WPAN applications. In Proceedings of the 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 21–23 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Estupiñan Cuesta, E.P.; Martínez Quintero, J.C.; Rugeles Uribe, J.J. Metodología de diseño de antenas microstrip por caracterización del dieléctrico. In Proceedings of the 14th Congreso Internacional de Electrónica Control y Telecomunicaciones, Bogotá, Colombia, 18–19 November 2019; Universidad Distrital Francisco Jose de caldas: Bogotá, Colombia, 2019; Volume 13, ISBN 978-958-44-5254-2. [Google Scholar]
- Sipal, D.; Abegaonkar, M.P.; Koul, S.K. Compact Planar 3.5/5.5 GHz Dual Band MIMO USB Dongle Antenna for WiMAX Applications. In Proceedings of the 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), Hyderabad, India, 16–19 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Mishra, M.; Chaudhuri, S.; Kshetrimayum, R.S. Low Mutual Coupling Four-Port MIMO Antenna Array for 3.5 GHz WiMAX Application. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 791–794. [Google Scholar] [CrossRef]
- Hakim, M.L.; Uddin, M.J.; Hoque, M.J. 28/38 GHz Dual-Band Microstrip Patch Antenna with DGS and Stub-Slot Configurations and Its 2×2 MIMO Antenna Design for 5G Wireless Communication. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 56–59. [Google Scholar] [CrossRef]
- Hasan, M.N.; Seo, M. Compact Omnidirectional 28 GHz 2×2 MIMO Antenna Array for 5G Communications. In Proceedings of the 2018 International Symposium on Antennas and Propagation (ISAP), Busan, Korea, 23–26 October 2018; pp. 1–2. [Google Scholar]
- Naik, M.N.; Virani, H.A. High Gain 16 Ports MIMO Antenna at 60 GHz for Millimeter Wave Applications. In Proceedings of the 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), Ahmedabad, India, 19–22 December 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Nurrachman, M.; Hakim, G.P.N.; Firdausi, A. Design of Rectangular Patch Array 1×2 MIMO Microstrip Antenna with Tapered Peripheral Slits Method for 28 GHz Band 5G mmwave Frequency. In Proceedings of the 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP), Yogyakarta, Indonesia, 28–30 September 2020; pp. 16–20. [Google Scholar] [CrossRef]
- Pant, M.; Malviya, L.; Choudhary, V. Gain and Bandwidth Enhancement of 28 GHz Tapered Feed Antenna Array. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Chandra, R.; Sarkar, D.; Ganguly, D.; Saha, C.; Siddiqui, J.Y.; Antar, Y.M.M. Design of NFRP Based SIR-Loaded Two Element MIMO Antenna System for 28/38 GHz sub mm-wave 5G Applications. In Proceedings of the 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 10–12 September 2020; pp. 514–518. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. An Asymmetric Semi-circular Meandered Line Monopole Antenna for 28 GHz 5G Communications. In Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, 20–21 August 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, X.-W.; Zhang, Y.; Wang, X.; Yang, C.; Jiang, Z.H. Patch Antenna Loaded with Paired Shorting Pins and H-Shaped Slot for 28/38 GHz Dual-Band MIMO Applications. IEEE Access 2020, 8, 23705–23712. [Google Scholar] [CrossRef]
- Jose, M.C.; Radha, S.; Sreeja, B.S.; Kumar, P. Design of 28 GHz High Gain 5G MIMO Antenna Array System. In Proceedings of the TENCON 2019—2019 IEEE Region 10 Conference (TENCON), Kochi, India, 7–10 December 2021; pp. 1913–1916. [Google Scholar] [CrossRef]
- Yang, C.; Hsu, C.; Hwang, L. Millimeter Wave Dual Polarization Design Using Frequency Selective Surface (FSS) for 5G Base-Station Applications. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 2200–2205. [Google Scholar] [CrossRef]
- Yuwono, T.; Ismail, M.; Hajar, I. Design of Massive MIMO for 5G 28 GHZ. In Proceedings of the 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 19–21 March 2019; pp. 1–4. [Google Scholar] [CrossRef]
- ADS. PathWave Advanced Design System. Available online: https://www.keysight.com/zz/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html (accessed on 21 November 2021).
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016; pp. 783–867. [Google Scholar]
- Li, M.; Jamal, M.Y.; Li, X.; Yeung, K.L.; Jiang, L.; Itoh, T.; Murch, R. A Millimeter-Wave Frequency-Reconfigurable Fabry–Pérot Cavity Antenna. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1537–1541. [Google Scholar] [CrossRef]
- Amir, N.A.; Hamzah, S.A.; Ramli, K.N.; Esa, M. 2×1 microstrip patch array antenna with harmonic suppression capability. In Proceedings of the 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Langkawi, Malaysia, 11–13 December 2016; pp. 272–276. [Google Scholar] [CrossRef]
- Bancroft, R. Microstrip and Printed Antenna Design, 2nd ed.; Scitech Publishing: Boulder, Colorado, 2009; pp. 10–56. [Google Scholar]
- Pozar, D. Microwave Engineering, 4th ed.; John Wiley & Sons, Inc.: Amherst, MA, USA, 2012; pp. 147–153. [Google Scholar]
Parameter | Value |
---|---|
Parameter | Value |
---|---|
Modeling Method | Momentum microwave |
Frequency | 58 GHz–62 GHz |
Number of Frequency points | 100 |
Cells/Wavelength | 60 |
Patch | ||||
---|---|---|---|---|
Parameter | Antenna 1 | Antenna 2 | Antenna 3 | Units |
Radius (a) | N/A | N/A | 0.653 | mm |
Length (L) | 1.11 | 1.11 | N/A | mm |
Width (W) | 1.52 | 1.52 | N/A | mm |
Notch width (g) | N/A | 0.0084 | N/A | mm |
) | N/A | 0.15 | N/A | mm |
Quarter wave transformer patch | ||||
Parameter | Antenna 1 | Antenna 2 | Antenna 3 | units |
Transmission line Z1 | ||||
Length (L) | 0.726 | N/A | 0.935 | mm |
Width (W) | 0.082 | N/A | 0.082 | mm |
Transmission line Zc | ||||
Length (L) | 0.68 | 0.435 | 0.68 | mm |
Width (W) | 0.37 | 0.37 | 0.37 | mm |
Lower quarter wave transformer | ||||
Parameter | Antenna 1 | Antenna 2 | Antenna 3 | units |
Rin lower position | ||||
Length (L) | 0.68 | 0.68 | 0.68 | mm |
Width (W) | 0.37 | 0.37 | 0.37 | mm |
Z1 lower position | ||||
Length (L) | 0.705 | 0.705 | 0.705 | mm |
Width (W) | 0.2 | 0.2 | 0.2 | mm |
Zc lower position | ||||
Length (L) | 0.725 | 0.725 | 0.725 | mm |
Width (W) | 0.082 | 0.082 | 0.082 | mm |
Power combiner | ||||
Parameter | Antenna 1 | Antenna 2 | Antenna 3 | units |
1 | ||||
Length (L) | 0.725 | 0.725 | 0.725 | mm |
Width (W) | 0.082 | 0.082 | 0.082 | mm |
2 | ||||
Length (L) | 0.68 | 0.68 | 0.68 | mm |
Width (W) | 0.37 | 0.37 | 0.37 | mm |
3 | ||||
Length (L) | 0.725 | 0.725 | 0.725 | mm |
Width (W) | 0.082 | 0.082 | 0.082 | mm |
Square Patch Antenna with Coupling Length λ/4 (Antenna 1) | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | Port 1 | Port 2 | Port 4 | Port 6 | Port 8 | Port 12 | Port 16 | Port 32 |
Frequency (GHz) | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
Return Loss (dB) | −24.542 | −24.531 | −24.174 | −24.223 | −24.211 | −23.359 | −23.795 | −23.406 |
Bandwidth (GHz) | 1.5 | 1.5 | 1.52 | 1.52 | 1.5 | 1.52 | 1.5 | 1.46 |
Gain (dBi) | 8.42 | 11.654 | 14.325 | 16.102 | 17.326 | 18.959 | 20.02 | 23.335 |
Directivity (dBi) | 10.861 | 13.802 | 16.726 | 18.509 | 19.798 | 21.734 | 23.096 | 26.305 |
Beamwidth (°) | 22 | 10 | 10 | 6 | 4 | 4 | 4 | 4 |
Antenna efficiency (%) | 57.0033 | 60.9818 | 57.53075 | 57.4513 | 56.59786 | 52.7837 | 49.2493 | 50.4661 |
Square patch antenna with inset feed model (Antenna 2) | ||||||||
Parameter | Port 1 | Port 2 | Port 4 | Port 6 | Port 8 | Port 12 | Port 16 | Port 32 |
Frequency (GHz) | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
Return Loss (dB) | −20.425 | −20.475 | −21.552 | −21.575 | −21.616 | −21.312 | −21.717 | −21.301 |
Bandwidth (GHz) | 1.46 | 1.18 | 1.18 | 1.16 | 1.16 | 1.16 | 1.15 | 1.15 |
Gain (dBi) | 6.746 | 9.978 | 12.061 | 13.936 | 15.213 | 17.1865 | 19.028 | 22.176 |
Directivity (dBi) | 9.25 | 12.391 | 14.966 | 16.764 | 18.058 | 19.5471 | 20.6732 | 23.645 |
Beamwidth (°) | 20 | 10 | 10 | 6 | 4 | 4 | 4 | 4 |
Antenna efficiency (%) | 56.18236 | 57.372 | 51.22713 | 52.1435 | 51.93977 | 58.0684 | 68.4668 | 71.3017 |
Circular patch antenna with coupling length λ/4 (Antenna 3) | ||||||||
Parameter | Port 1 | Port 2 | Port 4 | Port 6 | Port 8 | Port 12 | Port 16 | Port 32 |
Frequency (GHz) | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
Return Loss (dB) | −35.722 | −34.93 | −36.424 | −37.063 | −36.833 | −38.022 | −39.643 | −42.988 |
Bandwidth (GHz) | 1.27 | 1.27 | 1.27 | 1.29 | 1.29 | 1.31 | 1.31 | 1.32 |
Gain (dBi) | 8.104 | 11.012 | 14.233 | 16.049 | 17.291 | 19.57 | 20.984 | 24.541 |
Directivity (dBi) | 10.861 | 13.876 | 16.846 | 18.708 | 20.029 | 21.963 | 23.221 | 26.317 |
Beamwidth (°) | 22 | 10 | 10 | 6 | 6 | 6 | 6 | 6 |
Antenna efficiency (%) | 53.00294 | 51.713 | 54.78984 | 54.2126 | 53.23534 | 57.6368 | 59.7448 | 66.4355 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez Quintero, J.C.; Estupiñán Cuesta, E.P.; Escobar Quiroga, G.L. Design, Analysis, and Simulation of 60 GHz Millimeter Wave MIMO Microstrip Antennas. J. Sens. Actuator Netw. 2022, 11, 59. https://doi.org/10.3390/jsan11040059
Martínez Quintero JC, Estupiñán Cuesta EP, Escobar Quiroga GL. Design, Analysis, and Simulation of 60 GHz Millimeter Wave MIMO Microstrip Antennas. Journal of Sensor and Actuator Networks. 2022; 11(4):59. https://doi.org/10.3390/jsan11040059
Chicago/Turabian StyleMartínez Quintero, Juan Carlos, Edith Paola Estupiñán Cuesta, and Gabriel Leonardo Escobar Quiroga. 2022. "Design, Analysis, and Simulation of 60 GHz Millimeter Wave MIMO Microstrip Antennas" Journal of Sensor and Actuator Networks 11, no. 4: 59. https://doi.org/10.3390/jsan11040059
APA StyleMartínez Quintero, J. C., Estupiñán Cuesta, E. P., & Escobar Quiroga, G. L. (2022). Design, Analysis, and Simulation of 60 GHz Millimeter Wave MIMO Microstrip Antennas. Journal of Sensor and Actuator Networks, 11(4), 59. https://doi.org/10.3390/jsan11040059