Identification of Quantitative Trait Loci Controlling High-Temperature Tolerance in Cucumber (Cucumis sativus L.) Seedlings
Abstract
:1. Introduction
2. Results
2.1. Characterization of Thermotolerance in Cucumber Seedlings
2.2. QTL Analysis of Thermotolerance in Cucumber Seedlings
2.3. Candidate Gene Analysis of Heat Stress Tolerance within Major QTL qHT3.2
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Phenotypic and Genetic Analysis of Thermotolerance
4.3. QTL Analysis of Heat Tolerance in HR and HP
4.4. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
QTL | quantitative trait loci |
RIL | recombinant inbred line |
DH | double haploid |
HII | heat injury index |
SY | Shunyi |
NK | Nankou |
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. Production Quantities of Cucumbers and Gherkins by Country. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 15 February 2020).
- Lobell, B.; Schlenker, W.; Costa, R.J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Mba, C.; Guimaraes, E.P.; Ghosh, K. Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric. Food Secur. 2012, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Meng, L. Studies on High Temperature Tolerance Character and Selection of High Temperature Tolerance Germplasm in Cucumber (Cucumis sativus L.). Master’s Thesis, Northest Agricultural University, Harbin, China, 2002. [Google Scholar]
- Yu, S.; Wang, Y. Inheritance of heat tolerance in cucumber. Acta Agric. Boreali-Sin. 2003, 18, 87–89. [Google Scholar]
- Xu, Q.; Zhuang, Y.; Lu, J.; Qi, X.; Chen, X. Genetic analysis of heat tolerance in cucumber seedlings. Mol. Plant Breed. 2017, 15, 5128–5133. [Google Scholar]
- Zhang, P. Genetic Analysis of Heat Tolerance in Cucumber. Master’s Thesis, Northest Agricultural University, Harbin, China, 2006. [Google Scholar]
- Yang, Y. Studies on the Heat Tolerance and Gene of Heat Stress Response Related in Cucumber. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2007. [Google Scholar]
- Yang, D. Mapping Quantitative Traits Loci for the Heat Tolerance in Cucumber. Master’s Thesis, Northest Agricultural University, Harbin, China, 2006. [Google Scholar]
- Chen, F.; Zhang, G.; Qian, W.; Han, Y.; Chen, D.; Du, S.; Chen, X. Analysis of molecular markers linked to heat tolerance QTL in cucumber. Acta Sci. Nat. Univ. Nankaiensis 2008, 41, 49–54. [Google Scholar]
- Zhuang, Y. Genetic Analysis and Preliminary QTL Mapping of Heat Tolerance in Cucumber (Cucumis sativus L.). Master’s Thesis, Yangzhou University, Yangzhou, China, 2014. [Google Scholar]
- Liu, K.; Chen, W. Research progress on plant heat stress tolerant genes. J. Plant Genet. Resour. 2015, 16, 127–132. [Google Scholar]
- Li, W.G.; Yang, Y.G.; Wei, Y.; Meng, J.L.; Chen, J.F. Expression of CSHSP70 gene changes of some physiological characters in cucumber seedlings during heat stress. J. Nanjing Agric. Univ. 2010, 33, 47–50. [Google Scholar]
- Chen, X.; Wang, Y.; Shi, J.; Zhu, L.; Wang, K.; Xu, J. Genome-wide identification, sequence characteristic and expression analysis of heat shock factors (HSFs) in cucumber. Hereditas 2014, 36, 376–386. [Google Scholar]
- Yan, S.; Che, G.; Ding, L.; Chen, Z.; Liu, X.; Wang, H.; Zhao, W.; Ning, K.; Zhao, J.; Tesfamichael, K.; et al. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Yu, B.; Yan, S.; Zhou, H.; Dong, R.; Lei, J.; Chen, C.; Cao, B. Overexpression of CsCaM3 improves high temperature tolerance in cucumber. Front. Plant Sci. 2018, 9, 797. [Google Scholar] [CrossRef]
- Bo, K.; Miao, H.; Wang, M.; Xie, X.; Song, Z.; Xie, Q.; Shi, L.; Wang, W.; Wei, S.; Zhang, S.; et al. Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. Theor. Appl. Genet. 2019, 132, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Kotak, S.; Larkindale, J.; Lee, U.; von Koskull-Döring, P.; Vierling, E.; Scharf, K.D. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 2007, 10, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Qu, A.L.; Ding, Y.F.; Jiang, Q.; Zhu, C. Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 2013, 432, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Maestri, E.; Klueva, N.; Perrotta, C.; Gulli, M.; Nguyen, H.T.; Marmiroli, N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 2002, 48, 667–681. [Google Scholar] [CrossRef]
- Kevin, C.K. Invited Review: Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Phys. 2002, 92, 2177–2186. [Google Scholar]
- Krishna, P. Plant responses to heat stress. Top. Curr. Genet. 2004, 4, 73–102. [Google Scholar]
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef]
- Swindell, W.R.; Huebner, M.; Weber, A.P. Transcriptional profiling of Arabidolasis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genom. 2007, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Sharma, A.; Mishra, M.; Mishra, R.K.; Chowdhuri, D.K. Heat shock proteins in toxicology: How clone and how far? Life Sci. 2010, 86, 377–384. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Hu, J.; Liu, J.; Liu, K. A heat shock protein gene, CsHsp45.9, involved in the response to diverse stresses in cucumber. Biochem. Genet. 2012, 50, 565–578. [Google Scholar] [CrossRef]
- Gujjar, R.S.; Akhtar, M.; Singh, M. Transcription factors in abiotic stress tolerance. Indian J. Plant. Physiol. 2014, 19, 306–316. [Google Scholar] [CrossRef]
- Ling, J.; Jiang, W.; Zhang, Y.; Yu, H.; Mao, Z.; Gu, X.; Huang, S.; Xie, B. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genom. 2011, 12, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloglu, M.C.; Eldem, V.; Hajyzadeh, M.; Unver, T. Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS ONE 2014, 9, e96014. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Liu, S. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet. Mol. Biol. 2011, 34, 624–634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, H.; Sun, C.; Deng, J.; Zhang, X.; Liu, P.; Jiang, W. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus. Plant Physiol. Biochem. 2017, 113, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhang, S.; Bo, K.L.; Wang, W.P.; Miao, H.; Dong, S.Y.; Zhang, S.P. Institute of Vegetables and Flowers; Chinese Academy of Agricultural Sciences. Evaluation and Genome-wide Association Study (GWAS) of Seedling Thermotolerance in Cucumber Core Germplasm. J. Plant Genet. Resour. 2019, 20, 1223–1231. [Google Scholar]
- Song, Z.; Wang, W.; Shi, L.; Zhang, S.; Xie, Q.; Wei, S.; Gu, X. Identification of QTL s controlling low-temperature tolerance during the germination stage in cucumber (Cucumis sativus L.). Plant Breed. 2018, 137, 629–637. [Google Scholar] [CrossRef]
- Van Ooijen, J.W. Accuracy of mapping quantitative trait loci in autogamous species. Theor. Appl. Genet. 1992, 84, 803–811. [Google Scholar] [CrossRef]
- Wang, Y.; Bo, K.; Gu, X.; Pan, J.; Li, Y.; Chen, J.; Wen, C.; Ren, Z.; Ren, H.; Chen, X.; et al. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hortic. Res. 2020, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Zhao, Z.; Qian, C.; Sui, Y.; Malik, A.A.; Chen, J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010, 399, 257–261. [Google Scholar] [CrossRef]
- Kenneth, J.L.; Thomas, D.S.; Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar]
Parental Line | F1 | RILs or DH Population | |||||||
---|---|---|---|---|---|---|---|---|---|
Population | Location | ‘65G’ | ‘02245’ | Means | SD | CV | Kurtosis | Skewness | |
HR (RILs) | SY | 76.9 ± 1.7 ** | 24.5 ± 4.5 | 44.8 | 68.3 ± 1.5 | 17.6 | 0.3 | 59.8 | −6.4 |
NK | 42.5 ± 2.5 * | 23.0 ± 1.5 | 30.7 | 26.8 ± 1.8 | 21.4 | 0.8 | −1.4 | 0.1 | |
HP (DH) | SY | 76.9 ± 1.7 ** | 24.5 ± 4.5 | 44.8 | 46.0 ± 1.3 | 13.8 | 0.3 | −0.6 | −0.1 |
NK | 42.5 ± 2.5 * | 23.0 ± 1.5 | 30.7 | 27.5 ± 2.0 | 21.4 | 0.8 | −1.6 | −0.1 |
Treatments | Populations | QTL | Chr. | Physical Pos. | Length (Kb) | Peak LOD | Exp% |
---|---|---|---|---|---|---|---|
SY | HR | qHT3.1 | 3 | 31236735–31344231 | 107.5 | 3.9 | 12.2 |
HP | qHT3.2 | 3 | 31699402–33960084 | 2260.7 | 5.9 | 27.6 | |
NK | HR | qHT3.2 | 3 | 32180242–32661417 | 481.2 | 10.1 | 28.3 |
HR | qHT4.1 | 4 | 21608172–21864140 | 256 | 4.5 | 13.7 | |
HR | qHT6.1 | 6 | 4439107–4498675 | 59.6 | 3.8 | 11.8 | |
HP | qHT3.3 | 3 | 4939077–5566247 | 627.2 | 5.7 | 13.1 | |
HP | qHT3.2 | 3 | 31776615–32667875 | 891.3 | 9.9 | 26.5 | |
HP | qHT4.2 | 4 | 18727523–18935103 | 207.6 | 3.3 | 16.6 |
Gene ID | Annotation |
---|---|
Csa3G822410 | HSP20-like chaperone |
Csa3G824920 | NBS-containing resistance-like protein |
Csa3G824940 | TIR-NBS-LRR resistance protein |
Csa3G823060 | Calmodulin-like protein 1 |
Csa3G825010 | Calmodulin-like protein |
Csa3G824990 | NAC domain protein |
Csa3G822440 | AP2-like ethylene-responsive transcription factor |
Csa3G825020 | Dof zinc finger protein |
Csa3G824850 | MYB transcription factor |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, S.; Zhang, S.; Wei, S.; Liu, Y.; Li, C.; Bo, K.; Miao, H.; Gu, X.; Zhang, S. Identification of Quantitative Trait Loci Controlling High-Temperature Tolerance in Cucumber (Cucumis sativus L.) Seedlings. Plants 2020, 9, 1155. https://doi.org/10.3390/plants9091155
Dong S, Zhang S, Wei S, Liu Y, Li C, Bo K, Miao H, Gu X, Zhang S. Identification of Quantitative Trait Loci Controlling High-Temperature Tolerance in Cucumber (Cucumis sativus L.) Seedlings. Plants. 2020; 9(9):1155. https://doi.org/10.3390/plants9091155
Chicago/Turabian StyleDong, Shaoyun, Song Zhang, Shuang Wei, Yanyan Liu, Caixia Li, Kailiang Bo, Han Miao, Xingfang Gu, and Shengping Zhang. 2020. "Identification of Quantitative Trait Loci Controlling High-Temperature Tolerance in Cucumber (Cucumis sativus L.) Seedlings" Plants 9, no. 9: 1155. https://doi.org/10.3390/plants9091155
APA StyleDong, S., Zhang, S., Wei, S., Liu, Y., Li, C., Bo, K., Miao, H., Gu, X., & Zhang, S. (2020). Identification of Quantitative Trait Loci Controlling High-Temperature Tolerance in Cucumber (Cucumis sativus L.) Seedlings. Plants, 9(9), 1155. https://doi.org/10.3390/plants9091155