Tomato Metabolic Changes in Response to Tomato-Potato Psyllid (Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum
Abstract
:1. Introduction
2. Results
2.1. Untargeted Metabolomic Analysis Showcases the Global Differential Induction of Non-Volatile Metabolites in the Presence of TPP or TPP with Lso
2.2. Phenolic Metabolites in Tomato Show Both Constitutive Genotype-Dependent and Treatment-Specific Induced Differences in Response to TPP and Lso
2.3. Defense Hormones and Signaling Molecules Show Constitutive Abundance Determined by the Presence of TPP and/or Lso in Susceptible and Resistant Tomato
2.4. Only a Handful of Volatile Metabolites of the Fatty Acid Derivatives, Monoterpene, Norisoprenoids, Phenylpropanoid-Derivatives and Sesquiterpenes Show Significantly Altered Abundance Associated with Resistance to TPP
3. Discussion
3.1. Tomato Phenolic Composition Is Differentially Regulated in Susceptible and Resistant Plants in Response to TPP-Lso Infestation
3.2. Differential Constitutive, and in Some Cases Antagonistic Alternating Roles of Plant Hormones May be Implicated in the Unexpected Contrasting Abundances
3.3. Volatile Metabolite Profiles Are Differentially Elicited on Susceptible and Resistant Plants in Response to TPP Vectoring or Not the Lso
4. Materials and Methods
4.1. Chemicals
4.2. Plant Materials and Experimental Design
4.3. Insect Colonies
4.4. Analysis of Plant Phenolics by UPLC/ESI-HR-QTOFMS
4.5. Estimation of Plant Phytohormones by UPLC/ESI-HR-QTOFMS
4.6. Analysis of Volatile Metabolic Profiles by HS-SPME/GC-MS
4.6.1. Sample Preparation
4.6.2. HS-SPME/GC-MS Analysis Conditions
4.6.3. Identification and Quantification Volatile Metabolites
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Butler, C.D.; Trumble, J.T. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): Life history, relationship to plant diseases, and management strategies. Terr. Arthropod Rev. 2012, 5, 87–111. [Google Scholar] [CrossRef]
- Liu, D.; Trumble, J.T.; Stouthamer, R. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomol. Exp. Appl. 2006, 118, 177–183. [Google Scholar] [CrossRef]
- Munyaneza, J.E.; Mustafa, T.; Fisher, T.W.; Sengoda, V.G.; Horton, D.R. Assessing the Likelihood of Transmission of Candidatus Liberibacter solanacearum to Carrot by Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae). PLoS ONE 2016, 11, e0161016. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Levy, J.; Tamborindeguy, C. Solanum habrochaites, a potential source of resistance against Bactericera cockerelli (Hemiptera: Triozidae) and “Candidatus Liberibacter solanacearum”. J. Econ. Entomol. 2014, 107, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.A.; Marconi, T.G.; Viloria, Z.; Kurpis, J.; Del Rio, S.Y. Bactericera cockerelli resistance in the wild tomato Solanum habrochaites is polygenic and influenced by the presence of Candidatus Liberibacter solanacearum. Sci. Rep. 2019, 9, 14031. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wallis, C.M.; Munyaneza, J.E.; Chen, J.; Novy, R.; Bester, G.; Buchman, J.L.; Nordgaard, J.; van Hest, P. ‘Candidatus Liberibacter solanacearum’ titers in and infection effects on potato tuber chemistry of promising germplasm exhibiting tolerance to Zebra Chip disease. Phytopathology 2015, 105, 1573–1584. [Google Scholar] [CrossRef][Green Version]
- Levy, J.G.; Mendoza, A.; Miller, J.C., Jr.; Tamborindeguy, C.; Pierson, E.A. Global gene expression in two potato cultivars in response to ‘Candidatus Liberibacter solanacearum’ infection. BMC Genom. 2017, 18, 960. [Google Scholar] [CrossRef]
- Harrison, K.; Tamborindeguy, C.; Scheuring, D.C.; Herrera, A.M.; Silva, A.; Badillo-Vargas, I.E.; Miller, J.C.; Levy, J.G. Differences in Zebra Chip severity between ‘Candidatus Liberibacter solanacearum’ haplotypes in Texas. Am. Potato J. 2018, 96, 86–93. [Google Scholar] [CrossRef]
- Huot, O.B.; Levy, J.G.; Tamborindeguy, C. Global gene regulation in tomato plant (Solanum lycopersicum) responding to vector (Bactericera cockerelli) feeding and pathogen (‘Candidatus Liberibacter solanacearum’) infection. Plant Mol. Biol. 2018, 97, 57–72. [Google Scholar] [CrossRef]
- Bautista-Lozada, A.; Espinosa-Garcia, F.J. Odor uniformity among tomato individuals in response to herbivore depends on insect species. PLoS ONE 2013, 8, e77199. [Google Scholar] [CrossRef][Green Version]
- Mumm, R.; Dicke, M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 2010, 88, 628–667. [Google Scholar] [CrossRef]
- Gasmi, L.; Martinez-Solis, M.; Frattini, A.; Ye, M.; Collado, M.C.; Turlings, T.C.J.; Erb, M.; Herrero, S. Can herbivore-induced volatiles protect plants by increasing the herbivores’ susceptibility to natural pathogens? Appl. Environ. Microbiol. 2019, 85, e01468-01418. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, Y.; Peng, Q.; Selimi, D.; Wang, Q.; Charkowski, A.O.; Chen, X.; Yang, C.H. The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl Environ. Microbiol. 2009, 75, 1223–1228. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Di, X.; Takken, F.L.; Tintor, N. How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Front. Plant Sci. 2016, 7, 170. [Google Scholar] [CrossRef][Green Version]
- Casteel, C.L.; Hansen, A.K.; Walling, L.L.; Paine, T.D. Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous. PLoS ONE 2012, 7, e35191. [Google Scholar] [CrossRef]
- Mas, F.; Vereijssen, J.; Suckling, D.M. Influence of the pathogen Candidatus Liberibacter solanacearum on tomato host plant volatiles and psyllid vector settlement. J. Chem. Ecol. 2014, 40, 1197–1202. [Google Scholar] [CrossRef]
- Kasote, D.M.; Lee, J.H.J.; Jayaprakasha, G.K.; Patil, B.S. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 2019, 7, 5142–5151. [Google Scholar] [CrossRef]
- Lee, J.H.J.; Jayaprakasha, G.K.; Rush, C.M.; Crosby, K.M.; Patil, B.S. Production system influences volatile biomarkers in tomato. Metabolomics 2018, 14, 99. [Google Scholar] [CrossRef]
- Galeano Garcia, P.; Neves Dos Santos, F.; Zanotta, S.; Eberlin, M.N.; Carazzone, C. Metabolomics of Solanum lycopersicum Infected with Phytophthora infestans leads to early detection of late blight in asymptomatic plants. Molecules 2018, 23, 3330. [Google Scholar] [CrossRef][Green Version]
- Rashed, A.; Wallis, C.M.; Paetzold, L.; Workneh, F.; Rush, C.M. Zebra chip disease and potato biochemistry: Tuber physiological changes in response to ‘Candidatus Liberibacter solanacearum’ infection over time. Phytopathology 2013, 103, 419–426. [Google Scholar] [CrossRef][Green Version]
- Nissinen, A.I.; Lemmetty, A.; Pihlava, J.M.; Jauhiainen, L.; Munyaneza, J.E.; Vanhala, P. Effects of carrot psyllid (Trioza apicalis) feeding on carrot yield and content of sugars and phenolic compounds. Ann. Appl. Biol. 2012, 161, 68–80. [Google Scholar] [CrossRef]
- Cirak, C.; Radusiene, J.; Aksoy, H.M.; Mackinaite, R.; Stanius, Z.; Camas, N.; Odabas, M.S. Differential phenolic accumulation in two Hypericum species in response to inoculation with Diploceras hypericinum and Pseudomonasputida. Plant Prot. Sci. 2014, 50, 119–128. [Google Scholar] [CrossRef][Green Version]
- Villarino, M.; Sandin-Espana, P.; Melgarejo, P.; De Cal, A. High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis. J. Agric. Food Chem. 2011, 59, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.B.; Yao, D.M.; Zhang, T.; Walling, L.L.; Yang, M.; Wang, Y.J.; Liu, S.S. Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol. Lett. 2013, 16, 390–398. [Google Scholar] [CrossRef]
- Munyaneza, J.E.; Fisher, T.W.; Sengoda, V.G.; Garczynski, S.F.; Nissinen, A.; Lemmetty, A. Association of “Candidatus Liberibacter solanacearum” with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe. J. Econ. Entomol. 2010, 103, 1060–1070. [Google Scholar] [CrossRef]
- Shivashankar, S.; Sumathi, M.; Krishnakumar, N.K.; Rao, V.K. Role of phenolic acids and enzymes of phenylpropanoid pathway in resistance of chayote fruit (Sechium edule) against infestation by melon fly, Bactrocera cucurbitae. Ann. Appl. Biol. 2015, 166, 420–433. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Niggeweg, R.; Michael, A.J.; Martin, C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 2004, 22, 746–754. [Google Scholar] [CrossRef]
- Kundu, A.; Mishra, S.; Vadassery, J. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta 2018, 248, 981–997. [Google Scholar] [CrossRef]
- Bernards, M.A.; Båstrup-Spohr, L. Phenylpropanoid metabolism induced by wounding and insect herbivory. In Induced Plant Resistance to Herbivory; Springer: New York, NY, USA, 2008; pp. 189–211. [Google Scholar]
- Rehman, F.; Khan, F.; Badruddin, S. Role of phenolics in plant defense against insect herbivory. In Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives; Springer: New York, NY, USA, 2012; pp. 309–313. [Google Scholar]
- López-Gresa, M.P.; Torres, C.; Campos, L.; Lisón, P.; Rodrigo, I.; Bellés, J.M.; Conejero, V. Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ. Exp. Bot. 2011, 74, 216–228. [Google Scholar] [CrossRef]
- McKeehen, J.D.; Busch, R.H.; Fulcher, R.G. Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J. Agric. Food Chem. 1999, 47, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Vanstraelen, M.; Benkova, E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 2012, 28, 463–487. [Google Scholar] [CrossRef] [PubMed]
- Robert-Seilaniantz, A.; Grant, M.; Jones, J.D. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 2011, 49, 317–343. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.L.; Li, Q.; Deng, Y.W.; Lou, Y.G.; Wang, M.Y.; Zhou, G.X.; Zhang, Y.Y.; He, Z.H. Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol. Plant 2008, 1, 528–537. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Leontovycova, H.; Kalachova, T.; Trda, L.; Pospichalova, R.; Lamparova, L.; Dobrev, P.I.; Malinska, K.; Burketova, L.; Valentova, O.; Janda, M. Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Sci. Rep. 2019, 9, 10397. [Google Scholar] [CrossRef][Green Version]
- Grosskinsky, D.K.; Edelsbrunner, K.; Pfeifhofer, H.; van der Graaff, E.; Roitsch, T. Cis- and trans-zeatin differentially modulate plant immunity. Plant Signal. Behav. 2013, 8, e24798. [Google Scholar] [CrossRef]
- Pandey, S.P.; Somssich, I.E. The role of WRKY transcription factors in plant immunity. Plant Physiol. 2009, 150, 1648–1655. [Google Scholar] [CrossRef][Green Version]
- Lü, G.; Guo, S.; Zhang, H.; Geng, L.; Song, F.; Fei, Z.; Xu, Y. Transcriptional profiling of watermelon during its incompatible interaction with Fusarium oxysporum f. sp. niveum. Eur. J. Plant Pathol. 2011, 131, 585–601. [Google Scholar] [CrossRef]
- Pieterse, C.M.; van Loon, L.C. Salicylic acid-independent plant defence pathways. Trends. Plant Sci. 1999, 4, 52–58. [Google Scholar] [CrossRef][Green Version]
- Loake, G.; Grant, M. Salicylic acid in plant defence-the players and protagonists. Curr. Opin. Plant Biol. 2007, 10, 466–472. [Google Scholar] [CrossRef]
- Mutka, A.M.; Fawley, S.; Tsao, T.; Kunkel, B.N. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J. 2013, 74, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jones, B.; Li, Z.; Frasse, P.; Delalande, C.; Regad, F.; Chaabouni, S.; Latché, A.; Pech, J.-C.; Bouzayen, M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 2005, 17, 2676–2692. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Valenzuela-Soto, J.H.; Estrada-Hernandez, M.G.; Ibarra-Laclette, E.; Delano-Frier, J.P. Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 2010, 231, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Cajka, T.; Vaclavikova, M.; Dzuman, Z.; Vaclavik, L.; Ovesna, J.; Hajslova, J. Rapid LC-MS-based metabolomics method to study the Fusarium infection of barley. J. Sep. Sci. 2014, 37, 912–919. [Google Scholar] [CrossRef]
- Augustyn, W.A.; Regnier, T.; Combrinck, S.; Botha, B.M. Metabolic profiling of mango cultivars to identify biomarkers for resistance against Fusarium infection. Phytochem. Lett. 2014, 10. [Google Scholar] [CrossRef]
- Dennis, J.J.C.; Guest, D.I. Acetylsalicylic-acid and beta-ionone decrease the susceptibility of tobacco to tobacco necrosis virus and phytophthora-parasitica var Nicotianae. Australas. Plant Pathol. 1995, 24, 57–64. [Google Scholar] [CrossRef]
- Salt, S.D.; Tuzun, S.; Kuć, J. Effects of β-ionone and abscisic acid on the growth of tobacco and resistance to blue mold. Mimicry of effects of stem infection by Peronospora tabacina Adam. Physiol. Mol. Plant Pathol. 1986, 28, 287–297. [Google Scholar] [CrossRef]
- Shiojiri, K.; Kishimoto, K.; Ozawa, R.; Kugimiya, S.; Urashimo, S.; Arimura, G.; Horiuchi, J.; Nishioka, T.; Matsui, K.; Takabayashi, J. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proc. Natl. Acad. Sci. USA 2006, 103, 16672–16676. [Google Scholar] [CrossRef][Green Version]
- Brown, G.C.; Prochaska, G.L.; Hildebrand, D.F.; Nordin, G.L.; Jackson, D.M. Green leaf volatiles inhibit conidial germination of the entomopathogen pandora neoaphidis (Entomopthorales: Entomophthoraceae). Environ. Entomol. 1995, 24, 1637–1643. [Google Scholar] [CrossRef]
- Scala, A.; Allmann, S.; Mirabella, R.; Haring, M.A.; Schuurink, R.C. Green leaf volatiles: A plant’s multifunctional weapon against herbivores and pathogens. Int. J. Mol. Sci. 2013, 14, 17781–17811. [Google Scholar] [CrossRef][Green Version]
- Croft, K.; Juttner, F.; Slusarenko, A.J. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol. 1993, 101, 13–24. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ament, K.; Kant, M.R.; Sabelis, M.W.; Haring, M.A.; Schuurink, R.C. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 2004, 135, 2025–2037. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cao, J.-q.; Pang, X.; Guo, S.-s.; Wang, Y.; Geng, Z.-f.; Sang, Y.-l.; Guo, P.-j.; Du, S.-s. Pinene-rich essential oils from Haplophyllum dauricum (L.) G. Don display anti-insect activity on two stored-product insects. Int. Biodeterior. Biodegrad. 2019, 140, 1–8. [Google Scholar] [CrossRef]
- Sade, D.; Shriki, O.; Cuadros-Inostroza, A.; Tohge, T.; Semel, Y.; Haviv, Y.; Willmitzer, L.; Fernie, A.R.; Czosnek, H.; Brotman, Y. Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 2014, 11, 81–97. [Google Scholar] [CrossRef]
- Schmidt, D.D.; Voelckel, C.; Hartl, M.; Schmidt, S.; Baldwin, I.T. Specificity in ecological interactions: Attack from the same lepidopteran herbivore results in species-specific transcriptional responses in two solanaceous host plants. Plant Physiol. 2005, 138, 1763–1773. [Google Scholar] [CrossRef][Green Version]
- Bleeker, P.M.; Mirabella, R.; Diergaarde, P.J.; VanDoorn, A.; Tissier, A.; Kant, M.R.; Prins, M.; de Vos, M.; Haring, M.A.; Schuurink, R.C. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc. Natl. Acad. Sci. USA 2012, 109, 20124–20129. [Google Scholar] [CrossRef][Green Version]
- He, W.B.; Li, J.; Liu, S.S. Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus. Sci. Rep. 2015, 5, 7682. [Google Scholar] [CrossRef][Green Version]
- Lin, Y.; Qasim, M.; Hussain, M.; Akutse, K.S.; Avery, P.B.; Dash, C.K.; Wang, L. The Herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi. Sci. Rep. 2017, 7, 40494. [Google Scholar] [CrossRef]
- Schmidt, K.; Heberle, B.; Kurrasch, J.; Nehls, R.; Stahl, D.J. Suppression of phenylalanine ammonia lyase expression in sugar beet by the fungal pathogen Cercospora beticola is mediated at the core promoter of the gene. Plant Mol. Biol. 2004, 55, 835–852. [Google Scholar] [CrossRef]
- Kasote, D.M.; Jayaprakasha, G.K.; Singh, J.; Ong, K.; Crosby, K.M.; Patil, B.S. Metabolomics-based biomarkers of Fusarium wilt disease in watermelon plants. J. Plant Dis Protect. 2020, 127, 591–596. [Google Scholar] [CrossRef]
- Monforte, A.J.; Tanksley, S.D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome 2000, 43, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.A.; Arévalo-Soliz, L.M.; Jia, L.; Navarre, D.A.; Chen, Z.; Howe, G.A.; Meng, Q.-W.; Smith, J.E.; Goggin, F.L. Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner. Plant Physiol. 2012, 158, 2028–2041. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Avila, C.A.; Arevalo-Soliz, L.M.; Lorence, A.; Goggin, F.L. Expression of α-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids. Mol. Plant Microbe Interact. 2013, 26, 977–986. [Google Scholar] [CrossRef][Green Version]
- Mustafa, T.; Horton, D.R.; Cooper, W.R.; Swisher, K.D.; Zack, R.S.; Pappu, H.R.; Munyaneza, J.E. Use of electrical penetration graph technology to examine transmission of ‘Candidatus Liberibacter solanacearum’to potato by three haplotypes of potato psyllid (Bactericera cockerelli; Hemiptera: Triozidae). PLoS ONE 2015, 10, e0138946. [Google Scholar] [CrossRef] [PubMed]
- Liefting, L.W.; Sutherland, P.W.; Ward, L.I.; Paice, K.L.; Weir, B.S.; Clover, G.R.G. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant. Dis. 2009, 93, 208–214. [Google Scholar] [CrossRef][Green Version]
- Jagoueix, S.; Bove, J.M.; Garnier, M. PCR detection of the two ‘Candidatus’ Liberobacter species associated with greening disease of citrus. Mol. Cell Probes 1996, 10, 43–50. [Google Scholar] [CrossRef]
- Lin, H.; Islam, M.S.; Bai, Y.; Wen, A.; Lan, S.; Gudmestad, N.C.; Civerolo, E.L. Genetic diversity of ‘Cadidatus Liberibacter solanacearum’ strains in the United States and Mexico revealed by simple sequence repeat markers. Eur. J. Plant. Pathol. 2011, 132, 297–308. [Google Scholar] [CrossRef][Green Version]
- Kasote, D.M.; Jayaprakasha, G.K.; Patil, B.S. Leaf disc assays for rapid measurement of antioxidant activity. Sci. Rep. 2019, 9, 1884. [Google Scholar] [CrossRef]
- Lopez-Gresa, M.P.; Paya, C.; Ozaez, M.; Rodrigo, I.; Conejero, V.; Klee, H.; Belles, J.M.; Lison, P. A new role for green leaf volatile esters in tomato stomatal defense against Pseudomonas syringe pv. tomato. Front. Plant Sci. 2018, 9, 1855. [Google Scholar] [CrossRef]
- Lee, J.H.J.; Jayaprakasha, G.K.; Avila, C.A.; Crosby, K.M.; Patil, B.S. Metabolomic studies of volatiles from tomatoes grown in net-house and open-field conditions. Food Chem. 2019, 275, 282–291. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Xu, Y.; Liang, J.; Chang, P.; Yan, F.; Li, M.; Liang, Y.; Zou, Z. Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front. Plant Sci. 2015, 6, 1042. [Google Scholar] [CrossRef] [PubMed][Green Version]
No. | RT | Compounds | Class of Volatile Metabolite | KI | ID | CM | LA | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | TPP-Lso (−) | TPP-Lso (+) | Control | TPP-Lso (−) | TPP-Lso (+) | ||||||
1 | 4.63 | Hexanal | Fatty acid-derived | 830 | MS, KI, ST | 10.57 ± 0.77a | 3.96 ± 1.02b | 1.48 ± 0.27b | 2.57 ± 0.34b | 2.72 ± 0.86b | 14.92 ± 2.65a |
2 | 5.71 | (E)-2-Hexenal | Fatty acid-derived | 872 | MS, KI, ST | 230.63 ± 22.94bc | 223.99 ± 42.87bc | 141.97 ± 17.01c | 309.03 ± 43.91b | 257.62 ± 31.03bc | 492.11 ± 51.39a |
3 | 7.5 | 2,4-Hexadienal | Fatty acid-derived | 928 | MS, KI | 0.99 ± 0.19a | 0.85 ± 0.17a | 0.74 ± 0.16a | 1.32 ± 0.38a | 0.91 ± 0.17a | 1.72 ± 0.57a |
4 | 14.02 | 3,5-Octadien-2-one | Fatty acid-derived | 1080 | MS, KI | 1.17 ± 0.24a | 1.35 ± 0.25a | 0.47 ± 0.10ab | 1.23 ± 0.42a | 0.21 ± 0.04b | 0.73 ± 0.09ab |
5 | 14.15 | 2-Octanol | Fatty acid-derived | 1083 | MS, KI | 1.97 ± 0.25ab | 2.61 ± 0.12a | 1.27 ± 0.17bc | 1.58 ± 0.41bc | 0.75 ± 0.08c | 1.00 ± 0.14c |
6 | 20.81 | Decanal | Fatty acid-derived | 1197 | MS, KI, ST | 2.63 ± 0.14a | 2.53 ± 0.10bc | 2.41 ± 0.16bc | 3.09 ± 0.27a | 1.85 ± 0.11b | 2.93 ± 0.22a |
7 | 30.02 | Dodecanal | Fatty acid-derived | 1398 | MS, KI | 11.69 ± 0.96a | 9.51 ± 0.66ab | 9.30 ± 0.91ab | 12.28 ± 1.06a | 6.32 ± 0.44b | 9.31 ± 0.55ab |
8 | 38.21 | Tetradecanal | Fatty acid-derived | 1601 | MS, KI | 1.62 ± 0.12a | 1.32 ± 0.12abc | 1.18 ± 0.13bcd | 1.60 ± 0.10ab | 0.80 ± 0.05d | 1.10 ± 0.07cd |
9 | 8.13 | α-Pinene | Monoterpene | 944 | MS, KI, ST | 4.74 ± 0.44b | 7.98 ± 1.12a | 5.76 ± 0.92ab | 4.42 ± 0.50b | 6.40 ± 0.47ab | 5.48 ± 0.62ab |
10 | 10.19 | β-Pinene | Monoterpene | 986 | MS, KI | 6.45 ± 1.29c | 9.96 ± 1.10bc | 5.37 ± 1.06c | 18.8 ± 1.31a | 13.53 ± 2.01ab | 14.60 ± 2.38ab |
11 | 10.56 | 2-Carene | Monoterpene | 996 | MS, KI | 93.43 ± 8.60a | 141.57 ± 15.49a | 103.56 ± 14.01a | 103.45 ± 10.52a | 103.99 ± 9.37a | 114.66 ± 12.03a |
12 | 10.86 | 3-Carene | Monoterpene | 1004 | MS, KI | 40.80 ± 4.27a | 62.07 ± 7.64a | 47.89 ± 7.00a | 47.42 ± 4.92a | 44.15 ± 4.39a | 45.18 ± 5.43a |
13 | 11.41 | α-Terpinene | Monoterpene | 1019 | MS, KI, ST | 9.01 ± 1.30a | 13.27 ± 1.69a | 11.72 ± 1.75a | 12.79 ± 0.39a | 14.87 ± 1.58a | 14.37 ± 1.55a |
14 | 11.79 | P-Cymene | Monoterpene | 1029 | MS, KI, ST | 3.62 ± 0.58c | 5.11 ± 0.68bc | 3.50 ± 0.61c | 4.25 ± 0.46c | 10.58 ± 1.55a | 8.55 ± 0.96ab |
15 | 12.07 | β-Phellandrene | Monoterpene | 1036 | MS, KI, ST | 476.35 ± 40.23a | 701.74 ± 75.28a | 519.46 ± 74.65a | 538.26 ± 51.54a | 503.77 ± 39.98a | 493.63 ± 47.56a |
16 | 12.92 | β-Ocimene | Monoterpene | 1056 | MS, KI | 3.52 ± 0.33a | 5.05 ± 0.53a | 4.63 ± 0.99a | 5.59 ± 0.83a | 3.15 ± 0.41a | 3.62 ± 0.47a |
17 | 13.43 | γ-Terpinen | Monoterpene | 1067 | MS, KI, ST | 0.64 ± 0.08b | 1.08 ± 0.11a | 0.69 ± 0.10b | 0.69 ± 0.09b | 0.80 ± 0.05ab | 0.74 ± 0.09ab |
18 | 14.75 | Terpinolen | Monoterpene | 1095 | MS, KI, ST | 1.23 ± 0.15a | 2.15 ± 0.30a | 1.62 ± 0.33a | 1.66 ± 0.20a | 1.24 ± 0.14a | 1.27 ± 0.15a |
19 | 15.7 | α-Campholenal | Monoterpene | 1114 | MS, KI | 2.75 ± 0.09a | 3.01 ± 0.14a | 3.50 ± 0.62a | 3.46 ± 0.15a | 3.29 ± 0.11a | 3.53 ± 0.05a |
20 | 16.27 | Alloocimene | Monoterpene | 1124 | MS, KI | 0.43 ± 0.10abc | 0.78 ± 0.15a | 0.72 ± 0.12ab | 0.39 ± 0.05abc | 0.30 ± 0.04c | 0.31 ± 0.05bc |
21 | 22.32 | Cuminal | Monoterpene | 1234 | MS, KI | 0.67 ± 0.05b | 1.01 ± 0.08a | 1.14 ± 0.15a | 0.66 ± 0.06b | 0.17 ± 0.01c | 0.31 ± 0.02c |
22 | 22.85 | Piperitone | Monoterpene | 1247 | MS, KI | 0.43 ± 0.03a | 0.42 ± 0.03ab | 0.45 ± 0.06a | 0.31 ± 0.03abc | 0.28 ± 0.03bc | 0.25 ± 0.03c |
23 | 21.22 | β-Cyclocitral | Norisoprenoids | 1206 | MS, KI, ST | 4.53 ± 0.48bc | 5.18 ± 0.74bc | 3.17 ± 0.35c | 6.33 ± 0.89b | 4.29 ± 0.42bc | 9.23 ± 0.94a |
24 | 22.93 | β-Cyclohomocitral | Norisoprenoids | 1249 | MS, KI | 0.54 ± 0.07ab | 0.60 ± 0.12ab | 0.42 ± 0.02b | 0.71 ± 0.10ab | 0.42 ± 0.03b | 0.79 ± 0.06a |
25 | 30.39 | α-Ionone | Norisoprenoids | 1407 | MS, KI | 1.53 ± 0.22ab | 1.75 ± 0.35ab | 0.98 ± 0.08b | 2.54 ± 0.34a | 1.70 ± 0.23ab | 2.56 ± 0.38a |
26 | 32.71 | β-Ionone | Norisoprenoids | 1469 | MS, KI, ST | 18.77 ± 2.28abc | 19.48 ± 2.70abc | 11.33 ± 1.34c | 22.01 ± 3.41ab | 14.81 ± 1.42bc | 26.93 ± 2.36a |
27 | 32.83 | β-Ionone-5,6-epoxide | Norisoprenoids | 1472 | MS, KI | 2.37 ± 0.33bc | 2.37 ± 0.43bc | 1.53 ± 0.17c | 3.26 ± 0.53ab | 2.27 ± 0.23bc | 4.11 ± 0.38a |
28 | 44.68 | Farnesylacetone | Norisoprenoids | 1906 | MS, KI, ST | 0.25 ± 0.04a | 0.16 ± 0.03a | 0.37 ± 0.16a | 0.20 ± 0.04a | 0.17 ± 0.02a | 0.19 ± 0.02a |
29 | 19.9 | Methyl salicylate | PA-derived | 1184 | MS, KI, ST | 10.17 ± 1.52a | 9.38 ± 1.08ab | 7.22 ± 1.14ab | 5.99 ± 0.63ab | 2.78 ± 0.47b | 2.76 ± 0.22b |
30 | 21.34 | Benzothiazole | PA-derived | 1209 | MS, KI, ST | 2.97 ± 0.19a | 2.90 ± 0.13a | 2.66 ± 0.15a | 2.91 ± 0.27a | 1.36 ± 0.08b | 1.35 ± 0.09b |
31 | 23.52 | Ethyl salicylate | PA-derived | 1263 | MS, KI | 0.34 ± 0.08a | 0.86 ± 0.40a | 0.28 ± 0.03a | 0.35 ± 0.07a | 0.09 ± 0.03a | 0.21 ± 0.05a |
32 | 27.31 | Eugenol | PA-derived | 1345 | MS, KI | 2.09 ± 0.24a | 1.59 ± 0.12ab | 1.17 ± 0.18bcd | 1.48 ± 0.23abc | 0.64 ± 0.05d | 0.85 ± 0.14cd |
33 | 38.4 | Benzophenone | PA-derived | 1609 | MS, KI | 1.33 ± 0.07a | 1.36 ± 0.03a | 1.18 ± 0.07a | 1.24 ± 0.07a | 0.64 ± 0.04b | 0.81 ± 0.04b |
34 | 26.63 | δ-Elemene | Sesquiterpenes | 1331 | MS, KI | 2.91 ± 0.37cd | 5.90 ± 0.81a | 5.51 ± 0.79ab | 3.30 ± 0.50bc | 0.92 ± 0.42d | 2.56 ± 0.26cd |
35 | 29 | β-Elemene | Sesquiterpenes | 1379 | MS, KI | 3.07 ± 0.23bc | 3.97 ± 0.37abc | 2.83 ± 0.38c | 4.49 ± 0.50a | 3.02 ± 0.23bc | 4.27 ± 0.25ab |
36 | 30.17 | β-Caryophyllene | Sesquiterpenes | 1401 | MS, KI, ST | 29.97 ± 4.09b | 48.28 ± 5.07ab | 42.93 ± 7.83ab | 56.07 ± 7.73a | 36.42 ± 4.14ab | 37.16 ± 2.95ab |
37 | 30.71 | γ-Elemene | Sesquiterpenes | 1416 | MS, KI | 1.10 ± 0.16ab | 1.37 ± 0.24ab | 0.75 ± 0.10b | 1.71 ± 0.34b | 1.22 ± 0.19ab | 1.19 ± 0.25ab |
38 | 31.15 | Aristolene | Sesquiterpenes | 1428 | MS, KI | 1.10 ± 0.15a | 1.10 ± 0.14a | 0.97 ± 0.17ab | 0.98 ± 0.12ab | 0.55 ± 0.06b | 0.57 ± 0.05b |
39 | 31.67 | α-Humulene | Sesquiterpenes | 1442 | MS, KI | 8.54 ± 1.24b | 11.76 ± 1.24ab | 11.99 ± 2.11ab | 14.59 ± 1.61a | 9.49 ± 1.04ab | 9.44 ± 0.77ab |
40 | 33.04 | Valencene | Sesquiterpenes | 1478 | MS, KI, ST | 0.35 ± 0.038a | 0.50 ± 0.07a | 0.51 ± 0.11a | 0.35 ± 0.05a | 0.26 ± 0.03a | 0.28 ± 0.03a |
41 | 33.74 | β-Guaiene | Sesquiterpenes | 1495 | MS, KI | 0.70 ± 0.06ab | 0.93 ± 0.09a | 0.91 ± 0.18a | 0.55 ± 0.10ab | 0.33 ± 0.08b | 0.45 ± 0.07b |
42 | 34.41 | Dihydroactinidiolide | Sesquiterpenes | 1512 | MS, KI | 2.46 ± 0.37a | 2.27 ± 0.37a | 1.80 ± 0.22a | 2.50 ± 0.42a | 2.08 ± 0.22a | 3.17 ± 0.43a |
43 | 36.68 | Caryophyllene Oxide | Sesquiterpenes | 1566 | MS, KI | 0.72 ± 0.12c | 0.99 ± 0.13c | 0.70 ± 0.12c | 1.83 ± 0.25a | 1.18 ± 0.12bc | 1.63 ± 0.17ab |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
H.J. Lee, J.; O. Awika, H.; K. Jayaprakasha, G.; A. Avila, C.; M. Crosby, K.; S. Patil, B. Tomato Metabolic Changes in Response to Tomato-Potato Psyllid (Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum. Plants 2020, 9, 1154. https://doi.org/10.3390/plants9091154
H.J. Lee J, O. Awika H, K. Jayaprakasha G, A. Avila C, M. Crosby K, S. Patil B. Tomato Metabolic Changes in Response to Tomato-Potato Psyllid (Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum. Plants. 2020; 9(9):1154. https://doi.org/10.3390/plants9091154
Chicago/Turabian StyleH.J. Lee, Jisun, Henry O. Awika, Guddadarangavvanahally K. Jayaprakasha, Carlos A. Avila, Kevin M. Crosby, and Bhimanagouda S. Patil. 2020. "Tomato Metabolic Changes in Response to Tomato-Potato Psyllid (Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum" Plants 9, no. 9: 1154. https://doi.org/10.3390/plants9091154