Effects of Hot Air Treatments on Postharvest Storage of Newhall Navel Orange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preliminary Studies
2.3. Decay Percentage and Weight Loss Determination for Preliminary Studies
2.4. Main Studies
2.5. Biochemical Quality Analysis
2.5.1. TSS and Total Sugar
2.5.2. TA and VC
2.5.3. Respiration Rate
2.5.4. MDA Content
2.5.5. Protective Enzymes Activities
2.6. Statistical Analysis
3. Results
3.1. Hot Air Flow (HAF) Treatments on Decay Percentage and Weight Loss of Navel Orange
3.2. Effects of HAF on Some of the Postharvest Fruit Quality Parameters
3.3. Effect of HAF on Respiration Rate and MDA Content of Navel Orange
3.4. Effects of HAF on Enzyme Activities of SOD, POD, and PPO of Navel Orange
3.5. Relationships between the Observed Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Albertini, M.V.; Carcouet, E.; Pailly, O.; Gambotti, C.; Luro, F.; Berti, L. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J. Agric. Food Chem. 2006, 54, 8335–8339. [Google Scholar] [CrossRef]
- Zeng, K.F.; Deng, Y.Y.; Ming, J.; Deng, L.L. Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci. Hortic. 2010, 126, 223–228. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, F.; Lu, Y.; Deng, J. Combination of chitosan and salicylic acid to control postharvest green mold caused by Penicillium digitatum in grapefruit fruit. Sci. Hortic. 2018, 233, 54–60. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Mayachiew, P.; Devahastin, S.; Mackey, B.M.; Niranjan, K. Effects of drying methods and conditions on antimicrobial activity of edible chitosan films enriched with galangal extract. Food Res. Int. 2010, 43, 125–132. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.A.; Perez-Gago, M.B. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef] [Green Version]
- Moraes Bazioli, J.; Belinato, J.R.; Costa, J.H.; Akiyama, D.Y.; Pontes, J.G.M.; Kupper, K.C.; Augusto, F.; de Carvalho, J.E.; Fill, T.P. Biological Control of Citrus Postharvest Phytopathogens. Toxins 2019, 6, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Shen, Y.; Chen, C.; Wan, C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants 2019, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahramanoğlu, İ. Introductory chapter: Postharvest physiology and technology of horticultural crops. In Postharvest Handling; Kahramanoğlu, I., Ed.; InTech Open: London, UK, 2017. [Google Scholar]
- Kader, A.A.; Arpaia, M.L. Postharvest handling systems: Subtropical fruits. In Postharvest Technology of Horticultural Crops; Kader, A.A., Ed.; Regents of the University of California, Division of Agricultural and Natural Resources: Oakland, CA, USA, 2002. [Google Scholar]
- Lado, J.; Rodrigo, M.J.; Lopez-Climent, M.; Gomez-Cadenas, A.; Zacarias, L. Implication of the antioxidant system in chilling injury tolerance in the red peel of grapefruit. Postharvest Biol. Technol. 2016, 111, 214–223. [Google Scholar] [CrossRef]
- Chen, C.; Cai, N.; Chen, J.; Peng, X.; Wan, C. Chitosan-Based Coating Enriched with Hairy Fig (Ficus hirta Vahl.) Fruit Extract for “Newhall” Navel Orange Preservation. Coatings 2018, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Nie, Z.; Wan, C.; Chen, J. Preservation of Xinyu Tangerines with an Edible Coating Using Ficus hirta Vahl. Fruits Extract-Incorporated Chitosan. Biomolecules 2019, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, Z.; Yang, Q.O.; Wan, C.; Che, J.; Li, L.; Chen, J.; Tao, N. Isolation of antofine from Cynanchum atratum BUNGE (Asclepiadaceae) and its antifungal activity against Penicillium digitatum. Postharvest Biol. Technol. 2019, 157, 110961. [Google Scholar] [CrossRef]
- Kahramanoğlu, İ.; Usanmaz, S. Improving postharvest storage quality of cucumber fruit by modified atmosphere packaging and biomaterials. HortSience 2019, 54, 2005–2014. [Google Scholar] [CrossRef] [Green Version]
- Bal, E. Effects of essential oil treatments combined with hot water treatment on improving postharvest life of sweet cheriy. Fruits 2012, 67, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Alvindia, D.G.; Acda, M.A. Revisiting the efficacy of hot water treatment in managing anthracnose and stem-end rot diseases of mango cv. ‘Carabao’. Crop Prot. 2015, 67, 96–101. [Google Scholar] [CrossRef]
- Ballester, A.R.; Lafuente, M.T.; González-Candelas, L. Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit–Penicillium digitatum interaction. Postharvest Biol. Technol. 2006, 39, 115–124. [Google Scholar] [CrossRef]
- Sels, J.; Mathys, J.; De-conick, B.M.A.; Cammue, B.P.A.; De-Bolle, M.F.C. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Biochem. 2008, 46, 941–950. [Google Scholar] [CrossRef]
- Gao, Y.; Kan, C.; Wan, C.; Chen, C.; Chen, M.; Chen, J. Quality and biochemical changes of navel orange fruits during storage as affected by cinnamaldehyde-chitosan coating. Sci. Hortic. 2018, 239, 80–86. [Google Scholar] [CrossRef]
- Yun, Z.; Gao, H.; Liu, P.; Liu, S.; Luo, T.; Jin, S.; Xu, Q.; Xu, J.; Cheng, Y.; Deng, X. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol. 2013, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-F.; Lin, H.-T.; Lin, Y.-F.; Chen, Y.-H.; Ming, Y.-L. Effect of heat treatment on browning delaying and phenolics metabolism in pericarp of harvested longan fruit. Mod. Food Sci. Technol. 2014, 30, 218–224. [Google Scholar] [CrossRef]
- Atrash, S.; Ramezanian, A.; Rahemi, M.; Ghalamfarsa, R.M.; Yahia, E. Antifungal effects of savory essential oil, gum arabic, and hot water in Mexican lime fruits. HortScience 2018, 53, 524–530. [Google Scholar] [CrossRef]
- Palou, L.; Usall, J.; Munoz, J.A.; Smilanick, J.L.; Vinas, I. Hot water, sodium carbonate, and sodium bicarbonate for the control of postharvest green and blue molds of clementine mandarins. Postharvest Biol. Technol. 2002, 24, 93–96. [Google Scholar] [CrossRef]
- Erkan, M.; Pekmezci, M.; Karaşahin, İ.; Uslu, H. Reducing chilling ınjury and decay in stored ‘Clementine’ mandarins with hot water and curing treatments. Eur. J. Hortic. Sci. 2005, 70, 183–188. [Google Scholar]
- Hong, S.; Lee, H.; Kim, D. Effects of hot water treatment on the storage stability of satsuma mandarin as a postharvest decay control. Postharvest Biol. Technol. 2007, 43, 271–279. [Google Scholar] [CrossRef]
- Fatemi, S.; Jafarpour, M.; Eghbalsaied, S. Study of the effect of Thymus vulgaris and hot water treatment on storage life of orange (Citrussinensis CV. Valencia). J. Med. Plants Res. 2012, 6, 968–971. [Google Scholar] [CrossRef]
- Shen, Y.; Zhong, L.; Sun, Y.; Chen, J.; Liu, D.; Ye, X. Influence of hot water dip on fruit quality, phenoliccompounds and antioxidant capacity of Satsuma mandarin during storage. Food Sci. Technol. Int. 2012, 19, 511–521. [Google Scholar] [CrossRef]
- Yuan, L.; Bi, Y.; Ge, Y.; Wang, Y.; Liu, Y.; Li, G. Postharvest hot water dipping reduces decay by inducing disease resistance and maintaining firmness in muskmelon (Cucumis melo L.) fruit. Sci. Hortic. 2013, 161, 101–110. [Google Scholar] [CrossRef]
- Bazie, S.; Ayalew, A.; Woldetsadik, K. Integrated management of postharvest banana anthracnose (Colletotrichum musae) through plant extracts and hot water treatment. Crop Prot. 2014, 66, 14–18. [Google Scholar] [CrossRef]
- Opio, P.; Jitareerat, P.; Pongprasert, N.; Wongs-Aree, C.; Suzuki, Y.; Srilaong, V. Efficacy of hot water immersion on lime (Citrus auranifolia, Swingle cv. Paan) fruit packed with ethanol vapor in delaying chlorophyll catabolism. Sci. Hortic. 2017, 224, 258–264. [Google Scholar] [CrossRef]
- Francesco, A.D.; Mari, M.; Roberti, R. Defense response against postharvest pathogens in hot water treated apples. Sci. Hortic. 2018, 227, 181–186. [Google Scholar] [CrossRef]
- Naser, F.; Rabiei, V.; Razavi, F.; Khademi, O. Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage. Sci. Hortic. 2018, 233, 114–123. [Google Scholar] [CrossRef]
- Endo, H.; Ose, K.; Bai, J.; Imahori, Y. Effect of hot water treatment on chilling injury incidence and antioxidative responses of mature green mume (Prunus mume) fruit during low temperature storage. Sci. Hortic. 2019, 246, 550–556. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, W.; Li, C.; Shao, T.; Jiang, X.; Zhao, H.; Ai, W. Postharvest hot water dipping and hot water forced convection treatments alleviate chilling injury for zucchini fruit during cold storage. Sci. Hortic. 2019, 249, 219–227. [Google Scholar] [CrossRef]
- Wang, L.; Jin, P.; Wang, J.; Gong, H.; Zhang, S.; Zheng, Y. Hot air treatment induces resistance against blue mold decay caused by Penicillium expansum in sweet cherry (Prunus cerasus L.) fruit. Sci. Hortic. 2015, 189, 74–80. [Google Scholar] [CrossRef]
- Belovic, M.; Kevrešan, Z.; Pestoric, M.; Mastilovic, J. The influence of hot air treatment and UV irradiation on the quality of two tomato varieties after storage. Food Packag. Shelf Life 2015, 5, 63–67. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Opara, U.L. Postharvest factors affecting vitamin C content of citrus fruits: A review. Sci. Hortic. 2017, 218, 95–104. [Google Scholar] [CrossRef]
- Wei, Y.; Wei, Y.; Xu, F.; Shao, X. The combined effects of tea tree oil and hot air treatment on the quality and sensory characteristics and decay of strawberry. Postharvest Biol. Technol. 2018, 136, 139–144. [Google Scholar] [CrossRef]
- Schirra, M.; Mulas, M.; Fadda, A.; Cauli, E. Cold quarantine responses of blood oranges to postharvest hot water and hot air treatments. Postharvest Biol. Technol. 2004, 31, 191–200. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Establés-Ortíz, B.; González-Candelas, L. Insights into the molecular events that regulate heat-induced chilling tolerance in citrus fruits. Front. Plant Sci. 2017, 8, 1113. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Method of Analysis of the Association of Official Analytical Chemistry, 15th ed.; AOAC: Arlington, VA, USA, 1990; Available online: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (accessed on 1 January 1990).
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Wang, K.; Cao, S.; Jin, P.; Rui, H.; Zheng, Y. Effect of hot air treatment on postharvest mould decay in Chinese bayberry fruit and the possible mechanisms. Int. J. Food Microbiol. 2010, 141, 11–16. [Google Scholar] [CrossRef]
- Wang, X.L.; Xu, F.; Wang, J.; Jin, P.; Zheng, Y.H. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit. Food Chem. 2013, 136, 400–406. [Google Scholar] [CrossRef]
- Mohammadi, M.; Kazemi, H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 2002, 162, 491–498. [Google Scholar] [CrossRef]
- Chalupowicz, D.; Alkalai-Tuvia, S.; Zaaroor-Presman, M.; Fallik, E. The Potential Use of Hot Water Rinsing and Brushing Technology to Extend Storability and Shelf Life of Sweet Acorn Squash (Cucurbita pepo L.). Horticulturae 2018, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Plaza, P.; Usall, J.; Torres, R.; Lamarca, N.; Asensio, A.; Vinas, I. Control of green and blue mould by curing on oranges during ambient and cold storage. Postharvest Biol. Technol. 2003, 28, 195–198. [Google Scholar] [CrossRef]
- Liu, F.; Tu, J.; Shao, X.; Zhao, Y.; Tu, S.; Su, J. Effects of hot air treatment in combination with Pichia guilliermondii on postharvest anthracnose rot of loquat fruit. Postharvest Biol. Technol. 2010, 58, 65–71. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, D.; Peng, J.; Pan, L.; Tu, K. Hot Air Treatment Induces Disease Resistance through Activating the Phenylpropanoid Metabolism in Cherry Tomato Fruit. J. Agric. Food Chem. 2017, 65, 8003–8010. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kan, C.; Wan, C.; Chen, C.; Chen, M.; Chen, J. Effects of hot air treatment and chitosan coating on citric acid metabolism in ponkan fruit during cold storage. PLoS ONE 2018, 2018, e0206585. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Singh, Z. Dynamics of enzymatic and non-enzymatic antioxidants in Japanese plums during storage at safe and lethal temperatures. LWT-Food Sci. Technol. 2013, 50, 562–568. [Google Scholar] [CrossRef]
- Imahori, Y.; Bai, J.; Baldwin, E. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Sci. Hortic. 2016, 198, 398–406. [Google Scholar] [CrossRef]
- Massot, C.; Bancel, D.; Lauri, F.L.; Truffault, V.; Baldet, P.; Stevens, R.; Gautier, H. High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes. PLoS ONE 2013, 8, e84474. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C.; Benamar, A.; Corbineau, F.; Come, D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plant. 1996, 97, 104–110. [Google Scholar] [CrossRef]
- Cai, F.; Mei, L.J.; An, X.L.; Gao, S.; Tang, L.; Chen, F. Lipid peroxidation and antioxidant responses during seed germination of Jatropha curcas. Int. J. Agric. Biol. 2011, 13, 25–30. [Google Scholar]
- Jin, P.; Zheng, Y.; Tang, S.; Rui, H.; Wang, C.Y. A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peah fruit. Postharvest Biol. Technol. 2009, 52, 24–29. [Google Scholar] [CrossRef]
- Jin, O.; Zheng, C.; Huang, Y.-P.; Wang, X.-L.; Luo, Z.-S.; Zheng, Y.-H. Hot air treatment activates defense responses and induces resistance against Botrytis cinerea in strawberry fruit. J. Integr. Agric. 2016, 15, 2658–2665. [Google Scholar] [CrossRef] [Green Version]
- Klessig, D.F.; Malamy, J. The salicylic acid signal in plants. Plant Mol. Biol. 1994, 26, 1439–1458. [Google Scholar] [CrossRef]
- Usall, J.; Ippolito, A.; Sisquella, M.; Neri, F. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biol. Technol. 2016, 122, 30–40. [Google Scholar] [CrossRef]
Parameters | TA | VC | TS | RR | MDA | SOD | POD | PPO |
---|---|---|---|---|---|---|---|---|
TSS–HAF | −0.196 | 0.664 | 0.958 ** | −0.949 ** | 0.093 | 0.848 * | 0.734 | 0.774 * |
TSS–Control | 0.223 | 0.634 | 0.952 ** | −0.910 ** | −0.215 | 0.939 ** | 0.853 * | 0.115 |
TA–HAF | 0.541 | −0.377 | 0.407 | −0.971 ** | −0.343 | −0.721 | −0.724 | |
TA–Control | 0.855 * | 0.003 | 0.089 | −0.996 ** | 0.162 | −0.059 | −0.872 * | |
VC–HAF | 0.469 | −0.539 | −0.649 | 0.442 | 0.017 | 0.159 | ||
VC–Control | 0.407 | −0.422 | −0.868 * | 0.635 | 0.433 | −0.583 | ||
TS–HAF | −0.928 ** | 0.301 | 0.865 * | 0.860 * | 0.809 * | |||
TS–Control | −0.876 ** | 0.013 | 0.868 * | 0.836 * | 0.292 | |||
RR–HAF | −0.267 | −0.870 * | −0.798 * | −0.904 ** | ||||
RR–Control | −0.078 | −0.943 ** | −0.936 ** | −0.401 | ||||
MDA–HAF | 0.264 | 0.664 | 0.596 | |||||
MDA–Control | −0.186 | 0.028 | 0.879 ** | |||||
SOD–HAF | 0.837 * | 0.763 * | ||||||
SOD–Control | 0.957 ** | 0.128 | ||||||
POD–HAF | 0.883 ** | |||||||
POD–Control | 0.265 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, C.; Kahramanoğlu, İ.; Chen, J.; Gan, Z.; Chen, C. Effects of Hot Air Treatments on Postharvest Storage of Newhall Navel Orange. Plants 2020, 9, 170. https://doi.org/10.3390/plants9020170
Wan C, Kahramanoğlu İ, Chen J, Gan Z, Chen C. Effects of Hot Air Treatments on Postharvest Storage of Newhall Navel Orange. Plants. 2020; 9(2):170. https://doi.org/10.3390/plants9020170
Chicago/Turabian StyleWan, Chunpeng, İbrahim Kahramanoğlu, Jinyin Chen, Zengyu Gan, and Chuying Chen. 2020. "Effects of Hot Air Treatments on Postharvest Storage of Newhall Navel Orange" Plants 9, no. 2: 170. https://doi.org/10.3390/plants9020170