Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant and Rhizobia Collection
4.2. Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef]
- Diouf, M.; Baudoin, E.; Dieng, L.; Assigbetsé, K.; Brauman, A. Legume and gramineous crop residues stimulate distinct soil bacterial populations during early decomposition stages. Can. J. Soil Sci. 2010, 90, 289–293. [Google Scholar] [CrossRef]
- Ladygina, N.; Hedlund, K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol. Biochem. 2010, 42, 162–168. [Google Scholar] [CrossRef]
- McLaren, J.R.; Turkington, R. Plant identity influences decomposition through more than one mechanism. PLoS ONE 2011, 6, e23702. [Google Scholar] [CrossRef]
- Bever, J.D.; Dickie, I.A.; Facelli, E.; Facelli, J.M.; Klironomos, J.; Moora, M.; Rillig, M.C.; Stock, W.D.; Tibbett, M.; Zobel, M. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 2010, 25, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Ettema, C.H.; Wardle, D.A. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Bouffaud, M.L.; Poirier, M.A.; Muller, D.; Moënne-Loccoz, Y. Root microbiome relates to plant host evolution in maize and other Poaceae. Environ. Microbiol. 2014, 16, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, M.A. The nineteenth century roots of ‘everything is everywhere. Nat. Rev. Microbiol. 2007, 5, 647–651. [Google Scholar] [CrossRef]
- Emmett, B.; Nelson, E.B.; Kessler, A.; Bauerle, T.L. Fine-root system development and susceptibility to pathogen colonization. Planta 2014, 239, 325–340. [Google Scholar] [CrossRef]
- Zhou, N.; Zhao, S.; Tian, C.Y. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol. Lett. 2017, 364, fnx091. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G.; Ravit, B.; Elgersma, K. Feedback in the plant–soil system. Annu. Rev. Environ. Resour. 2005, 30, 75–115. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Aira, M.; Monroy, F.; Domínguez, J. Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb. Ecol. 2007, 54, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Zancarini, A.; Mougel, C.; Voisin, A.S.; Prudent, M.; Salon, C.; Munier-Jolain, N. Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial communities. PLoS ONE 2012, 7, e47096. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.M.; da Silva, T.F.; Vollu, R.E.; Blank, A.F.; Ding, G.C.; Seldin, L.; Smalla, K. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol. Ecol. 2014, 88, 424–435. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; Mchardy, A.C.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Ladau, J. Predicting microbial distributions in space and time. Nat. Methods 2012, 9, 549–551. [Google Scholar] [CrossRef]
- Vuong, H.B.; Thrall, P.H.; Barrett, L.G. Host species and environmental variation can influence rhizobial community composition. J. Ecol. 2017, 105, 540–548. [Google Scholar] [CrossRef]
- Pahua, V.J.; Stokes, P.J.N.; Hollowell, A.C.; Regus, J.U.; Gano-Cohen, K.A.; Wendlandt, C.E.; Quides, K.W.; Lyu, J.Y.; Sachs, J.L. Fitness variation among host species and the paradox of ineffective rhizobia. J. Evol. Biol. 2018, 31, 599–610. [Google Scholar] [CrossRef]
- Heath, K.D.; Tiffin, P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc. R. Soc. 2007, 274, 1905–1912. [Google Scholar] [CrossRef]
- Rangin, C.; Brunel, B.; Cleyet-Marel, J.C.; Perrineau, M.M.; Bena, G. Effects of Medicago truncatula genetic diversity, rhizobial competition, and strain effectiveness on the diversity of a natural Sinorhizobium species community. Appl. Environ. Microbiol. 2008, 74, 5653–5661. [Google Scholar] [CrossRef] [PubMed]
- Crook, M.B.; Lindsay, D.P.; Biggs, M.B.; Bentley, J.S.; Price, J.C.; Clement, S.C.; Clement, M.J.; Long, S.R.; Griffitts, J.S. Rhizobial plasmids that cause impaired symbiotic nitrogen fixation and enhanced host invasion. Mol. Plant Microbe Interact. 2012, 25, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Chen, Y.; Xi, J.; Waters, C.; Chen, R.; Wang, D. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc. Natl. Acad. Sci. USA 2015, 112, 201500123. [Google Scholar] [CrossRef] [PubMed]
- Zgadzaj, R.; Garrido-oter, R.; Bodker, D.; Koprivova, A.; Schulze-lefert, P. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc. Natl. Acad. Sci. USA 2016, 113, E7996–E8005. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.; Li, H.; Yang, S.; Kormoczi, P.; Kereszt, A.; Zhu, H. Nodulespecific cysteine-rich peptides negatively regulate nitrogen-fixing symbiosis in a strain-specific manner in Medicago truncatula. Mol. Plant Microbe Interact. 2018, 31, 240–248. [Google Scholar] [CrossRef]
- Perret, X.; Staehelin, C.; Broughton, W.J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 2000, 64, 180–201. [Google Scholar] [CrossRef]
- Wang, D.; Yang, S.; Tang, F.; Zhu, H. Symbiosis specificity in the legume: Rhizobial mutualism. Cell Microbiol. 2012, 14, 334–342. [Google Scholar] [CrossRef]
- Lu, J.; Yang, F.; Wang, S.; Ma, H.; Liang, J.; Chen, Y. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium-like and Burkholderia pyrrocinia-like strains. Front. Microbiol. 2017, 8, 2255. [Google Scholar] [CrossRef]
- Irwin, H.S.; Barneby, R.C. The American Cassinae: A synoptical revision of Leguminosae tribe Cassieae subtribe Cassinae in the New World. Mem. N. Y. Bot. 1982, 35, 1–918. [Google Scholar]
- Reeves, D.W. Cover Crops and Rotations. In Advances in Soil Science: Crops Residue Management; Hatfield, J.L., Stewart, B.A., Eds.; Lewis Publishers, CRC Press: Boca Raton, FL, USA, 1994; pp. 125–172. [Google Scholar]
- Rodríguez-Kábana, R.; Kokalis-Burelle, N.; Robertson, D.G.; Weaver, C.F.; Wells, L. Effects of Partridge Pea–Peanut rotations on populations of Meloidogyne arenaria, incidence of Sclerotium rolfsii, and yield of peanut. Nematropica 1995, 25, 27–34. [Google Scholar]
- Singer, S.; Doyle, J.; May, G.; Cannon, S.; Maki, S.; Illut, D. Exploring Chamaecrista Fasciculata Genomics Data [Online: 2009]. Available online: http://serc.carleton.edu/exploring_genomics/chamaecrista/chamaecrista_tr.html (accessed on 10 January 2020).
- Parker, M. Mutualism in metapopulations of legumes and rhizobia. Am. Nat. 1999, 153, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.; Kennedy, D.A. Diversity and relationships of Bradyrhizobium from legumes native to eastern North America. Can. J. Microbiol. 2006, 52, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.; Andrews, M.E. Specificity in legume–rhizobia symbioses. Int. J. Mol. Sci. 2017, 18, 705. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.; Wallace, L. Diversity of nitrogen-fixing symbionts of Chamaecrista fasciculata (Partridge Pea) across variable soils. Southeast. Nat. 2019, 80, 147–164. [Google Scholar] [CrossRef]
- Leite, J.; Fischer, D.; Rouws, L.F.; Fernandes-Júnior, P.I.; Hofmann, A.; Kublik, S.; Schloter, M.; Xavier, G.R.; Radl, V. Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front. Plant Sci. 2017, 7, 2064. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, S.; Li, R.; Zhang, J.; Liu, Y.; Lv, L.; Zhu, H.; Wu, W.; Li, W. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 2017, 109, 145e155. [Google Scholar] [CrossRef]
- Igolkina, A.; Bazykin, G.A.; Chizhevskaya, E.P.; Provorov, N.A.; Andronov, E.E. The Evolutionary Moulding in plant-microbial symbiosis: Matching population diversity of rhizobial nodA and legume NFR5 genes. bioRxiv 2018, 285882. [Google Scholar] [CrossRef]
- Portnoy, S.; Willson., M.F. Seed dispersal curves: Behavior of the tail of the distribution. Evol. Ecol. 1993, 7, 25–44. [Google Scholar] [CrossRef]
- Willson, M.F. Dispersal mode, seed shadows, and colonization patterns. Vegetatio 1993, 107/108, 261–280. [Google Scholar]
- Schupp, E.W.; Fuentes, M. Spatial patterns of seed dispersal and the unification of plant population ecology. Écoscience 1995, 2, 267–275. [Google Scholar] [CrossRef]
- Vekemans, X.; Hardy, O.J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 2004, 13, 921e935. [Google Scholar] [CrossRef] [PubMed]
- Loiselle, B.A.; Sork, V.L.; Nason, J.; Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 1995, 82, 1420e1425. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation between individuals. J. Evol. Biol. 2000, 13, 58e62. [Google Scholar] [CrossRef]
- Hardy, O.J. Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol. Ecol. 2003, 12, 1577e1588. [Google Scholar] [CrossRef] [PubMed]
- Fenster, C.B.; Vekemans, X.; Hardy, O.J. Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution 2003, 57, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Vinues, Y.M.; Tian, C.T.; Sui, X.H.; Chen, W.F.; Chen, W.X. Robust markers reflecting phylogeny and taxonomy of rhizobia. PLoS ONE 2012, 7, e44936. [Google Scholar] [CrossRef]
- Van Cauwenberghe, J.; Verstraete, B.; Lemaire, B.; Lievens, B.; Michiels, J.; Honnay, O. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst. Appl. Microbiol. 2014, 37, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Bjornsgaard Aas, A.; Andrew, C.J.; Blaalid, R.; Vik, U.; Kauserud, H.; Davey, M.L. Fine-scale diversity patterns in belowground microbial communities are consistent across kingdoms. FEMS Microbiol. Ecol. 2019, 95, fiz058. [Google Scholar] [CrossRef]
- Klock, M.M.; Barrett, L.G.; Thrall, P.H.; Harms, K.E. Host-promiscuity in symbiont associations can influence exotic legume establishment and colonization of novel ranges. Divers. Distrib. 2015, 21, 1193–1203. [Google Scholar] [CrossRef]
- Ndlovu, J.; Richardson, D.M.; Wilson, J.R.U.; Le Roux, J.J. Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J. Biogeogr. 2013, 40, 1240–1251. [Google Scholar] [CrossRef]
- Koppell, J.H.; Parker, M.A. Phylogenetic clustering of Bradyrhizobium symbionts on legumes indigenous to North America. Microbiology 2012, 158, 2050–2059. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Parker, M.A. The spread of Bradyrhizobium lineages across host legume clades: From Abarema to Zygia. Microb. Ecol. 2015, 69, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.M.; Casaes Alves, P.A.; Silva, V.C.; Kruschewsky Rhem, M.F.; James, E.K.; Gross, E. Diverse genotypes of Bradyrhizobium nodulate herbaceous Chamaecrista (moench) (Fabaceae, caesalpinioideae) species in Brazil. Syst. Appl. Microbiol. 2017, 40, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Schmeisser, C.; Liesegang, H.; Krysciak, D.; Krysciak, D.; Bakkou, N.; Le Quéré, A.; Wollherr, A.; Henemeyer, I.; Mogenstern, B.; Pommerening, A.; et al. Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl. Environ. Microbiol. 2009, 75, 4035–4045. [Google Scholar] [CrossRef]
- Safronova, V.; Belimov, A.; Sazanova, A.; Chirak, E.; Kuznetsova, I.; Andronov, E.; Pinavea, A.; Tsyganova, A.; Seliverstova, E.; Kitaeva, A.; et al. Two broad host range rhizobial strains isolated from relict legumes have various complementary effects on symbiotic parameters of co-inoculated plants. Front. Microbiol. 2019, 10, 514. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef]
- Fernández-Gómez, B.; Maldonado, J.; Mandakovic, D.; Gaete, A.; Gutiérrez, R.A.; Maass, A.; Cambiazo, V.; González, M. Bacterial communities associated to Chilean altiplanic native plants from the Andean grassland’s soils. Sci. Rep. 2019, 9, 1042. [Google Scholar] [CrossRef]
- Grayston, S.J.; Wang, S.; Campbell, C.D.; Edwards, A.C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 1998, 30, 369–378. [Google Scholar] [CrossRef]
- Girvan, M.S.; Bullimore, J.; Pretty, J.N.; Osborn, A.M.; Ball, A.S. Soil type is the primary determinant of the composition of total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 2003, 69, 1800–1809. [Google Scholar] [CrossRef]
- Nunan, N.; Daniell, T.J.; Singh, B.K.; Papert, A.; Mc Nicol, J.W.; Prosser, J.I. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl. Environ. Microbiol. 2005, 71, 6784–6792. [Google Scholar] [CrossRef] [PubMed]
- Sachs, J.L.; Kembel, S.W.; Lau, A.H.; Simms, E.L. In situ phylogenetic structure and diversity of wild Bradyrhizobium communities. Appl. Environ. Microbiol. 2009, 75, 4727–4735. [Google Scholar] [CrossRef] [PubMed]
- Dellaporta, S.L.; Wood, J.; Hicks, J.B. A plant DNA mini preparation: Version II. Plant Mol. Biol. Rep. 1983, 1, 19–21. [Google Scholar] [CrossRef]
- Culley, T.M.; Stamper, T.I.; Stokes, R.L.; Brzyski, J.R.; Hardiman, N.A.; Klooster, M.R.; Merritt, B.J. An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl. Plant Sci. 2013, 1, 1300027. [Google Scholar] [CrossRef]
- Castillo, F. Evaluation of Nitrogen Needs and Efficiency of Rizhobia Strains to Provide Nitrogen to Chipilin (Crotalaria Longirostrata HOOK. AND ARN). Master’s Thesis, University of Massachusetts–Amherst, Amherst, MA, USA, February 2014. [Google Scholar]
- Sylvester-Bradley, R.; Thornton, P.; Jones, P. Colony dimorphism in Bradyrhizobium strains. Appl. Environ. Microbiol. 1988, 54, 1033–1038. [Google Scholar] [CrossRef]
- Fuhrmann, J.J. Symbiotic effectiveness of indigenous soybean Bradyrhizobia as related to serological, morphological, rhizobiotoxine, and hydrogenase phenotypes. Appl. Environ. Microbiol. 1990, 56, 224–229. [Google Scholar] [CrossRef]
- Checcucci, A.; Azzarello, E.; Bazzicalupo, M.; Galardini, M.; Lagomarsino, A.; Mancuso, S.; Marti, L.; Marzano, M.C.; Mocali, S.; Squartini, A.; et al. Mixed Nodule Infection in Sinorhizobium meliloti–Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior. Front. Plant Sci. 2016, 7, 835. [Google Scholar] [CrossRef]
- Denison, R.F.; Kiers, E.T. Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microbes Infect. 2004, 6, 1235–1239. [Google Scholar] [CrossRef]
- Simms, E.L.; Taylor, D.L.; Povich, J.; Shefferson, R.P.; Sachs, J.; Urbina, M.; Tausczik, Y. An empirical test of partner choice mechanisms in a wild legume-rhizobium interaction. Proc. R. Soc. B Biol. Sci. 2006, 273, 77–81. [Google Scholar] [CrossRef]
- Ahn, K.S.; Ha, U.; Jia, J.; Wu, D.; Jin, S. The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. Microbiology 2004, 150, 539–547. [Google Scholar] [CrossRef]
- Vinuesa, P.; Silva, C.; Werner, D.; Martínez-Romero, E. Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol. 2005, 34, 29–54. [Google Scholar] [CrossRef] [PubMed]
- Lapage, S.P.; Sneath, P.H.A.; Lessel, E.F.; Skerman, V.B.D.; Seeliger, H.P.R.; Clark, W.A. Chapter 3, Rules of Nomenclature with Recommendations. In International Code of Nomenclature of Bacteria; Bacteriological Code 1990 Revision; ASM Press: Washington, DC, USA, 1992. [Google Scholar]
- Fox, G.E.; Wisotzkey, J.D.; Jurtshuk, P. How close is close: 16SrRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 1992, 42, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Holm, J.B.; Humphrys, M.S.; Robinson, C.K.; Settles, M.L.; Ott, S.; Fu, L.; Yang, H.; Gajer, P.; He, X.; McComb, E.; et al. Ultrahigh-throughput multiplexing and sequencing of >500-basepair amplicon regions on the Illumina HiSeq 2500 platform. mSystems 2019, 4, e29-19. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High Resolution Sample Inference from Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R, Version 1.1.456. Boston, Massachussete, USA. Available online: http://www.rstudio.com (accessed on 20 March 2020).
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Hardy, O.J.; Vekemans, X. SPAGeDi: A versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2002, 2, 618–620. [Google Scholar] [CrossRef]
- Ritland, K. Estimators for pairwise relatedness and inbreeding coefficients. Genet. Res. 1996, 67, 175–186. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). National Library of Medicine (US), National Center for Biotechnology Information; Bethesda, MD. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 14 March 2020).
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics, and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate method to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kishino, K.; Yano, T. Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Institute of Electrical and Electronics Engineers; Gateway Computing Environments Workshop (GCE): New Orleans, LA, USA, 2010; p. 115. [Google Scholar]
- Librado, P.; Rozas. J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Dellicour, S.; Mardulyn, P. SPADS 1.0: A toolbox to perform spatial analyses on DNA sequence datasets. Mol. Ecol. Resour. 2014, 14, 647–651. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary-genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Sinnott, R.W. Virtues of the Haversine. Sky Telesc. 1984, 68, 158. [Google Scholar]
- Rosenberg, M.S.; Anderson, C.D. PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods Ecol. Evol. 2011, 2, 229–232. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Winodows, Version 25; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
Plot | N | A | P | HO | HE | FIS | Significant Deviation from HWE |
---|---|---|---|---|---|---|---|
1 | 24 | 5.1 | 100 | 0.48 | 0.55 | 0.09 | no loci |
2 | 22 | 4.35 | 100 | 0.49 | 0.52 | 0.1 | 1 locus (p = 0.001) |
3 | 24 | 5 | 100 | 0.48 | 0.56 | 0.13 | 1 locus (p = 0.001) |
All | 70 | 6.78 | 100 | 0.49 | 0.58 | 0.17 | 3 loci (p = 0.001) |
Plot | Distance Range (m) | bF | p-Value | F1 | Sp Statistic |
---|---|---|---|---|---|
Plant | |||||
Plot 1 | 1–43 | −0.0138 | 0.001 * | 0.0073 | 0.0139 |
Plot 2 | 1–43 | −0.0063 | 0.125 | −0.0165 | 0.0062 |
Plot 3 | 1–43 | −0.0049 | 0.145 | −0.0068 | 0.0048 |
Plots 1–3 | 1–384 | −0.0121 | 0.000 * | 0.0451 | 0.0127 |
Rhizobia | |||||
Plot 1 | 1–43 | −0.0165 | 0.046 * | −0.0212 | 0.0162 |
Plot 2 | 1–43 | 0.0172 | 0.075 | −0.0583 | −0.0162 |
Plot 3 | 1–43 | −0.0009 | 0.882 | −0.008 | 0.0009 |
Plots 1–3 | 1–384 | −0.0031 | 0.041 * | 0.0038 | 0.0031 |
Plot | N | H | Hd | π |
---|---|---|---|---|
1 | 19 | 8 | 0.86 | 0.04175 |
2 | 15 | 6 | 0.829 | 0.03457 |
3 | 19 | 9 | 0.86 | 0.03679 |
Combined (1–3) | 53 | 6 | 0.730 | 0.03338 |
Predictor | Adjusted r Square | p-Value |
---|---|---|
Plant genetics, constant | 0.012 | 0.000 |
Plant genetics, geographic distance, constant | 0.016 | 0.000 |
Locus * | Forward and Reverse Sequence (5′-3′) | Multiplex Group | Fluorescent Label ** | Allele Size | Repeat Type |
---|---|---|---|---|---|
Cf1394 | F: GAAAAGGCGTCACCAACACC R: CGTCCATGGCTGCTACTGC | 1 | NED | 336–399 | (AGA)8 |
Cf17494 | F: TTGGGGGATGACAAAAGTGG R: CCTCAAAATCAAAAGATTGAAACG | 4 | VIC | 200–236 | (AAG)7 |
Cf3118 | F: CCTCAAAATCAAAAGATTGAAACG R: GGTGAAGGCGAAGAAACAGG | 1 | PET | 200–239 | (CCA)6 |
Cf3411 | F: GACGGCAAAGAATCCAAAGG R: TCAGTGGATCTGCTTTCTCTCC | 3 | NED | 295–319 | (CCG)7 |
Cf4935 | F: AGGAAGTGTTGATTCTGCAACC R: AGCCCCTTCACACTCAGTCC | 4 | PET | 192–225 | (AAC)5 … (AAC)7 |
Cf5782 | F: CTTCCTCAGGGTCACAGAACC R: AAAATCCGAGAGCCATGACG | 3 | NED | 189–213 | (CTT)6 |
Cf6822 | F: CCACTACTATCCCTATCAACAACAGC R: CGTTGAGCATCCACATCAGG | 1 | PET | 209–218 | (CCA)6 |
Cf6895 | F: TTCACGAGGACCCAGTAGGG R: AGAAGGCGAGACCAGAGAGC | 1 | FAM | 203–245 | (CAT)6 |
Cf7140 | F: GAGAAGGGAGTGGTCCTAATGG R: TGAGAGGCATTTGAGTCTTGC | 4 | FAM | 185–206 | (TAG)8 |
Cf8757 | F: AGTAGCACCACACCCTCACG R: TTCCTCCAATCCCCTTTTCC | 4 | FAM | 379–433 | (ATC)6 |
Cf9980 | F: GCTGCTCTGGGAATATCACG R: CTGCGTAGCCACTTCACTCG | 1 | NED | 205–352 | (GAA)7 |
Cf10002 | F: AGAGAGTGCCCAGGTGAAGG R: GATCCTCGTCGCTCATAGGG | 1 | VIC | 219–246 | (TGG)9 |
Cf20956 | F: ATTACCAAGAGTTGGAAAATATCG R: CCACCCATTCCAGAGTGTCC | 3 | FAM | 246–300 | (ATG)9 |
Cf4487 | F: CGAGGAGCCTCTTCTTCAGG R: CTGGGCTCATGTTTCTGAGG | 4 | NED | 190–217 | (TCT)12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseinalizadeh Nobarinezhad, M.; Wallace, L.E. Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. Plants 2020, 9, 1719. https://doi.org/10.3390/plants9121719
Hosseinalizadeh Nobarinezhad M, Wallace LE. Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. Plants. 2020; 9(12):1719. https://doi.org/10.3390/plants9121719
Chicago/Turabian StyleHosseinalizadeh Nobarinezhad, Mahboubeh, and Lisa E. Wallace. 2020. "Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts" Plants 9, no. 12: 1719. https://doi.org/10.3390/plants9121719
APA StyleHosseinalizadeh Nobarinezhad, M., & Wallace, L. E. (2020). Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. Plants, 9(12), 1719. https://doi.org/10.3390/plants9121719