Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = truA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6291 KB  
Article
Petrological Exploration of Magma Storage and Evolution Conditions at the Eastern Virunga Volcanic Province (Rwanda, East African Rift System)
by Fabio Colle, Teresa Trua, Serena Giacomelli, Massimo D’Orazio and Roberto Valentino
Minerals 2025, 15(7), 666; https://doi.org/10.3390/min15070666 - 20 Jun 2025
Cited by 1 | Viewed by 725
Abstract
The Virunga Volcanic Province (VVP), located in the western branch of the East African Rift System, hosts a variety of alkaline lavas erupted from closely spaced volcanic centers. However, the magmatic system of this region, particularly in its eastern sector, remains insufficiently constrained. [...] Read more.
The Virunga Volcanic Province (VVP), located in the western branch of the East African Rift System, hosts a variety of alkaline lavas erupted from closely spaced volcanic centers. However, the magmatic system of this region, particularly in its eastern sector, remains insufficiently constrained. In this study, we present a petrological and geochemical investigation of basaltic to trachytic lavas from the eastern VVP. Thermobarometric analysis of mineral phases indicates that basalts originated from magma storage zones between 4 and 30 km deep, with crystallization temperatures of ~1200 °C and melt H2O contents lower than 1 wt%. In contrast, more evolved magmas crystallized at similar depths, but at lower temperatures (~1050 °C) and higher H2O contents, ranging from 2 to 4 wt%. Thermodynamic modelling suggests that extensive (up to 70%) fractional crystallization of an assemblage dominated by olivine, clinopyroxene, and plagioclase can produce the more evolved trachytic derivatives from basaltic parental melts. When integrated with previous studies from other VVP volcanoes, our findings deepen the understanding of the architecture of the magmatic system beneath the region, suggesting it resembles a well-developed multi-level plumbing system. Full article
Show Figures

Figure 1

21 pages, 7385 KB  
Article
Genome-Wide Identification and Expression Analysis of Pseudouridine Synthase Family in Arabidopsis and Maize
by Yuting Xie, Yeting Gu, Guangping Shi, Jianliang He, Wenjing Hu and Zhonghui Zhang
Int. J. Mol. Sci. 2022, 23(5), 2680; https://doi.org/10.3390/ijms23052680 - 28 Feb 2022
Cited by 16 | Viewed by 4401
Abstract
Pseudouridine (Ψ), the isomer of uridine (U), is the most abundant type of RNA modification, which is crucial for gene regulation in various cellular processes. Pseudouridine synthases (PUSs) are the key enzymes for the U-to-Ψ conversion. However, little is known about the genome-wide [...] Read more.
Pseudouridine (Ψ), the isomer of uridine (U), is the most abundant type of RNA modification, which is crucial for gene regulation in various cellular processes. Pseudouridine synthases (PUSs) are the key enzymes for the U-to-Ψ conversion. However, little is known about the genome-wide features and biological function of plant PUSs. In this study, we identified 20 AtPUSs and 22 ZmPUSs from Arabidopsis and maize (Zea mays), respectively. Our phylogenetic analysis indicated that both AtPUSs and ZmPUSs could be clustered into six known subfamilies: RluA, RsuA, TruA, TruB, PUS10, and TruD. RluA subfamily is the largest subfamily in both Arabidopsis and maize. It’s noteworthy that except the canonical XXHRLD-type RluAs, another three conserved RluA variants, including XXNRLD-, XXHQID-, and XXHRLG-type were also identified in those key nodes of vascular plants. Subcellular localization analysis of representative AtPUSs and ZmPUSs in each subfamily revealed that PUS proteins were localized in different organelles including nucleus, cytoplasm and chloroplasts. Transcriptional expression analysis indicated that AtPUSs and ZmPUSs were differentially expressed in various tissues and diversely responsive to abiotic stresses, especially suggesting their potential roles in response to heat and salt stresses. All these results would facilitate the functional identification of these pseudouridylation in the future. Full article
(This article belongs to the Special Issue Applied and Advanced Research in Plant Bioinformatics)
Show Figures

Figure 1

4 pages, 3042 KB  
Correction
Correction: Trua, T.; Marani, M.P. Clinopyroxene Crystals in Basic Lavas of the Marsili Volcano Chronicle Early Magmatic Stages in a Back-Arc Transcrustal Mush System. Geosciences 2021, 11, 159
by Teresa Trua and Michael P. Marani
Geosciences 2021, 11(10), 406; https://doi.org/10.3390/geosciences11100406 - 27 Sep 2021
Viewed by 1955
Abstract
The authors would like to make the following corrections to this paper [...] Full article
(This article belongs to the Special Issue Tectonics and Morphology of Back-Arc Basins)
Show Figures

Figure 1

16 pages, 10179 KB  
Article
Clinopyroxene Crystals in Basic Lavas of the Marsili Volcano Chronicle Early Magmatic Stages in a Back-Arc Transcrustal Mush System
by Teresa Trua and Michael P. Marani
Geosciences 2021, 11(4), 159; https://doi.org/10.3390/geosciences11040159 - 1 Apr 2021
Cited by 8 | Viewed by 3018 | Correction
Abstract
Constraining the pre-eruptive processes that modulate the chemical evolution of erupted magmas is a challenge. An opportunity to investigate this issue is offered by the interrogation of the crystals carried in lavas. Here, we employ clinopyroxene crystals from back-arc lavas in order to [...] Read more.
Constraining the pre-eruptive processes that modulate the chemical evolution of erupted magmas is a challenge. An opportunity to investigate this issue is offered by the interrogation of the crystals carried in lavas. Here, we employ clinopyroxene crystals from back-arc lavas in order to identify the processes driving basalt to andesite magma evolution within a transcrustal plumbing system. The assembled clinopyroxene archive reveals that mantle melts injected at the crust-mantle transition cool and crystalize, generating a clinopyroxene-dominated mush capped by a melt-rich domain. Magma extracted from this deep storage zone fed the eruption of basalt to basaltic andesite lavas. In addition, chemically evolved melts rapidly rising from this zone briefly stalled at shallow crustal levels, sourcing crystal-poor andesite lavas. Over time, hot ascending primitive magmas intercepted and mixed with shallower cooling magma bodies forming hybrid basic lavas. The blended clinopyroxene cargoes of these lavas provide evidence for the hybridization, which is undetectable from a whole-rock chemical perspective, as mixing involved chemically similar basic magmas. The heterogeneity we found within the clinopyroxene archive is unusual since it provides, for the first time, a complete set of mush-related scenarios by which mantle melts evolve from basalt to andesite compositions. Neither the whole-rock chemistry alone nor the record of the mineral phases crystallizing subsequent to clinopyroxene can provide insights on such early magmatic processes. The obtained clinopyroxene archive can be used as a template for interpretation of the record preserved in the clinopyroxene cargoes of basalt to andesite lavas elsewhere, giving insights into the magma dynamics of the feeding plumbing system that are lost when using whole-rock chemistry. Full article
(This article belongs to the Special Issue Tectonics and Morphology of Back-Arc Basins)
Show Figures

Figure 1

25 pages, 3098 KB  
Article
Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp.
by Mari Tagel, Heili Ilves, Margus Leppik, Karl Jürgenstein, Jaanus Remme and Maia Kivisaar
Microorganisms 2021, 9(1), 25; https://doi.org/10.3390/microorganisms9010025 - 23 Dec 2020
Cited by 9 | Viewed by 3643
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the [...] Read more.
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Graphical abstract

10 pages, 1849 KB  
Article
Relation of the pdxB-usg-truA-dedA Operon and the truA Gene to the Intracellular Survival of Salmonella enterica Serovar Typhimurium
by Xiaowen Yang, Jiawei Wang, Ziyan Feng, Xiangjian Zhang, Xiangguo Wang and Qingmin Wu
Int. J. Mol. Sci. 2019, 20(2), 380; https://doi.org/10.3390/ijms20020380 - 17 Jan 2019
Cited by 9 | Viewed by 3837
Abstract
Salmonella is the genus of Gram-negative, facultative intracellular pathogens that have the ability to infect large numbers of animal or human hosts. The S. enterica usg gene is associated with intracellular survival based on ortholog screening and identification. In this study, the λ-Red [...] Read more.
Salmonella is the genus of Gram-negative, facultative intracellular pathogens that have the ability to infect large numbers of animal or human hosts. The S. enterica usg gene is associated with intracellular survival based on ortholog screening and identification. In this study, the λ-Red recombination system was used to construct gene deletion strains and to investigate whether the identified operon was related to intracellular survival. The pdxB-usg-truA-dedA operon enhanced the intracellular survival of S. enterica by resisting the oxidative environment and the usg and truA gene expression was induced by H2O2. Moreover, the genes in this operon (except for dedA) contributed to virulence in mice. These findings indicate that the pdxB-usg-truA-dedA operon functions in resistance to oxidative environments during intracellular survival and is required for in vivo S. enterica virulence. This study provides insight toward a better understand of the characteristics of intracellular pathogens and explores the gene modules involved in their intracellular survival. Full article
(This article belongs to the Special Issue Microbial Virulence Factors)
Show Figures

Graphical abstract

Back to TopTop