Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Infected ToBRFV-Seeds
2.2. ToBRFV Localization on Tomato Seed
2.3. ToBRFV Seed Transmission Rate
2.4. Effect of Seed Treatments on Tomato Seed Germination and Efficacy of Different Disinfection Methods
2.4.1. Thermal-Based Treatments on ToBRFV-Infected Seeds
2.4.2. Chemical-Based Treatments on ToBRFV-Infected Seeds
3. Results
3.1. Preparation of Infected ToBRFV-Seeds
3.2. ToBRFV Localization on Tomato Seed
3.3. ToBRFV Seed Transmission Rate
3.4. Effect of Seeds Treatment on Tomato Seed Germination and Efficacy of Different Disinfection Methods
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/faostat/en/#home (accessed on 1 October 2020).
- Panno, S.; Caruso, A.G.; Davino, S. The nucleotide sequence of a recombinant tomato yellow leaf curl virus strain frequently detected in Sicily isolated from tomato plants carrying the Ty-1 resistance gene. Arch. Virol. 2018, 163, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Panno, S.; Caruso, A.G.; Davino, S. First report of tomato brown rugose fruit virus on tomato crops in Italy. Plant Dis. 2019, 103, 1443. [Google Scholar] [CrossRef]
- Panno, S.; Ruiz-Ruiz, S.; Caruso, A.G.; Alfaro-Fernandez, A.; Ambrosio, M.I.F.S.; Davino, S. Real-time reverse transcription polymerase chain reaction development for rapid detection of Tomato brown rugose fruit virus and comparison with other techniques. PeerJ 2019, 7, e7928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sastry, K.S. Seed-Borne Plant Virus Diseases; Springer Science & Business Media: New Delhi, India, 2013. [Google Scholar]
- Broadbent, L. The epidemiology of tomato mosaic: XI. Seed-transmission of TMV. Ann. Appl. Biol. 1965, 56, 177–205. [Google Scholar] [CrossRef]
- Taylor, R.H.; Grogan, R.G.; Kimble, K.A. Transmission of tobacco mosaic virus in tomato seed. Phytopathology 1961, 5, 83742. [Google Scholar]
- Bailiss, K.W.; Offei, S.K. Alfalfa mosaic virus in lucerne seed during seed maturation and storage, and in seedlings. Plant Pathol. 1990, 39, 539–547. [Google Scholar] [CrossRef]
- Pesic, Z.; Hiruki, C. Differences in the incidence of alfalfa mosaic virus in seed coat and embryo of alfalfa seed. Can. J. Plant Pathol. 1986, 8, 39–42. [Google Scholar] [CrossRef]
- Johansen, E.; Edwards, M.C.; Hampton, R.O. Seed transmission of viruses: Current perspectives. Annu. Rev. Phytopathol. 1994, 32, 363–386. [Google Scholar] [CrossRef]
- King, A.M.; Lefkowitz, E.; Adams, M.J.; Carstens, E.B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2011; Volume 9. [Google Scholar]
- Salem, N.; Mansour, A.; Ciuffo, M.; Falk, B.W.; Turina, M. A new tobamovirus infecting tomato crops in Jordan. Arch. Virol. 2016, 161, 503–506. [Google Scholar] [CrossRef]
- Wilstermann, A.; Ziebell, H. Tomato brown rugose fruit virus (ToBRFV). JKI Data Sheets Plant Dis. Diagn. 2019, 1, 1–4. [Google Scholar]
- Levitzky, N.; Smith, E.; Lachman, O.; Luria, N.; Mizrahi, Y.; Bakelman, H.; Sela, N.; Laskar, O.; Milrot, E.; Dombrovsky, A. The bumblebee Bombus terrestris carries a primary inoculum of Tomato brown rugose fruit virus contributing to disease spread in tomatoes. PLoS ONE 2019, 14, e0210871. [Google Scholar] [CrossRef] [PubMed]
- Oladokun, J.O.; Halabi, M.H.; Barua, P.; Nath, P.D. Tomato brown rugose fruit disease: Current distribution, knowledge and future prospects. Plant Pathol. 2019, 68, 1579–1586. [Google Scholar] [CrossRef] [Green Version]
- Luria, N.; Smith, E.; Reingold, V.; Bekelman, I.; Lapidot, M.; Levin, I.; Elad, N.; Tam, Y.; Sela, N.; Abu-Ras, A.; et al. A new Israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS ONE 2017, 12, e0170429. [Google Scholar] [CrossRef] [Green Version]
- Cambrón-Crisantos, J.M.; Rodríguez-Mendoza, J.; Valencia-Luna, J.B.; Rangel, S.A.; De Jesús García-Ávila, C.; López-Buenfil, J.A. First report of Tomato brown rugose fruit virus (ToBRFV) in Michoacan, Mexico. Mex. J. Phytopathol. 2018, 37, 185–192. [Google Scholar]
- Ling, K.S.; Tian, T.; Gurung, S.; Salati, R.; Gilliard, A. First report of tomato brown rugose fruit virus infecting greenhouse tomato in the United States. Plant Dis. 2019, 103, 1439. [Google Scholar] [CrossRef]
- Menzel, W.; Knierim, D.; Winter, S.; Hamacher, J.; Heupel, M. First report of tomato brown rugose fruit virus infecting tomato in Germany. New Dis. Rep. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- Alkowni, R.; Alabdallah, O.; Fadda, Z. Molecular identification of tomato brown rugose fruit virus in tomato in Palestine. J. Plant Pathol. 2019, 101, 719–723. [Google Scholar] [CrossRef]
- Fidan, H.; Sarikaya, P.; Calis, O. First report of Tomato brown rugose fruit virus on tomato in Turkey. New Dis. Rep. 2019, 39, 18. [Google Scholar] [CrossRef] [Green Version]
- Skelton, A.; Buxton-Kirk, A.; Ward, R.; Harju, V.; Frew, L.; Fowkes, A.; Long, M.; Negus, A.; Forde, S.; Adams, I.P.; et al. First report of Tomato brown rugose fruit virus in tomato in the United Kingdom. New Dis. Rep. 2019, 40, 12. [Google Scholar] [CrossRef] [Green Version]
- Beris, D.; Malandraki, I.; Kektsidou, O.; Theologidis, I.; Vassilakos, N.; Varveri, C. First report of Tomato brown rugose fruit virus infecting tomato in Greece. Plant Dis. 2020, 104, 2035. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.Y.; Ma, H.Y.; Han, S.L.; Geng, C.; Tian, Y.P.; Li, X.D. First report of tomato brown rugose fruit virus infecting tomato in China. Plant Dis. 2019, 103, 2973. [Google Scholar] [CrossRef]
- Alfaro-Fernández, A.; Castillo, P.; Sanahuja, E.; Rodríguez-Salido, M.D.C.; Font, M.I. First report of Tomato brown rugose fruit virus in tomato in Spain. Plant Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- European and Mediterranean Plant Protection Organization (EPPO). Reporting Service 2020/038. Available online: https://gd.eppo.int/reporting/article-6716 (accessed on 1 October 2020).
- European and Mediterranean Plant Protection Organization (EPPO). Reporting Service 2020/037. Available online: https://gd.eppo.int/reporting/article-6715 (accessed on 1 October 2020).
- European and Mediterranean Plant Protection Organization (EPPO). Reporting Service 2020/09. Available online: https://gd.eppo.int/taxon/TOBRFV/distribution/CZ (accessed on 1 October 2020).
- European and Mediterranean Plant Protection Organization (EPPO). Reporting Service 2020/173. Available online: https://gd.eppo.int/reporting/article-6851 (accessed on 1 October 2020).
- Salem, N.M.; Cao, M.J.; Odeh, S.; Turina, M.; Tahzima, R. First Report of Tobacco Mild Green Mosaic Virus and Tomato Brown Rugose Fruit Virus Infecting Capsicum annuum in Jordan. Plant Dis. 2020, 104, 601. [Google Scholar] [CrossRef]
- Panno, S.; Caruso, A.G.; Blanco, G.; Davino, S. First report of Tomato brown rugose fruit virus infecting sweet pepper in Italy. New Dis. Rep. 2020, 41, 20. [Google Scholar] [CrossRef] [Green Version]
- Panno, S.; Caruso, A.G.; Barone, S.; Bosco, G.L.; Rangel, E.A.; Davino, S. Spread of Tomato Brown Rugose Fruit Virus in Sicily and Evaluation of the Spatiotemporal Dispersion in Experimental Conditions. Agronomy 2020, 10, 834. [Google Scholar] [CrossRef]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research; John Wiley & Sons: Hoboken, NJ, USA; Blackwell Science, Inc.: Malden, MA, USA, 2008. [Google Scholar]
- Ross, S.M. Introductory Statistics, 4th ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Davino, S.; Panno, S.; Iacono, G.; Sabatino, L.; D’Anna, F.; Iapichino, G.; Olmos, A.; Scuderi, G.; Rubio, L.; Tomassoli, L.; et al. Genetic variation and evolutionary analysis of Pepino mosaic virus in Sicily: Insights into the dispersion and epidemiology. Plant Pathol. 2017, 66, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Jeger, M.J.; Holt, J.; Van Den Bosch, F.; Madden, L.V. Epidemiology of insect-transmitted plant viruses: Modelling disease dynamics and control interventions. Physiol. Entomol. 2004, 29, 291–304. [Google Scholar] [CrossRef]
- Davino, S.; Calari, A.; Davino, M.; Tessitori, M.; Bertaccini, A.; Bellardi, M.G. Virescence of tenweeks stock associated to phytoplasma infection in Sicily. Bull. Insectol. 2007, 60, 279–280. [Google Scholar]
- Filho, F.M.D.A.; Sherwood, J.L. Evaluation of seed transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana. Phytopathology 2000, 90, 1233–1238. [Google Scholar] [CrossRef] [Green Version]
- Mink, G.I. Pollen- and seed-transmitted viruses and viroids. Annu. Rev. Phytopathol. 1993, 31, 375–402. [Google Scholar] [CrossRef]
- Ling, K.S. Pepino mosaic virus on tomato seed: Virus location and mechanical transmission. Plant Dis. 2008, 92, 1701–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dombrovsky, A.; Smith, E. Seed transmission of Tobamoviruses: Aspects of global disease distribution. Adv. Seed Biol. 2017, 233–260. [Google Scholar] [CrossRef] [Green Version]
- Reingold, V.; Lachman, O.; Blaosov, E.; Dombrovsky, A. Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds. Plant Pathol. 2015, 64, 245–255. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Tran-Nguyen, L.T.; Jones, R.A. Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annu. Rev. Phytopathol. 2017, 55, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Ferriol, I.; Rubio, L.; Perez-Panadez, J.; Carbonell, E.A.; Davino, S.; Belliure, B. Transmissibility of Broad bean wilt virus 1 by aphids: Influence of virus accumulation in plants, virus genotype and aphid species. Ann. Appl. Biol. 2013, 162, 71–79. [Google Scholar] [CrossRef]
- Sarkes, A.; Fu, H.; Feindel, D.; Harding, M.; Feng, J. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for the detection of Tomato brown rugose fruit virus (ToBRFV). BioRxiv 2020. [Google Scholar] [CrossRef]
- Panno, S.; Matić, S.; Tiberini, A.; Caruso, A.G.; Bella, P.; Torta, L.; Stassi, R.; Davino, S. Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology. Plants 2020, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Ferriol, I.; Rangel, E.A.; Panno, S.; Davino, S.; Han, C.G.; Olmos, A.; Rubio, L. Rapid detection and discrimination of fabaviruses by flow-through hybridisation with genus-and species-specific riboprobes. Ann. Appl. Biol. 2015, 167, 26–35. [Google Scholar] [CrossRef]
- Puchades, A.V.; Carpino, C.; Alfaro-Fernandez, A.; Font-San-Ambrosio, M.I.; Davino, S.; Guerri, J.; Rubio, L.; Galipienso, L. Detection of Southern tomato virus by molecular hybridisation. Ann. Appl. Biol. 2017, 171, 172–178. [Google Scholar] [CrossRef]
Sample ID | Ct Values | Sample ID | Ct Values | ||||||
---|---|---|---|---|---|---|---|---|---|
Bt-T | Bt-RC | Bnt-T | Bnt-RC | Bt-T | Bt-RC | Bnt-T | Bnt-RC | ||
1 | - | - | 30.98 | - | 26 | 32.66 | - | 33.12 | - |
2 | - | - | 30.42 | - | 27 | - | - | 33.09 | - |
3 | - | - | 33.56 | - | 28 | - | - | 31.07 | 33.49 |
4 | - | - | 31.02 | - | 29 | - | - | 33.56 | - |
5 | - | - | 30.66 | - | 30 | - | - | 32.54 | - |
6 | - | - | 32.80 | - | 31 | - | - | 31.93 | - |
7 | - | - | 31.07 | - | 32 | - | - | 33.54 | - |
8 | - | - | 30.99 | - | 33 | - | - | 33.40 | - |
9 | - | - | 32.56 | - | 34 | - | - | 30.67 | - |
10 | - | - | 30.61 | 33.79 | 35 | - | - | 33.42 | - |
11 | - | - | 33.47 | - | 36 | - | - | 31.48 | - |
12 | - | - | 33.51 | - | 37 | - | - | 32.80 | - |
13 | - | - | 32.23 | - | 38 | - | - | 31.59 | - |
14 | - | - | 31.72 | - | 39 | - | - | 33.10 | - |
15 | - | - | 33.09 | - | 40 | - | - | 32.01 | - |
16 | - | - | 30.07 | - | 41 | - | - | 32.58 | - |
17 | - | - | 30.79 | - | 42 | - | - | 31.99 | - |
18 | - | - | 32.98 | - | 43 | - | - | 33.26 | - |
19 | - | - | 32.87 | - | 44 | - | - | 33.12 | - |
20 | - | - | 31.43 | - | 45 | - | - | 30.94 | - |
21 | - | - | 33.31 | - | 46 | - | - | 33.47 | - |
22 | - | - | 31.14 | - | 47 | - | - | 31.59 | - |
23 | - | - | 32.68 | - | 48 | - | - | 33.42 | - |
24 | - | - | 31.56 | - | 49 | - | - | 32.12 | - |
25 | - | - | 33.07 | - | 50 | - | - | 32.30 | - |
Seed Coats | Infected | Not Infected | Total |
---|---|---|---|
Treated | 1 | 49 | 50 |
Not treated | 50 | 0 | 50 |
Total | 51 | 49 | 100 |
Seed Coats | Infected | Not Infected | Total |
---|---|---|---|
Treated | 0 | 50 | 50 |
Not treated | 50 | 0 | 50 |
Total | 50 | 50 | 100 |
Root+Cotyledons | Infected | Not Infected | Total |
---|---|---|---|
Treated | 0 | 50 | 50 |
Not treated | 2 | 48 | 50 |
Total | 2 | 98 | 100 |
Bnt Samples Group | Positive Sample ID | Ct Values | |
---|---|---|---|
Cotyledons | Third True Leaf | ||
1–20 | 14 | 30.12 | 34.90 |
20 | 28.46 | 33.84 | |
21–40 | - | - | - |
41–60 | 56 | 33.98 | - |
61–80 | - | - | - |
81–100 | 82 | 29.98 | 33.71 |
94 | 31.68 | 34.83 | |
101–120 | - | - | - |
121–140 | - | - | - |
141–160 | - | - | - |
161–180 | 162 | 33.78 | 34.73 |
181–200 | 187 | 32.56 | 34.51 |
189 | 34.45 | - | |
201–220 | 213 | 34.06 | - |
221–240 | - | - | - |
241–260 | - | - | - |
261–280 | - | - | - |
281–300 | - | - | - |
301–320 | - | - | - |
321–340 | - | - | - |
341–360 | 349 | 27.57 | 32.56 |
361–380 | - | - | - |
381–400 | - | - | - |
401–420 | - | - | - |
421–440 | 422 | 34.22 | - |
441–460 | 442 | 34.09 | - |
461–480 | 466 | 29.87 | 34.23 |
481–500 | 493 | 33.63 | 34.82 |
Treatment | Seed Germination Percentage (%) | ||
---|---|---|---|
7 Days Post-Treatment | 14 Days Post-Treatment | ||
Thermal-based treatments | ST-80 | 100 | - |
ST-75 | 67 | 100 | |
ST-70 | 89 | 100 | |
ST-65 | 100 | - | |
Chemical-based treatments | ST-P | 94 | 100 |
ST-H | 100 | - | |
ST-A | 0 | 0 | |
ST-S | 88 | 100 |
Heading | ST-80 | ST-75 | ST-70 | ST-65 | ST-P | ST-H | ST-A | ST-S |
---|---|---|---|---|---|---|---|---|
Proportion infected | 0.6 | 0.8 | 1.00 | 1.00 | 0.03 | 1.00 | - | 0.00 |
Lower bound | 0.50 | 0.72 | 1.00 | 1.00 | 0.00 | 1.00 | - | 0.00 |
Upper bound | 0.70 | 0.88 | 1.00 | 1.00 | 0.06 | 1.00 | - | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davino, S.; Caruso, A.G.; Bertacca, S.; Barone, S.; Panno, S. Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants 2020, 9, 1615. https://doi.org/10.3390/plants9111615
Davino S, Caruso AG, Bertacca S, Barone S, Panno S. Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants. 2020; 9(11):1615. https://doi.org/10.3390/plants9111615
Chicago/Turabian StyleDavino, Salvatore, Andrea Giovanni Caruso, Sofia Bertacca, Stefano Barone, and Stefano Panno. 2020. "Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments" Plants 9, no. 11: 1615. https://doi.org/10.3390/plants9111615
APA StyleDavino, S., Caruso, A. G., Bertacca, S., Barone, S., & Panno, S. (2020). Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants, 9(11), 1615. https://doi.org/10.3390/plants9111615