Long-Term Maintainable Somatic Embryogenesis System in Alfalfa (Medicago sativa) Using Leaf Explants: Embryogenic Sustainability Approach
Abstract
:1. Introduction
2. Results
2.1. Callus Induction
2.2. Somatic Embryogenesis and Its Phases
2.2.1. Embryo Development and Maturation
2.2.2. Comparison of Somatic Embryogenesis in Different Systems
2.2.3. Embryo Germination and Acclimatization
2.3. Embryogenic Sustainability
2.4. Scanning Electron Microscopy and Morphology of Somatic Embryogenesis
3. Discussion
4. Materials and Methods
4.1. Plant Material and Germination
4.1.1. Embryogenic Callus Induction
4.1.2. Embryogenesis and Maturation
4.1.3. Germination of Embryos
4.1.4. Somatic Embryogenesis Systems Studied
4.2. Evaluation of Embryogenic Sustainability
4.3. Scanning Electron Microscopy
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monteiro, M.; Appezzato-da-Glória, B.; Valarini, M.J.; Carlos, A.D.; Maria Lucia Carneiro, V. Plant regeneration from protoplasts of alfalfa (Medicago sativa) via somatic embryogenesis. Sci. Agric. 2003, 60, 683–689. [Google Scholar] [CrossRef]
- Bingham, E.T. Registration of alfalfa hybrid Regen-SY germplasm for tissue culture and transformation research. Crop Sci. 1991, 31, 1098. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [PubMed]
- Fras, A.; Smolen, B.; Maluszynska, J. Vascularization of zygotic and somatic embryos of Arabidopsis thaliana. Acta Biol. Crac. Ser. Bot. 2008, 50, 43–48. [Google Scholar]
- Kirkorian, A.D. Historical insights into some contemporary problems in somatic embryogenesis. In Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; Volume 6, pp. 17–49. [Google Scholar]
- Rai, M.K.; Asthana, P.; Jaiswal, V.S.; Jaiswal, U. Biotechnological advances in guava (Psidium guajava L.): Recent developments and prospects for further research. Trees Struct. Funct. 2010, 24, 1–12. [Google Scholar] [CrossRef]
- Merkle, S.A.; Parrot, W.A.; Flim, B.S. Morphogenic aspects of somatic embryogenesis. In In Vitro Embryogenesis in Plants; Thorpe, T.A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 155–204. [Google Scholar]
- Steward, F.C.; Mapes, M.O.; Mears, K. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am. J. Bot. 1958, 45, 705–708. [Google Scholar] [CrossRef]
- Amini, M.; Delco, A.; Naziabad, H.S. Improvement of in vitro embryo maturation, plantlet regeneration and transformation efficiency from Alfalfa (Medicago sativa L.) somatic embryos using Cuscuta campestris extract. Physiol. Mol. Biol. Plants 2016, 22, 321–330. [Google Scholar] [CrossRef]
- Bingham, E.T.; Hurley, L.V.; Kaatz, D.M.; Saunders, J.W. Breeding alfalfa which regenerates from callus tissue in culture. Crop Sci. 1975, 15, 719–721. [Google Scholar] [CrossRef]
- Atanassov, A.; Brown, D.C.W. Plant regeneration from suspension culture and mesophyll protoplasts of Medicago sativa L. Plant Cell Tissue Organ Cult. 1984, 3, 149–162. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Schenk, R.V.; Hildebrandt, A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Shetty, K.; McKersie, B.D. Proline, thioproline and potassium mediated stimulation of somatic embryogenesis in alfalfa (Medicago sativa L.). Plant Sci. 1993, 88, 185–193. [Google Scholar] [CrossRef]
- Tian, L.; Brown, D.C.W.; Watson, E. Continuous long-term somatic embryogenesis in alfalfa. Vitr. Cell. Dev. Biol. Plant 2002, 38, 279–284. [Google Scholar] [CrossRef]
- Lai, F.M.; McKersie, B.D. Scale-up of somatic embryogenesis in alfalfa (Medicago sativa L.) I subculture and indirect secondary somatic embryogenesis. Plant Cell Tissue Organ Cult. 1994, 37, 151–158. [Google Scholar] [CrossRef]
- Pereira, L.F.; Erickson, L. Stable transformation of alfalfa (Medicago sativa L.) by particle bombardment. Plant Cell Rep. 1995, 14, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Bewley, D.J. Contrasting pattern of somatic and zygotic embryo development in alfalfa (Medicago sativa L.) as revealed by scanning electron microscopy. Plant Cell Rep. 1992, 11, 279–284. [Google Scholar] [CrossRef] [PubMed]
- DosSantos, A.V.P.; Cutter, E.G.; Davey, M.R. Origin and development of somatic embryos in Medicago sativa L. (alfalfa). Protoplasma 1983, 117, 107–115. [Google Scholar] [CrossRef]
- Puigderrajols, P.; Mir, G.; Molinas, M. Ultrastructure of early secondary embryogenesis by multicellular and unicellular pathways in cork oak (Quercus suber L.). Ann. Bot. 2001, 87, 179–189. [Google Scholar] [CrossRef]
- Polito, V.S.; McGranahan, G.; Pinney, K.; Leslie, C. Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications for Agrobacterium-mediated transformation. Plant Cell Rep. 1989, 8, 219–221. [Google Scholar] [CrossRef]
- Maximova, S.N.; Alemanno, L.; Young, A.; Ferriere, N.; Traore, A.; Guiltinan, M.J. Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. Vitr. Cell. Dev. Biol. Plant 2002, 38, 252–259. [Google Scholar] [CrossRef]
- Yang, J.; Wu, S.; Li, C. High efficiency secondary somatic embryogenesis in Hovenia dulcis Thunb. through solid and liquid cultures. Sci. World J. 2013, 2013, 1–6. [Google Scholar]
- Rodríguez López, C.M.; Wetten, A.C.; Wilkinson, M.J. Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants. New Phytol. 2010, 186, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, L.; Levasseur, C.; Tremblay, F.M. Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am. J. Bot. 1998, 86, 1373–1381. [Google Scholar] [CrossRef]
- Hashemloian, B.D.; Ataei-Azimi, A.; Majd, A.; Ebrahimzadeh, H. Abnormal plantlets regeneration through direct somatic embryogenesis on immature seeds of Vinca herbacea Waldst. and kit. Afr. J. Biotechnol. 2008, 7, 1679–1683. [Google Scholar]
- Xiao, W. DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 2006, 18, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Landey, R.B.; Cenci, A.; Guyot, R. Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica. Plant Cell Tissue Organ Cult. 2015, 122, 517–531. [Google Scholar] [CrossRef]
- Fraga, H.P.F.; Vieira, L.N.; Caprestano, C.A. 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Rep. 2015, 31, 2165–2176. [Google Scholar] [CrossRef] [PubMed]
- Fehér, A. Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim. Biophys. Acta 2015, 1849, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Gaj, M. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul. 2004, 43, 27–47. [Google Scholar] [CrossRef]
- Pescador, R.; Kerbauy, G.B.; Viviani, D.; Kraus, J.E. Anomalous somatic embryos in Acca sellowiana (O. Berg) Burret (Myrtaceae). Braz. J. Bot. 2008, 31, 155–164. [Google Scholar] [CrossRef]
- Torbert, K.A.; Rines, H.W.; Somers, D. Use of paromomyein as a selective agent for oat transformation. Plant Cell Rep. 1995, 14, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Charest, P.J.; Devantier, Y.; Lachance, D. Stable genetic transformation of Picea mariana (black spruce) via particle bombardment. Vitr. Plant 1996, 32, 91–99. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Blaydes, D.F. Interaction of kinetin and various inhibitors in the growth of soybean tissues. Physiol. Plant. 1966, 19, 748–753. [Google Scholar] [CrossRef]
S. No. | Somatic Embryogenesis System Name | After 7 Days | After 14 Days | After 21 Days | Secondary Somatic Embryogenesis |
---|---|---|---|---|---|
1 | B5h-B5 | 6.6 ± 0.4 | 22.8 ± 0.9 | 48.9 ± 1.6 | Yes |
2 | B5h-MS | 1.9 ± 0.3 | 4.9 ± 0.3 | 5.7 ± 0.3 | No |
3 | B5h-BOi2Y | 3.3 ± 0.2 | 7.7 ± 0.4 | 27.9 ± 1.0 | Yes |
4 | SH4K-B5 | 3.4 ± 0.19 | 7.5 ± 0.3 | 25.2 ± 0.8 | No |
5 | SH4K-MS | 0.0 | 0.0 | 0.0 | No |
6 | SH4K- BOi2Y | 3.4 ± 0.3 | 9.6 ± 0.5 | 32.2 ± 1.4 | Yes |
7 | MS2D-B5 | 5.2 ± 0.3 | 16.0 ± 1.2 | 33.6 ± 2.2 | Yes |
8 | MS2D-MS | 4.0 ± 0.3 | 8.6 ± 0.9 | 18.0 ± 3.1 | No |
9 | MS2D-BOi2Y | 2.2 ± 0.3 | 6.0 ± 0.4 | 4.9 ± 0.9 | No |
S. No | Somatic Embryogenesis System Name | Callus Induction Medium | Embryo Development and Maturation (EDM) Medium | Germination Medium |
---|---|---|---|---|
1 | B5h-B5 | B5h | B5 | MMS |
2 | B5h-MS | B5h | MS | MMS |
3 | B5h-BOi2Y | B5h | BOi2Y | MMS |
4 | SH4K-B5 | SH4K | B5 | MMS |
5 | SH4K-MS | SH4K | MS | MMS |
6 | SH4K- BOi2Y | SH4K | BOi2Y | MMS |
7 | MS2D-B5 | MS2D | B5 | MMS |
8 | MS2D-MS | MS2D | MS | MMS |
9 | MS2D-BOi2Y | MS2D | BOi2Y | MMS |
Medium | Basal Medium | Growth Regulators | Additional Chemicals |
---|---|---|---|
B5h | Gamborg B5 basal salt 1968) [12] | 4.5 µM 2,4-D, 0.9 µM kinetin | 5.1 mM CaCl2.2H20, 5.5 mM glutamine, 32.5 µM glutathione, 95.1 µM serine, 7.4 µM adenine, 3% sucrose, 0.25% Gelrite or 0.7% agar |
SH4K | Schenk and Hildebrandt (1972) [13] | 4.5 µM 2,4-D, 0.9 µM kinetin | 25 mM proline, 0.4 mM thioproline, 50 mM potassium sulfate, 0.2% yeast extract, 100 mg/L myo-inositol, 3% sucrose 0.25% Gelrite or 0.7% agar |
MMS | Murashige and Skoog basal salt mixture (1962) [35] | -- | 1 mL/L 1000× Nitsch and Nitsch vitamin solution (Sigma), 0.1 g/L myo-inositol, 3% Sucrose, 0.25% Gelrite or 0.7% agar |
MS2D | Murashige and Skoog basal salt mixture (1962) [35] | 4.5 µM 2,4-D, 0.9 µM kinetin | 3% sucrose, 0.25% Gelrite or 0.7% agar |
B5 | Gamborg B5 Basal salt mixture [12] | -- | 5.1 mM CaCl2.2H20, 5.5 mM glutamine, 32.5 µM glutathione, 95.1 µM serine, 7.4 µM adenine, 3% sucrose, 0.25% Gelrite or 0.7% agar |
BOi2Y | Blaydes (1966) [36] | -- | 3% sucrose, 0.25% Gelrite or 0.7% agar |
MSO | Murashige and Skoog basal salt mixture (1962) [35] | 3% sucrose, 0.25% Gelrite or 0.7% agar |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangra, A.; Shahin, L.; Dhir, S.K. Long-Term Maintainable Somatic Embryogenesis System in Alfalfa (Medicago sativa) Using Leaf Explants: Embryogenic Sustainability Approach. Plants 2019, 8, 278. https://doi.org/10.3390/plants8080278
Sangra A, Shahin L, Dhir SK. Long-Term Maintainable Somatic Embryogenesis System in Alfalfa (Medicago sativa) Using Leaf Explants: Embryogenic Sustainability Approach. Plants. 2019; 8(8):278. https://doi.org/10.3390/plants8080278
Chicago/Turabian StyleSangra, Ankush, Lubana Shahin, and Sarwan K. Dhir. 2019. "Long-Term Maintainable Somatic Embryogenesis System in Alfalfa (Medicago sativa) Using Leaf Explants: Embryogenic Sustainability Approach" Plants 8, no. 8: 278. https://doi.org/10.3390/plants8080278
APA StyleSangra, A., Shahin, L., & Dhir, S. K. (2019). Long-Term Maintainable Somatic Embryogenesis System in Alfalfa (Medicago sativa) Using Leaf Explants: Embryogenic Sustainability Approach. Plants, 8(8), 278. https://doi.org/10.3390/plants8080278