Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Differences in Strawberry and Blueberry Carbohydrate Profiles
2.2. Source to Sink Relationship between Leaves and Berries
2.3. Sugar Profiles of Plants from Organic and Integrated Production
2.3.1. Strawberry Fruit
2.3.2. Strawberry Leaves
2.3.3. Blueberry Fruit
2.3.4. Blueberry Leaves
2.4. Sweetness Index and Total Sweetness Index
2.5. Principal Component Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Materials
3.3. Preparation of Sample Extracts
3.4. Ion Chromatography with Amperometric Detection
3.5. Sweetness Index and Total Sweetness Index
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halford, N.G.; Curtis, T.Y.; Muttucumaru, N.; Postles, J.; Mottram, D.S. Sugars in crop plants. Ann. Appl. Biol. 2011, 158, 1–25. [Google Scholar] [CrossRef]
- Wind, J.; Smeekens, S.; Hanson, J. Sucrose: Metabolite and signaling molecule. Phytochemistry 2010, 71, 1610–1614. [Google Scholar] [CrossRef] [PubMed]
- Okan, O.T.; Deniz, I.; Yayli, N.; Şat, I.G.; Öz, M.; Hatipoğlu Serdar, G. Antioxidant Activity, Sugar content and phenolic profiling of blueberries cultivars: A comprehensive. Not. Bot. Horti Agrobot. 2018, 46, 639–652. [Google Scholar] [CrossRef]
- Kitano, M.; Araki, T. Environmental effects on dynamics of fruit growth and photoassimilate translocation in tomato plants (2)—Analysis of phloem sap and xylem Sap fluxes and fruit water balance. Environ. Control Biol. 2001, 39, 43–51. [Google Scholar] [CrossRef]
- Fischer, G.; Almanza-Merchan, P.J.; Fernando, R. Source-sink relationships in fruit species: A review. Rev. Colomb. Cienc. Hortic. 2012, 6, 238–253. [Google Scholar] [CrossRef]
- Milivojević, J.; Rakonjac, V.; Fotirić Akšić, M.; Bogdanović Pristov, J.; Maksimović, V. Classification and fingerprinting of different berries based on biochemical profiling and antioxidant capacity. Pesqui. Agropecu. Bras. 2013, 48, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Pešaković, M.; Milivojević, J. Fertilizers: Components, uses in agriculture and environmental impacts. In Biotechnology in Agriculture, Industry and Medicine, 1st ed.; López Valdez, F., Fernández-Luqueño, F., Eds.; Nova Science Pub Inc.: London, UK, 2014; Volume 5, pp. 127–154. [Google Scholar]
- FAOStat. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 7 April 2019).
- Edderkaoui, M.; Lugea, A.; Hui, H.; Eibl, G.; Lu, Q.Y.; Moro, A.; Pandol, S.J. Ellagic acid and embelin affect key cellular components of pancreatic adenocarcinoma, cancer, and stellate cells. Nutr. Cancer 2013, 65, 1232–1244. [Google Scholar] [CrossRef]
- Ibrahim, D.S.; Abd El-Maksoud, M.A.E. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Int. J. Exp. Pathol. 2015, 96, 87–93. [Google Scholar] [CrossRef]
- Milivojević, J.; Radivojević, D.; Ruml, M.; Dimitrijević, M.; Dragišić Maksimović, J. Does microclimate under grey colored hail protection net affect biological and nutritional properties of ‘Duke’ highbush blueberry (V. corymbosum L.)? Fruits 2016, 71, 161–170. [Google Scholar] [CrossRef]
- Calò, R.; Marabini, L. Protective effect of Vaccinium myrtillus extract against UVA- and UVB-induced damage in a human keratinocyte cell line (HaCaT cells). J. Photochem. Photobiol. B. 2014, 132, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-L.; von Bergen, V.; Chyu, M.-C.; Jenkins, M.R.; Mo, H.; Chen, C.-H.; Kwun, I.-S. Fruits and dietary phytochemicals in bone protection. Nutr. Res. 2012, 32, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Lockie, S.; Halpin, D.; Pearson, D. Understanding the market for organic food. In Organic Agriculture: A Global Perspective; Kristiansen, P., Taji, A., Reganold, J., Eds.; CSIRO Publishing: Collingwood, VIC, Australia, 2006; pp. 245–258. [Google Scholar]
- Granatstein, D.; Kirby, E.; Ostenson, H.; Willer, H. Global situation for organic tree fruits. Sci. Hortic. 2016, 208, 3–12. [Google Scholar] [CrossRef]
- Kobi, H.B.; Martins, M.C.; Silva, P.I.; Souza, J.L.; Carneiro, J.C.S.; Heleno, F.; Queiroz, M.E.L.R.; Costa, N.M.B. Organic and conventional strawberries: Nutritional quality, antioxidant characteristics and pesticide residues. Fruits 2018, 73, 39–47. [Google Scholar] [CrossRef]
- Hassan, H.A.; Taha, S.S.; Aboelghar, M.A.; Morsy, N.A. Comparative the impact of organic and conventional strawberry cultivation on growth and productivity using remote sensing techniques under Egypt climate conditions. Asian J. Agric. Biol. 2018, 6, 228–244. [Google Scholar]
- Andrade, C.A.W.; Miguel, A.C.A.; Spricigo, P.C.; Dias, C.T.D.S.; Jacomino, A.P. Comparison of quality between organic and conventional strawberries from multiple farms. Rev. Bras. Frutic. 2017, 39, e-045. [Google Scholar] [CrossRef]
- Tertuliano, M.; Krewer, G.; Smith, J.E.; Plattner, K.; Clark, J.; Jacobs, J.; Andrews, E.; Stanaland, D.; Andersen, P.; Liburd, O.; et al. Growing organic rabbiteye blueberries in Georgia, USA: Results of two multi-year field studies. Int. J. Fruit Sci. 2012, 12, 205–215. [Google Scholar] [CrossRef]
- Gupta-Elera, G.; Garrett, A.; Martinez, A.; Kraus, R.D.; Robison, R.; O’Neill, K. A comparison of antioxidant properties in organic and conventional blueberries. J. Food Res. 2012, 1, 1–7. [Google Scholar] [CrossRef]
- Larco, H.; Strik, B.C.; Bryla, D.R.; Sullivan, D.M. Mulch and fertilizer management practices for organic production of highbush blueberry. I: Plant growth and allocation of biomass during establishment. HortScience 2013, 48, 1250–1261. [Google Scholar] [CrossRef]
- Ochmian, I.; Kozos, K.; Chełpiński, P.; Szczepanek, M. Comparison of berry quality in highbush blueberry cultivars grown according to conventional and organic methods. Turk. J. Agric. For. 2015, 39, 174–181. [Google Scholar] [CrossRef]
- You, Q.; Wang, B.; Chen, F.; Huang, Z.; Wang, X.; Luo, P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011, 125, 201–208. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity and flvonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.E.; Andersson, C.S.; Oredsson, S.; Berglund, R.H.; Gustavsson, K. Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. J. Agric. Food Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Andersson, G.K.S.; Rundlo, M.; Smith, H.G. Organic farming improves pollina-tion success in strawberries. PLoS ONE 2012, 7, e31599. [Google Scholar] [CrossRef]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; All-dredge, J.R.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and soil quality oforganic and conventional strawberry agroecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Hakkinen, S.H.; Torronen, A.R. Content of flavonols andselected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000, 33, 517–524. [Google Scholar] [CrossRef]
- Crespo, P.; Bordonaba, J.G.; Terry, L.A.; Carlen, C. Characterization of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem. 2010, 122, 16–24. [Google Scholar] [CrossRef]
- Dragišić Maksimović, J.; Poledica, M.; Mutavdžić, D.; Mojović, M.; Radivojević, D.; Milivojević, J. Variation in nutritional quality and chemical composition of fresh strawberry fruit: Combined effect of cultivar and storage. Plant Foods Hum. Nutr. 2015, 70, 77–84. [Google Scholar] [CrossRef]
- Tomić, J.; Pešaković, M.; Milivojević, J.; Karaklajić-Stajić, Ž. How to improve strawberry productivity, nutrients composition, and beneficial rhizosphere microflora by biofertilization and mineral fertilization? J. Plant Nutr. 2018, 41, 2009–2021. [Google Scholar] [CrossRef]
- Bordonaba, J.G.; Terry, L.A. Manipulating the tasterelated composition of strawberry fruit (Fragaria × ananassa) from different cultivars using deficit irrigation. Food Chem. 2010, 122, 1020–1026. [Google Scholar] [CrossRef]
- Akhatou, I.; Fernández-Recamales, A. Influence of cultivar and culture system on nutritional and organoleptic quality of strawberry. J. Sci. Food Chem. 2014, 94, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.C.N.; Brecht, J.K.; Morais, A.M.M.B.; Sargent, S.A. Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. J. Sci. Food Agric. 2006, 86, 180–190. [Google Scholar] [CrossRef]
- Correia, S.; Gonçalves, B.; Aires, A.; Silva, A.; Ferreira, L.; Carvalho, R.; Fernandes, H.; Freitas, C.; Carnide, V.; Silva, A.P. Effect of harvest year and altitude on nutritional and biometric characteristics of blueberry cultivars. J. Chem. 2016, 1, 1–12. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Y.; Sun, M.; Li, B.; Han, Y.; Zhao, Y.; Li, X.; Ding, N.; Li, C.; Ji, W.; et al. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol. 2013, 198, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Rolland, F.; Sheen, J. Sugar sensing and signaling networks in plants. Biochem. Soc. Trans. 2005, 33, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E. Plant Physiology, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2006. [Google Scholar]
- Petridis, A.; van der Kaay, J.; Chrysanthou, E.; McCallum, S.; Graham, J.; Hancock, R.D. Photosynthetic limitation as a factor inflencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment. J. Exp. Bot. 2018, 69, 3069–3080. [Google Scholar] [CrossRef] [PubMed]
- Remi, L.; Sylvain, L.C.; Rossitza, A.; Fabienne, D.; Thierry, A.; Nathalie, P.; Jean-Louis, B.; Maryse, L.; Pierre, C.; Laurence, M.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Li, X.; Hu, Y.; Zhao, P.; Xu, T.; Sun, J.; Gao, X. Proline, sugars and antioxidant enzymes respond to drought stress in the leaves of strawberry plants. Korean J. Hortic. Sci. 2015, 33, 625–632. [Google Scholar] [CrossRef]
- Winter, C.; Davis, S. Organic foods. J. Food Sci. 2006, 71, R117–R124. [Google Scholar] [CrossRef]
- Terry, L.A.; Chope, G.A.; Bordonaba, J.G. Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry (Fragaria × ananassa) fruit quality. J. Agric. Food Chem. 2007, 55, 10812–10819. [Google Scholar] [CrossRef]
- Bordonaba, J.G.; Terry, L.A. Development of a glucose biosensor for rapid assessment of strawberry quality: Relationship between biosensor response and fruit composition. J. Agric. Food Chem. 2009, 57, 8220–8226. [Google Scholar] [CrossRef] [PubMed]
- Chiou, T.J.; Bush, D.R. Sucrose is a signal molecule in assimilate partitioning. Proc. Natl. Acad. Sci. USA 1998, 95, 4784–4788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demmig-Adams, B.; Stewart, J.J.; Adams, W.W. III. Environmental regulation of intrinsic photosynthetic capacity: An integrated view. Curr. Opin. Plant Biol. 2017, 37, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Akhatou, I.; González-Domínguez, R.; Fernández-Recamales, Á. Investigation of the effect of genotype and agronomic conditions on metabolomic profiles of selected strawberry cultivars with different sensitivity to environmental stress. Plant Physiol. Biochem. 2016, 101, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Harris, P.J.C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004, 166, 3e16. [Google Scholar] [CrossRef]
- Cayuela, J.; Vidueira, J.; Albi, M.; Gutierrez, F. Influence of the ecological cultivation of strawberries (Fragaria × Ananassa cv. Chandler) on the quality of the fruit and on their capacity for conservation. J. Agric. Food Chem. 1997, 45, 1736–1740. [Google Scholar] [CrossRef]
- Conti, S.; Villari, G.; Faugno, S.; Melchionna, G.; Somma, S.; Caruso, G. Effects of organic vs. conventional farming system on yield and quality of strawberry grown as an annual or biennial crop in southern Italy. Sci. Hortic. 2014, 180, 63–71. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R.; Rupasinghe, H.P.V. The effects of organic and conventional nutrient amendments on strawberry cultivation: Fruit yield and quality. J. Sci. Food Agric. 2008, 88, 2669–2675. [Google Scholar] [CrossRef]
- Da Silva, F.L.; Escribano-Bailón, M.T.; Pérez-Alonso, J.J.; Ricas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanin pigments in strawberry. LWT 2007, 40, 374–382. [Google Scholar] [CrossRef]
- Sturm, K.; Koron, D.; Stampar, F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 2003, 83, 417–422. [Google Scholar] [CrossRef]
- Lima, R.B.; dos Santos, T.B.; Vieira, L.G.E.; de Lourdes Lúcio Ferrarese, M.; Ferrarese-Filho, O.; Donatti, L.; Boeger, M.R.T.; de Oliveira Petkowicz, C.L. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.). Carbohydr. Polym. 2013, 93, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Tan, D.-X.; Reiter, R.J.; Shi, H. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Sci. Rep. 2015, 5, 15815. [Google Scholar] [CrossRef] [PubMed]
- Fotirić Akšić, M.; Tosti, T.; Nedić, N.; Marković, M.; Ličina, V.; Milojković-Opsenica, D.; Tešić, Ž. Influence of frost damage on the sugars and sugar alcohol composition in quince (Cydonia oblonga mill.) floral nectar. Acta Physiol. Plant. 2015, 37, 1701–1712. [Google Scholar] [CrossRef]
- Vasseur, F.; Pantin, F.; Vile, D. Changes in light intensity reveals a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ. 2011, 34, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Zanella, M.; Borghi, G.L.; Pirone, C.; Thalmann, M.; Pazmino, D.; Costa, A.; Santelia, D.; Trost, P.; Sparla, F. b-amylase1(BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J. Exp. Bot. 2016, 67, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Kempa, S.; Krasensky, J.; Dal Santo, S.; Kopka, J.; Jonak, C. A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS ONE 2008, 3, e3935. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cai, S.; Chen, M.; Ye, L.; Chen, Z.; Zhang, H.; Dai, F.; Wu, F.; Zhang, G. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 2013, 8, e55431. [Google Scholar] [CrossRef] [PubMed]
- Janmohammadi, M. Metabolomic analysis of low temperature responses in plants. Curr. Opin. Agric. 2012, 1, 1–6. [Google Scholar]
- Paparozzia, E.T.; Meyerb, G.E.; Schlegel, V.; Blankenship, E.E.; Adamse, S.A.; Conleye, M.E.; Losekee, B.; Read, P.E. Strawberry cultivars vary in productivity, sugars and phytonutrient content when grown in a greenhouse during the winter. Sci. Hortic. 2018, 227, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
Carbohydrates | Alba | Favette | Clery | ||||
---|---|---|---|---|---|---|---|
integ | org | integ | org | integ | org | ||
1 | Glucose | 51.975 ± 0.965 c 1 | 44.288 ± 1.027 b | 60.855 ± 1.174 d | 46.293 ± 1.117 b | 24.653 ± 0.665 a | 57.775 ± 0.785 d |
2 | Fructose | 53.534 ± 1.037 b | 49.016 ± 0.943 ab | 62.813 ± 1.057 c | 46.554 ± 0.984 a | 46.036 ± 0.885 a | 66.238 ± 0.997 d |
3 | Sucrose | 31.715 ± 0.127 b | 15.863 ± 0.798 a | 68.120 ± 1.855 e | 18.285 ± 0.912 a | 44.634 ± 0.486 d | 38.539 ± 0.832 c |
4 | Sorbitol | 0.014 ± 0.003 ab | 0.022 ± 0.005 c | 0.061 ± 0.011 e | 0.054 ± 0.015 d | 0.017 ± 0.001 bc | 0.011 ± 0.001 a |
5 | Trehalose | 0.088 ± 0.007 a | 0.365 ± 0.023 e | 0.243 ± 0.009 cd | 0.114 ± 0.009 b | 0.297 ± 0.011 d | 0.180 ± 0.008 c |
6 | Arabinose | 0.065 ± 0.003 d | 0.044 ± 0.002 b | 0.057 ± 0.005 c | 0.026 ± 0.003 a | 0.026 ± 0.002 a | 0.021 ± 0.001 a |
7 | Turanose | 0.039 ± 0.002 a | 0.129 ± 0.006 e | 0.059 ± 0.003 b | 0.086 ± 0.005 d | 0.071 ± 0.003 c | 0.128 ± 0.012 e |
8 | Galactose | 2.396 ± 0.023 d | 1.615 ± 0.001 c | 1.578 ± 0.011 c | 2.892 ± 0.014 e | 0.700 ± 0.007 a | 1.138 ± 0.012 b |
9 | Ribose | 0.413 ± 0.015 e | 0.079 ± 0.017 b | 0.101 ± 0.011 c | 0.134 ± 0.012 d | 0.035 ± 0.005 a | 0.036 ± 0.004 a |
10 | Isomaltose | 0.115 ± 0.009 c | 0.063 ± 0.001 b | 0.251 ± 0.013 e | 0.073 ± 0.008 b | 0.015 ± 0.002 a | 0.148 ± 0.011 d |
11 | Isomaltotriose | 0.034 ± 0.005 a | 0.052 ± 0.005 b | 0.034 ± 0.003 a | 0.042 ± 0.003 ab | 0.047 ± 0.005 ab | 0.065 ± 0.005 c |
12 | Maltose | 0.267 ± 0.011 b | 0.284 ± 0.013 b | 0.449 ± 0.025 c | 0.194 ± 0.011 a | 0.211 ± 0.011 a | 0.496 ± 0.010 c |
13 | Maltotriose | 0.102 ± 0.004 c | 0.194 ± 0.005 e | 0.088 ± 0.002 b | 0.097 ± 0.002 bc | 0.046 ± 0.002 a | 0.158 ± 0.002 d |
14 | Xylose | 0.031 ± 0.001 c | 0.038 ± 0.001 d | 0.017 ± 0.001 a | 0.025 ± 0.001 b | 0.022 ± 0.001 b | 0.029 ± 0.002 c |
15 | Panose | 0.022 ± 0.001 a | 0.021 ± 0.001 a | 0.021 ± 0.001 a | 0.020 ± 0.001 a | 0.026 ± 0.001 b | 0.027 ± 0.001 b |
16 | Rhamnose | 0.087 ± 0.002 a | 0.268 ± 0.004 f | 0.186 ± 0.003 d | 0.125 ± 0.003 b | 0.234 ± 0.005 e | 0.140 ± 0.005 c |
17 | Raffinose | 0.082 ± 0.005 a | 0.135 ± 0.005 c | 0.121 ± 0.004 c | 0.083 ± 0.002 a | 0.112 ± 0.002 b | 0.108 ± 0.003 b |
Total sugars | 140.984 b | 112.476 a | 195.023 d | 115.128 a | 117.182 a | 165.231 c | |
SI | 217.919 c | 178.440 a | 297.287 e | 178.052 a | 190.792 b | 262.150 d | |
TSI | 151.517 c | 123.046 a | 208.589 e | 123.299 a | 132.424 b | 181.805 d |
Carbohydrates | Bluecrop | Duke | Nui | ||||
---|---|---|---|---|---|---|---|
integ | org | integ | org | integ | org | ||
1 | Glucose | 26.036 ± 1.057 a 1 | 46.495 ± 1.532 c | 35.512 ± 1.117 b | 26.415 ± 1.121 a | 28.060 ± 1.119 a | 34.443 ± 1.742 b |
2 | Fructose | 22.682 ± 1.032 a | 43.047 ± 1.011 e | 30.920 ±1.285 c | 30.516 ±1.117 c | 26.420 ± 1.123 b | 35.503 ±1.127 d |
3 | Galactose | 7.112 ± 0.214 a | 8.727 ± 0.226 d | 7.968 ± 0.176 bc | 10.112 ± 0.032 e | 7.845 ± 0.0216 bc | 8.363 ± 0.0313 cd |
4 | Ribose | 0.050 ± 0.003 a | 0.075 ± 0.005 b | 0.149 ± 0.007 d | 0.059 ± 0.004 a | 0.080 ± 0.006 bc | 0.088 ± 0.006 c |
5 | Sucrose | 0.062 ± 0.003 a | 0.067 ± 0.003 a | 0.082 ± 0.004 c | 0.076 ± 0.003 bc | 0.061 ± 0.002 a | 0.085 ± 0.003 c |
6 | Trehalose | 0.006 ± 0.001 a | 0.028 ± 0.002 bc | 0.034 ± 0.002 c | 0.037 ± 0.003 c | 0.023 ± 0.001 b | 0.063 ± 0.002 d |
7 | Maltose | 0.096 ± 0.004 c | 0.100 ± 0.003 c | 0.010 ± 0.001 a | 0.051 ± 0.002 b | 0.048 ± 0.002 b | 0.062 ± 0.002 b |
8 | Maltotriose | 0.087 ± 0.001 c | 0.055 ± 0.001 b | 0.031 ± 0.001 a | 0.055 ± 0.002 b | 0.062 ± 0.002 b | 0.050 ± 0.002 b |
9 | Rhamnose | 0.035 ± 0.001 c | 0.019 ± 0.001 ab | 0.031 ± 0.001 c | 0.035 ± 0.001 c | 0.013 ± 0.001 a | 0.022 ± 0.001 b |
10 | Raffinose | 0.025 ± 0.001 b | 0.086 ± 0.001 c | 0.046 ± 0.001 c | 0.012 ± 0.001 a | 0.182 ± 0.001 d | 0.264 ± 0.002 e |
11 | Arabinose | 0.016 ± 0.001 a | 0.054 ± 0.002 cd | 0.067 ± 0.002 d | 0.061 ± 0.002 cd | 0.042 ± 0.002 b | 0.048 ± 0.002 bc |
12 | Isomaltotriose | 0.012 ± 0.001 a | 0.049 ± 0.002 c | 0.016 ± 0.001 a | 0.018 ± 0.001 a | 0.028 ± 0.001 b | 0.031 ± 0.001 b |
13 | Melibiose | 0.029 ± 0.001 b | 0.003 ± 0.001 a | 0.031 ± 0.001 b | 0.003 ± 0.001 a | 0.005 ± 0.001 a | 0.042 ± 0.001 c |
14 | Panose | 0.018 ± 0.001 b | 0.008 ± 0.001 a | 0.008 ± 0.001 a | 0.008 ± 0.001 a | 0.010 ± 0.001 a | 0.009 ± 0.001 a |
15 | Sorbitol | 0.015 ± 0.002 a | 0.010 ± 0.001 a | 0.014 ± 0.001 a | 0.031 ± 0.002 c | 0.021 ± 0.001 b | 0.004 ± 0.001 a |
Total sugars | 56.281 a | 98.823 c | 74.919 b | 67.489 ab | 62.900 ab | 79.077 b | |
SI | 78.288 a | 145.594 c | 106.739 b | 96.704 ab | 88.908 a | 116.215 b | |
TSI | 53.872 a | 99.974 c | 73.451 ab | 65.925 ab | 61.017 ab | 79.516 b |
Carbohydrates | Alba | Favette | Clery | ||||
---|---|---|---|---|---|---|---|
integ | org | integ | org | integ | org | ||
1 | Glucose | 7.403 ± 0.035 c 1 | 3.696 ± 0.018 a | 5.198 ± 0.024 b | 8.047 ± 0.008 c | 4.222 ± 0.008 ab | 7.682 ± 0.008 c |
2 | Fructose | 5.571 ± 0.011 c | 2.242 ± 0.007 a | 4.124 ± 0.004 b | 7.065 ± 0.006 d | 2.755 ± 0.009 a | 6.481 ± 0.003 cd |
3 | Sucrose | 0.904 ± 0.011 a | 2.374 ± 0.013 d | 1.025 ± 0.014 a | 1.923 ± 0.011 c | 1.196 ± 0.009 ab | 1.408 ± 0.006 b |
4 | Galactose | 0.903 ± 0.011 d | 0.179 ± 0.009 a | 0.586 ± 0.009 c | 1.106 ± 0.008 d | 0.315 ± 0.012 b | 0.353 ± 0.014 b |
5 | Turanose | 0.219 ± 0.011 a | 0.208 ± 0.011 a | 0.203 ± 0.012 a | 0.265 ± 0.0011 b | 0.341 ± 0.012 c | 0.378 ± 0.014 c |
6 | Rhamnose | 0.104 ± 0.0002 a | 0.287 ± 0.002 d | 0.189 ± 0.002 b | 0.207 ± 0.002 b | 0.245 ± 0.002 c | 0.187 ± 0.002 b |
7 | Trehalose | 0.180 ± 0.002 b | 0.300 ± 0.003 c | 0.266 ± 0.003 c | 0.068 ± 0.001 a | 0.172 ± 0.002 b | 0.286 ± 0.002 c |
8 | Maltose | 0.122 ± 0.002 a | 0.111 ± 0.005 a | 0.107 ± 0.004 a | 0.143 ± 0.0008 ab | 0.179 ± 0.003 bc | 0.196 ± 0.005 c |
9 | Raffinose | 0.083 ± 0.002 a | 0.074 ± 0.002 a | 0.070 ± 0.002 a | 0.08 ± 0.004 a | 0.124 ± 0.003 b | 0.129 ± 0.002 b |
10 | Sorbitol | 0.035 ± 0.002 b | 0.092 ± 0.004 d | 0.014 ± 0.001 a | 0.016 ± 0.001 a | 0.066 ± 0.002 c | 0.011 ± 0.001 a |
11 | Panose | 0.054 ± 0.004 b | 0.033 ± 0.002 a | 0.047 ± 0. 002 ab | 0.034 ± 0.002 a | 0.056 ± 0.003 b | 0.049 ± 0.002 ab |
12 | Arabinose | 0.071 ± 0.004 a | 0.677 ± 0.004 d | 0.254 ± 0.012 b | 0.356 ± 0.016 c | 0.226 ± 0.011 b | 0.307 ± 0.012 bc |
13 | Galactitol | 0.011 ± 0.002 a | 0.039 ± 0.003 b | 0.021 ± 0.002 ab | 0.016 ± 0.002 a | 0.010 ± 0.001 a | 0.058 ± 0.003 c |
14 | Ribose | 0.023 ± 0.001 a | 0.029 ± 0.002 a | 0.025 ± 0.001 a | 0.029 ± 0.001 a | 0.021 ± 0.001 a | 0.095 ± 0.003 b |
15 | Isomaltotriose | 0.025 ± 0.001 a | 0.031 ± 0.002 a | 0.034 ± 0.001 a | 0.031 ± 0.001 a | 0.065 ± 0.002 b | 0.033 ± 0.001 a |
16 | Maltotriose | 0.026 ± 0.001 a | 0.128 ± 0.002 c | 0.129 ± 0.002 c | 0.045 ± 0.001 ab | 0.214 ± 0.002 d | 0.057 ± 0.001 b |
17 | Xylose | 0.006 ± 0.001 a | 0.028 ± 0.001 b | 0.010 ± 0.001 a | 0.012 ± 0.001 a | 0.035 ± 0.001 b | 0.021 ± 0.001 b |
18 | Melibiose | 0.019 ± 0.001 a | 0.098 ± 0.001 c | 0.064 ± 0.004 b | 0.022 ± 0.002 a | 0.089 ± 0.003 c | 0.054 ± 0.004 b |
19 | Gentiobiose | 0.013 ± 0.001 a | 0.045 ± 0.001 c | 0.013 ± 0.001 a | 0.014 ± 0.001 a | 0.030 ± 0.002 b | 0.015 ± 0.001 a |
Total sugars | 15.772 b | 10.671 a | 12.379 ab | 19.487 c | 10.361 a | 17.800 bc |
Carbohydrates | Bluecrop | Duke | Nui | ||||
---|---|---|---|---|---|---|---|
conv | org | conv | org | conv | org | ||
1 | Glucose | 7.009 ± 0.086 b 1 | 7.226 ± 0.042 c | 7.326 ± 0.036 c | 4.782 ± 0.022 a | 6.922 ± 0.012 b | 6.996 ± 0.014 b |
2 | Fructose | 5.621 ± 0.042 c | 4.663 ± 0.022 b | 5.005 ± 0.022 bc | 4.746 ± 0.028 b | 4.412 ± 0.018 a | 6.065 ± 0.019 d |
3 | Sucrose | 1.186 ± 0.011 c | 0.855 ± 0.010 b | 1.949 ± 0.011 d | 0.362 ± 0.018 a | 1.074 ± 0.003 bc | 1.191 ± 0.002 c |
4 | Galactose | 0.940 ± 0.003 b | 1.518 ± 0.003 c | 1.568 ± 0.004 c | 2.192 ± 0.004 d | 0.558 ± 0.001 a | 3.344 ± 0.002 e |
5 | Ribose | 0.413 ± 0.011 e | 0.199 ± 0.008 cd | 0.282 ± 0.007 d | 0.251 ± 0.006 d | 0.117 ± 0.002 b | 0.069 ± 0.001 a |
6 | Panose | 0.377 ± 0.003 a | 0.783 ± 0.004 b | 0.684 ± 0.004 b | 0.870 ± 0.004 c | 0.947 ± 0.003 d | 0.891 ± 0.003 cd |
7 | Turanose | 0.252 ± 0.002 c | 0.167 ± 0.002 b | 0.231 ± 0.002 c | 0.274 ± 0.003 c | 0.091 ± 0.002 a | 0.577 ± 0.002 d |
8 | Maltose | 0.224 ± 0.002 b | 0.201 ± 0.002 b | 0.186 ± 0.002 ab | 0.253 ± 0.003 b | 0.141 ± 0.002 a | 0.394 ± 0.002 c |
9 | Stachyose | 0.202 ± 0.002 c | 0.302 ± 0.003 d | 0.174 ± 0.002 b | 0.156 ± 0.001 b | 0.221 ± 0.002 c | 0.124 ± 0.001 a |
10 | Sorbitol | 0.053 ± 0.001 c | 0.032 ± 0.001 b | 0.026 ± 0.001 a | 0.023 ± 0.001 a | 0.026 ± 0.001 a | 0.058 ± 0.001 c |
11 | Trehalose | 0.066 ± 0.001 b | 0.161 ± 0.001 d | 0.102 ± 0.001 c | 0.361 ± 0.002 e | 0.024 ± 0.001 a | 0.353 ± 0.002 e |
12 | Arabinose | 0.083 ± 0.001 a | 0.378 ± 0.002 c | 0.114 ± 0.002 ab | 0.201 ± 0.002 b | 0.077 ± 0.001 a | 0.180 ± 0.002 b |
13 | Galactitol | 0.017 ± 0.001 a | 0.041 ± 0.001 b | 0.038 ± 0.001 b | 0.045 ± 0.001 b | 0.011 ± 0.001 a | 0.065 ± 0.001 c |
14 | Isomaltotriose | 0.028 ± 0.001 a | 0.049 ± 0.001 b | 0.031 ± 0.001 a | 0.032 ± 0.001 a | 0.025 ± 0.001 a | 0.070 ± 0.001 c |
15 | Maltotriose | 0.040 ± 0.001 c | 0.017 ± 0.001 a | 0.030 ± 0.001 b | 0.054 ± 0.001 d | 0.026 ± 0.001 b | 0.041 ± 0.001 c |
16 | Xylose | 0.029 ± 0.001 b | 0.014 ± 0.001 a | 0.027 ± 0.001 b | 0.028 ± 0.001 b | 0.012 ± 0.001 a | 0.011 ± 0.001 a |
17 | Melibiose | 0.034 ± 0.001 b | 0.072 ± 0.002 c | 0.026 ± 0.002 ab | 0.105 ± 0.002 d | 0.015 ± 0.001 a | 0.037 ± 0.001 b |
18 | Gentiobiose | 0.022 ± 0.001 b | 0.080 ± 0.002 c | 0.008 ± 0.001 a | 0.028 ± 0.001 b | 0.014 ± 0.001 a | 0.018 ± 0.001 ab |
19 | Rhamnose | 0.074 ± 0.002 c | 0.102 ± 0.002 d | 0.086 ± 0.002 c | 0.284 ± 0.002 e | 0.021 ± 0.001 a | 0.046 ± 0.001 b |
20 | Raffinose | 0.023 ± 0.001 b | 0.016 ± 0.001 ab | 0.026 ± 0.001 b | 0.011 ± 0.001 a | 0.012 ± 0.001 a | 0.022 ± 0.001 b |
Total sugars | 16.693 ab | 16.876 ab | 17.919 b | 15.058 a | 14.746 a | 20.552 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akšić, M.F.; Tosti, T.; Sredojević, M.; Milivojević, J.; Meland, M.; Natić, M. Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System. Plants 2019, 8, 205. https://doi.org/10.3390/plants8070205
Akšić MF, Tosti T, Sredojević M, Milivojević J, Meland M, Natić M. Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System. Plants. 2019; 8(7):205. https://doi.org/10.3390/plants8070205
Chicago/Turabian StyleAkšić, Milica Fotirić, Tomislav Tosti, Milica Sredojević, Jasminka Milivojević, Mekjell Meland, and Maja Natić. 2019. "Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System" Plants 8, no. 7: 205. https://doi.org/10.3390/plants8070205