Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review
Abstract
:1. Introduction
2. Studies Regarding the Inhibitory Activity of Plant Extracts on P. digitatum and P. italicum
2.1. Medicinal Plant Extracts
2.2. Edible Plants Extracts
2.3. Citrus Extracts
2.4. Volatile Oil
2.5. Other Plant Extracts
2.6. Targeted Isolation and Identification of Antifungal Active Ingredients
3. Study on the Application of Plant Extracts to Citrus Preservation
4. Existing Problems and Future Development Trends
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ladanyia, M.; Ladaniya, M. Citrus Fruit: Biology, Technology and Evaluation; Academic Press: San Diego, CA, USA, 2010. [Google Scholar]
- Hintz, T.; Matthews, K.K.; Di, R. The use of plant antimicrobial compounds for food preservation. Biomed. Res. Int. 2015, 2015, 246264. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-del-Río, I.; Fernández, J.; Lombó, F. Plant nutraceuticals as antimicrobial agents in foodpreservation: terpenoids, polyphenols and thiols. Int. J. Antimicrob. Agents 2018, 52, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, M.F.; Carrasco, H.; Olea, A.; Silva-Moreno, E. Natural compounds: A sustainable alternative for controlling phytopathogens. Peer J. Preprints 2018, 6, e26664v1. [Google Scholar] [CrossRef]
- Cock, I.E.; Vuuren, S.F.V. South African food and medicinal plant extracts as potential antimicrobial food agents. J. Food. Sci. Agric. 2015, 52, 6879–6899. [Google Scholar] [CrossRef]
- Sanzani, S.M.; Schena, L.; Ippolito, A. Effectiveness of phenolic compounds against citrus green mould. Molecules 2014, 19, 12500–12508. [Google Scholar] [CrossRef]
- Huang, S.; Chen, H.Y.; Li, W.S.; Zhu, X.W.; Ding, W.J.; Li, C.Y. Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum. Mar. Drugs 2016, 14, 172. [Google Scholar] [CrossRef]
- Yuan, Y.; Han, R.; Cao, Q.; Yu, J.; Mao, J.; Zhang, T.; Wang, Q.; Niu, Y.; Liu, D. Pharmacophore-Based Virtual Screening of Novel Inhibitors and Docking Analysis for CYP51A from Penicillium italicum. Mar. Drugs 2017, 15, 107. [Google Scholar] [CrossRef]
- Hendel, N.; Larous, L.; Belbey, L. Antioxidant activity of rosemary (Rosmarinus officinalis L.) and its in vitro inhibitory effect on Penicillium digitatum. Int. Food Res. J. 2016, 23, 1725–1732. [Google Scholar]
- Musto, M.; Potenza, G.; Cellini, F. Inhibition of Penicillium digitatum by a crude extract from Solanum nigrum leaves. Biotechnol. Agron. Soc. Environ. 2014, 18, 174–180. [Google Scholar]
- Wan, C.P.; Chen, C.Y.; Li, M.X.; Yang, Y.X.; Chen, M.; Chen, J.Y. Chemical Constituents and Antifungal Activity of Ficus hirta Vahl. Fruits. Plants 2017, 6, 44. [Google Scholar] [CrossRef]
- Wan, C.P.; Pei, L.; Chen, C.Y.; Peng, X.; Li, M.X.; Chen, M.; Wang, J.S.; Chen, J.Y. Antifungal Activity of Ramulus cinnamomi Explored by 1H-NMR Based Metabolomics Approach. Molecules 2017, 22, 2237. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wan, C.P.; Peng, X.; Chen, Y.H.; Chen, M.; Chen, J.Y. Optimization of antifungal extracts from Ficus hirta fruits using response surface methodology and antifungal activity tests. Molecules 2015, 20, 19647–19659. [Google Scholar] [CrossRef] [PubMed]
- Yigit, F.; Özcan, M.; Akgül, A. Inhibitory effect of some spice essential oils on Penicillium digitatum causing postharvest rot in citrus. Grasas Y Aceites 2000, 51, 237–240. [Google Scholar] [CrossRef]
- Qasem, J.; Abu-blan, H. Antifungal activity of aqueous extracts from some common weed species. Ann. Appl. Biol. 1995, 127, 215–219. [Google Scholar] [CrossRef]
- Hall, D.J.; Fernandez, Y.J. in vitro evaluation of selected essential oils as fungicides against Penicillium digitatum Sacc. Proc. Fla. State Hortic. Soc. 2004, 117, 377–379. [Google Scholar]
- Obagwu, J.; Korsten, L. Control of citrus green and blue molds with garlic extracts. Eur. J. Plant Pathol. 2003, 109, 221–225. [Google Scholar] [CrossRef]
- Gatto, M.A.; Ippolito, A.; Linsalata, V.; Casaatano, N.A.; Nigro, F.; Vanadia, S.; Venere, D.D. Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol. Technol. 2011, 61, 72–82. [Google Scholar] [CrossRef]
- Askarne, L.; Talibi, I.; Boubaker, H.; Boudyachet, E.H.; Msanda, F.; Saadi, B.; Serghini, M.A.; Aoumar, A.A.B. in vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Prot. 2012, 40, 53–58. [Google Scholar] [CrossRef]
- Ameziane, N.; Boubaker, H.; Boudyach, H.; Msanda, F.; Jilal, A.; Ait Benaoumar, A. Antifungal activity of Moroccan plants against citrus fruit pathogens. Agron. Sustain. Dev. 2007, 27, 273–277. [Google Scholar] [CrossRef]
- Villalobos, M.C.; Serradilla, M.J.; Martín, A.; Ordiales, E.; Ruiz-Moyano, S.; Cordoba, M.G. Antioxidant and antimicrobial activity of natural phenolic extract from defatted soybean flour by-product for stone fruit postharvest application. J. Sci. Food Agric. 2016, 96, 2116–2124. [Google Scholar] [CrossRef]
- Osman, A.; Abbas, E.; Mahgoub, S.; Siothy, M. Inhibition of Penicillium digitatum in vitro and in postharvest orange fruit by a soy protein fraction containing mainly β-conglycinin. J. Gen. Plant Pathol. 2016, 82, 293–301. [Google Scholar] [CrossRef]
- Sitara, U.; Hassan, N.; Naseem, J. Antifungal activity of Aloe vera gel against plant pathogenic fungi. Pak. J. Bot. 2011, 43, 2231–2233. [Google Scholar]
- Saks, Y.; Barkai-Golan, R. Aloe vera gel activity against plant pathogenic fungi. Postharvest Biol. Technol. 1995, 6, 159–165. [Google Scholar] [CrossRef]
- Zapata, P.J.; Navarro, D.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Serrano, M. Characterisation of gels from different Aloe spp. as antifungal treatment: Potential crops for industrial applications. Ind. Crop. Prod. 2013, 42, 223–230. [Google Scholar] [CrossRef]
- Hao, W.N.; Zhong, G.H.; Hu, M.Y.; Lou, J.J.; Weng, Q.F.; Rizwan-ui-Haq, M. Control of citrus postharvest green and blue mold and sour rot by tea saponin combined with imazalil and prochloraz. Postharvest Biol. Technol. 2010, 56, 39–43. [Google Scholar] [CrossRef]
- Corato, U.D.; Maccioni, O.; Trupo, M.; Sanzo, G.D. Use of essential oil of Laurus nobilis obtained by means of a supercritical carbon dioxide technique against post harvest spoilage fungi. Crop Prot. 2010, 29, 142–147. [Google Scholar] [CrossRef]
- Soylu, E.M.; Tok, F.M.; Soylu, S.; Kaya, A.D.; Eviendilek, G.A. Antifungal activities of essential oils on post harvest disease agent Penicillium digitatum. Pak. J. Biol. Sci. 2005, 8, 25–29. [Google Scholar]
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control 2011, 22, 1707–1714. [Google Scholar] [CrossRef]
- Du Plooy, W.; Regnier, T.; Combrinck, S. Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biol. Technol. 2009, 53, 117–122. [Google Scholar] [CrossRef]
- Tripathi, P.; Dubey, N.; Banerji, R.; Chansouria, J.P.N. Evaluation of some essential oils as botanical fungitoxicants in management of post-harvest rotting of citrus fruits. World J. Microb. Biot. 2004, 20, 317–321. [Google Scholar] [CrossRef]
- Zhang, X.F.; Guo, Y.J.; Guo, L.Y.; Jiang, H.; Ji, Q.H. in vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca alternifolia Essential Oil. Biomed. Res. Int. 2018, 2018, 2396109. [Google Scholar] [CrossRef]
- Yahyazadeh, M.; Omidbaigi, R.; Zare, R.; Taheri, H. Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World J. Microb. Biot. 2008, 24, 1445–1450. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef]
- Arras, G.; Usai, M. Fungitoxic activity of 12 essential oils against four postharvest citrus pathogens: Chemical analysis of Thymus capitatus oil and its effect in subatmospheric pressure conditions. J. Food Protect. 2001, 64, 1025–1029. [Google Scholar] [CrossRef]
- Askarne, L.; Talibi, I.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Aoumar, A.A.B. Use of Moroccan medicinal plant extracts as botanical fungicide against citrus blue mold. Lett. Appl. Microbiol. 2013, 41, 150–157. [Google Scholar]
- Boubaker, H.; Karim, H.; Hamdaoui, A.E.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.H.; Aoumar, A.B. Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Ind. Crop. Prod. 2016, 86, 95–101. [Google Scholar] [CrossRef]
- Rodríguez, D.J.; García, R.R.; Castillo, F.D.H.; González, C.N.A.; Galindo, A.S.; Quintanilla, J.A.V.; Zuccolotto, L.E.M. in vitro antifungal activity of extracts of Mexican Chihuahuan Desert plants against postharvest fruit fungi. Ind. Crop Prod. 2011, 34, 960–966. [Google Scholar] [CrossRef]
- Qasem, J. Aqueous extract effects of some common weed species against certain plant pathogenic fungi. Actes Inst. Agron. Vet. 1996, 16, 11–19. [Google Scholar]
- Sayago, J.E.; Ordoñez, R.M.; Kovacevich, L.N.; Torres, S.; Isla, M.I. Antifungal activity of extracts of extremophile plants from the Argentine Puna to control citrus postharvest pathogens and green mold. Postharvest Biol. Technol. 2012, 67, 19–24. [Google Scholar] [CrossRef]
- Li, M.M.; Hu, J.H.; He, L.; Yao, T.S.; Ran, C.; Li, H.J.; Liu, H.Q. Isolation and identification of active compound from Radix Angelicae Biseratae extracts against citrus fungus pathogens. J. Fruit Sci. 2012, 29, 900–904. [Google Scholar]
- Afolayan, A.J.; Meyer, J.J. The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. J. Ethnopharmacol. 1997, 57, 177–181. [Google Scholar] [CrossRef]
- Shikanga, E.; Regnier, T.; Combrinck, S.; Botha, B. Polar Lippia extracts as alternatives for the postharvest control of Guazatine®-resistant strains of Penicillium digitatum in citrus. Fruits 2009, 64, 75–82. [Google Scholar] [CrossRef]
- Oyourou, J.N.; Combrinck, S.; Regnier, T.; Marston, A. Purification, stability and antifungal activity of verbascoside from Lippia javanica and Lantana camara leaf extracts. Ind. Crop. Prod. 2013, 43, 820–826. [Google Scholar] [CrossRef]
- Song, Q.Y.; Qi, W.Y.; Li, Z.M.; Zhao, J.; Chen, J.J.; Gao, K. Antifungal activities of triterpenoids from the roots of Astilbe myriantha Diels. Food Chem. 2011, 128, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Eloff, J.; Mahlo, S. Breonadia salicina (Rubiaceae) extracts are as effective as a commercial fungicide in post harvest protection of oranges against Penicillium infections. Planta Med. 2011, 77, PM219. [Google Scholar] [CrossRef]
- Tayel, A.; El-Baz, A.; Salem, M.; El-Hadary, M.H. Potential applications of pomegranate peel extract for the control of citrus green mould. J. Plant Dis. Protect. 2011, 6, 252–256. [Google Scholar] [CrossRef]
- Nicosia, M.G.L.D.; Pangallo, S.; Raphael, G.; Romeo, F.V.; Strano, M.C.; Rapisarda, P.; Droby, S.; Schena, L. Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biol. Technol. 2016, 114, 54–61. [Google Scholar] [CrossRef]
- Mekbib, S.B.; Regnier, T.J.; Korsten, C.L. Control of Penicillium digitatum on citrus fruit using two plant extracts and study of their mode of action. Phytopathology 2007, 35, 264–276. [Google Scholar]
- Mekbib, S.B.; Regnier, T.J.C.; Sivakumar, D.; Korsten, L. Evaluation of Ethiopian plant extracts, Acacia seyal and Withania somnifera, to control green mould and ensure quality maintenance of citrus (Citrus sinensis L.). Fruits 2009, 64, 285–294. [Google Scholar] [CrossRef]
- Trabelsi, D.; Hamdane, A.M.; Said, M.B.; Abdrrsbba, M. Chemical composition and antifungal activity of essential oils from flowers, leaves and peels of Tunisian Citrus aurantium against Penicillium digitatum and Penicillium italicum. J. Essent. Oil Bear. Plants 2016, 19, 1660–1674. [Google Scholar] [CrossRef]
- Río, J.A.D.; Arcas, M.; Benavente-García, O.; Ortuñoet, A. Citrus polymethoxylated flavones can confer resistance against Phytophthora citrophthora, Penicillium digitatum, and Geotrichum species. J. Agric. Food Chem. 1998, 46, 4423–4428. [Google Scholar]
- Riov, J. 6, 7-Dimethoxycoumarin in the peel of gamma-irradiated grapefruit. Phytochemistry 1971, 10, 1923–1924. [Google Scholar] [CrossRef]
- Tomer, E.; Goren, R.; Monselise, S. Isolation and identification of seselin in Citrus roots. Phytochemistry 1969, 8, 1315–1316. [Google Scholar] [CrossRef]
- Afek, U.; Orenstein, J.; Carmeli, S.; Rodov, V.; Joseph, M.B. Umbelliferone, a phytoalexin associated with resistance of immature Marsh grapefruit to Penicillium digitatum. Phytochemistry 1999, 50, 1129–1132. [Google Scholar] [CrossRef]
- Ben-Yehoshua, S.; Shapiro, B.; Kim, J.; Sharoni, J. Resistance of citrus fruit to pathogens and its enhancement by curing. In Proceedings of the 6th International Citrus Congress; Balaban Publishing: Rehovot, Israel, 1988; pp. 1371–1374. [Google Scholar]
- Angioni, A.; Cabras, P.; D'hallewin, G.; Pirisi, F.; Reniero, F.; Schirra, M. Synthesis and inhibitory activity of 7-geranoxycoumarin against Penicillium species in Citrus fruit. Phytochemistry 1998, 47, 1521–1525. [Google Scholar] [CrossRef]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; et al. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Rodov, V.; Ben-Yehoshua, S.; Kim, J.J.; Shapiro, B.; Ittah, Y. Ultraviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance. J. Am. So. Hortic. Sci. 1992, 117, 788–792. [Google Scholar]
- D'hallewin, G.; Schirra, M.; Manueddu, E.; Piga, A.; Ben-Yehoshua, S. Scoparone and scopoletin accumulation and ultraviolet-C induced resistance to postharvest decay in oranges as influenced by harvest date. J. Am. So. Hortic. Sci. 1999, 124, 702–707. [Google Scholar]
- Johann, S.; Oliveira, V.L.; Pizzolatti, M.G.; Schripsema, J.; Braz-Filho, R.; Branco, A.; Smânia, A., Jr. Antimicrobial activity of wax and hexane extracts from Citrus spp. peels. Mem. I. Oswaldo Cru. 2007, 102, 681–685. [Google Scholar] [CrossRef]
- Hartmann, G.; Nienhaus, F. The Isolation of Xanthoxylin from the Bark of Pbytophthora- and Hendersonula-infected Citrus limon and its Fungitoxic Effect. J. Phytopathol. 1974, 81, 97–113. [Google Scholar] [CrossRef]
- Khan, A.J.; Kunesch, G.; Chuilon, S.; Ravise, A. Structure and biological activity of xanthyletin, a new phytoalexin of citrus. Fruits 1985, 40, 807–811. [Google Scholar]
- Ben-Yehoshua, S.; Rodov, V.; Kim, J.J.; Carmeil, S. Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. J. Agric. Food Chem. 1992, 40, 1217–1221. [Google Scholar] [CrossRef]
- Rodov, V.; Ben-Yehoshua, S.; Fang, D.Q.; Kim, J.J.; Ashkenazi, R. Preformed antifungal compounds of lemon fruit: citral and its relation to disease resistance. J. Agric. Food Chem. 1995, 43, 1057–1061. [Google Scholar] [CrossRef]
- Ben-Yehoshua, S.; Rodov, V.; Fang, D.Q.; Kim, J.J. Preformed antifungal compounds of citrus fruit: effect of postharvest treatments with heat and growth regulators. J. Agric. Food Chem. 1995, 43, 1062–1066. [Google Scholar] [CrossRef]
- Hao, W.N.; Li, H.; Hu, M.Y.; Liu, Y.; Rizwan-ui-Haq, M. Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biol. Technol. 2011, 59, 316–323. [Google Scholar] [CrossRef]
- Rodov, V.; Ben-Yehoshua, S.; Fang, D.; D'hallewin, G.; Castia, T. Accumulation of phytoalexins scoparone and scopoletin in citrus fruits subjected to various postharvest treatments. Acta Hortic. 1993, 381, 517–525. [Google Scholar] [CrossRef]
- Kuniga, T.; Matsuo, Y.; Tsumura, T.; Kojima, K. Production of phytoalexin, scoparone in citrus cultivars following treatment with UV radiation. Hortic. Res. 2005, 4, 99–103. [Google Scholar] [CrossRef]
- Kim, J.J.; Ben-Yehoshua, S.; Shapiro, B.; Henis, Y.; Carmeli, S. Accumulation of scoparone in heat-treated lemon fruit inoculated with Penicillium digitatum Sacc. Plant Physiol. 1991, 97, 880–885. [Google Scholar] [CrossRef]
- Ortuño, A.; Botia, J.M.; Fuster, M.D.; Porras, I.; García-Lidón, A.; Río, J.A.D. Effect of scoparone (6, 7-Dimethoxycoumarin) biosynthesis on the resistance of tangelo nova, Citrus paradisi, and Citrus aurantium fruits against Phytophthora parasitica. J. Agric. Food Chem. 1997, 45, 2740–2743. [Google Scholar] [CrossRef]
- Afek, U.; Sztejnberg, A.; Carmely, S. 6, 7-dimethoxycoumarin, a Citrus phytoalexin conferring resistance against Phytophthora gummosis. Phytochemistry 1986, 25, 1855–1856. [Google Scholar] [CrossRef]
- Afek, U.; Sztejnberg, A. Accumulation of scoparone, a phytoalexin associated with resistance of Citrus to Phytophthora citrophthora. Phytopathology 1988, 78, 1678–1682. [Google Scholar] [CrossRef]
- Sulistyowati, L.; Keane, P.; Anderson, J. Accumulation of the phytoalexin, 6, 7-dimethoxycoumarin, in roots and stems of citrus seedlings following inoculation with Phytophthora citrophthora. Physiol. Mol. Plant Pathol. 1990, 37, 451–461. [Google Scholar] [CrossRef]
- Vernenghi, A.; Ramiandrasoa, F.; Chuilon, S.; Ravise, A. Citrus phytoalexins: seselin biological activity and in vitro synthesis stimulation. Fruits 1987, 42, 103–111. [Google Scholar]
- Dubery, I.A.; Holzapfel, C.W.; Kruger, G.J.; Schabort, J.C.; Dyk, M.V. Characterization of a γ-radiation-induced antifungal stress metabolite in citrus peel. Phytochemistry 1988, 27, 2769–2772. [Google Scholar] [CrossRef]
- Ortuño, A.; Díaz, L.; Alvarez, N.; Porras, I.; García-Lidón, A.; Río, J.A.D. Comparative study of flavonoid and scoparone accumulation in different Citrus species and their susceptibility to Penicillium digitatum. Food Chem. 2011, 125, 232–239. [Google Scholar] [CrossRef]
- Ortuño, A.; Báidez, A.; Gómez, P.; Arcas, M.C.; Porras, I.; García-Lidón, A.; Río, J.A.D. Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chem. 2006, 98, 351–358. [Google Scholar] [CrossRef]
- Arcas, M.; Botía, J.; Ortuno, A.M.; Río, J.A.D. UV irradiation alters the levels of flavonoids involved in the defence mechanism of Citrus aurantium fruits against Penicillium digitatum. Eur. J. Plant Pathol. 2000, 106, 617–622. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, K.; Deng, W.; Zhong, B.; Yang, W.; Chun, J. Chemical composition and antimicrobial activity of Gannan navel orange (Citrus sinensis Osbeck cv. Newhall) peel essential oils. Food Sci. Nutr. 2018, 6, 1431–1437. [Google Scholar] [CrossRef]
- Caccioni, D.R.L.; Guizzardi, M.; Biondi, D.M.; Renda, A.; Ruberto, G. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int. J. Food Microbiol. 1998, 43, 73–79. [Google Scholar] [CrossRef]
- Pérez-Alfonso, C.O.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M.; Valero, D.; Castillo, S. The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. Int. J. Food Microbiol. 2012, 158, 101–106. [Google Scholar] [CrossRef]
- Scora, K.M.; Scora, R.W. Effect of volatiles on mycelium growth of Penicillium digitatum, P. italicum, and P. ulaiense. J. Basic Microb. 1998, 38, 405–413. [Google Scholar] [CrossRef]
- Kanan, G.J.; Al-Najar, R.A. In vitro antifungal activities of various plant crude extracts and fractions against citrus post-harvest disease agent Penicillium digitatum. Jordan J. Biol. Sci. 2008, 1, 89–99. [Google Scholar]
- Kanan, G.J.M.; Al-Najar, R.A.W.K. in vitro and in vivo Activity of Selected Plant Crude Extracts and Fractions Against Penicillium Italicum. J. Plant Prot. Res. 2009, 49, 341–352. [Google Scholar] [CrossRef]
- Yang, S.Z.; Peng, L.T.; Cheng, Y.J.; Chen, F.; Pan, S.Y. Control of citrus green and blue molds by Chinese propolis. Food Sci. Biotechnol. 2010, 19, 1303–1308. [Google Scholar] [CrossRef]
- Yang, S.Z.; Peng, L.T.; Cheng, Y.J.; Chen, F.; Pan, S.Y. Bioassay-guided isolation and identification of antifungal components from propolis against Penicillium italicum. Food Chem. 2011, 127, 210–215. [Google Scholar] [CrossRef]
- Wuryatmo, E.; Able, A.J.; Ford, C.M.; Scott, E.S. Effect of volatile citral on the development of blue mould, green mould and sour rot on navel orange. Australas. Plant Path. 2014, 43, 403–411. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, A.S.; Chen, J.Y.; Fu, Y.Q. Postharvest quality and physiological responses of clove bud extract dip on ‘Newhall’navel orange. Sci. Hortic. 2012, 138, 253–258. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.; Pérez-Gago, M. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef]
- El Guilli, M.; Hamza, A.; Clément, C.; Ibriz, M.; Ait Barka, E. Effectiveness of postharvest treatment with chitosan to control citrus green mold. Agriculture 2016, 6, 12. [Google Scholar] [CrossRef]
- Gao, Y.; Kan, C.N.; Wan, C.P.; Chen, C.Y.; Chen, M.; Chen, J.Y. Quality and biochemical changes of navel orange fruits during storage as affected by cinnamaldehyde-chitosan coating. Sci. Hortic. 2018, 239, 80–86. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohyd. Polym. 2010, 82, 277–283. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in edible coatings: A novel strategy for food preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef] [PubMed]
Plants | Genus | Pathogens | Antifungal Constituents | References |
---|---|---|---|---|
R. officinalis L. (rosemary) | Rosmarinus | P. digitatum | essential oils, methanol extract | [9,14] |
Solanum nigrum | Solanum | P. digitatum | aqueous extracts | [10,15] |
Ficus hirta Vahl’s | Ficus | P. italicum | pinocembrin-7-O-β-D-glucoside | [11] |
Ramulus cinnamomi | Cinnamomum | P. digitatum and P. italicum | cinnamaldehyde and cinnamic acid | [12] |
C. zeylanicum | Cinnamomum | P. digitatum | volatile oil, eugenol, cinnamaldehyde | [16] |
Allium sativum (garlic) | Allium | P. digitatum and P. italicum | aqueous and 20% ethanolic extracts, allicin | [17] |
Sanguisorba minor | Sanguisorba | P. digitatum and P. italicum | derivatives of caffeic acid, apigenin, quercetin, kaempferol | [18,19,20] |
Plantago lanceolata | Plantago | P. digitatum and P. italicum | caffeic acid derivatives and flavonoids, (iso)verbascoside | [18] |
Glycine max (soybean) | Glycine | P. digitatum and P. glabrum | β-conglycinin and glycinin | [21,22] |
A. vera | Aloe | P. digitatum | aloe saponins and anthraquinones | [23,24] |
A. ferox | Aloe | P. digitatum and P. italicum | aloin | [25] |
A. mitriformis | Aloe | P. digitatum and P. italicum | aloin | [25] |
A. saponaria | Aloe | P. digitatum and P. italicum | aloin | [25] |
C. sinensis | Camellia | P. digitatum and P. italicum | tea saponins | [26] |
Laurus nobilis (laurel) | Laurus | P. digitatum | volatile oil, contains 1.8-cineole, linalool, terpineol acetate, methyl eugenol, linalyl acetate, eugenol, sabinene, β-pinene, α-terpineol. | [27,28] |
Cuminum cyminum | Cuminum | P. digitatum | volatile oil, cuminaldehyde | [14,16] |
Coriandrum sativum | Coriandrum | P. digitatum | volatile oil | [14] |
Thymbra spicata L. | Thymbra | P. digitatum | volatile oil | [14] |
Anethum graveolens (dill) | Anethum | P. digitatum | volatile oil, carvone | [14,16] |
Syzygium aromaticum | Syzygium | P. digitatum | volatile oil, eugenol | [16] |
Cymbopogon citratus | Cymbopogon | P. digitatum | volatile oil, citral, myrcene | [16] |
Pelargonium graveolens | Pelargonium | P. digitatum | volatile oil, citronellol, citronellol formate, gerinol | [16] |
M. piperita (peppermint) | Mentha | P. digitatum | volatile oil, menthol, menthone | [16,29] |
M. spicata (spearmint) | Mentha | P. digitatum | volatile oil, carvone | [16,30] |
M. arvensis (wild mint) | Mentha | P. italicum | volatile oil | [31] |
Ocimum canum | Ocimum | P. italicum | volatile oil | [31] |
Zingiber officinale | Zingiber | P. italicum | volatile oil | [31] |
Foeniculum vulgare | Foeniculum | P. digitatum | volatile oil | [28] |
Artemisia annua | Artemisia | P. digitatum | volatile oil | [28] |
Lavandula stoechas | Lavandula | P. digitatum | volatile oil | [28] |
Melaleuca alternifolia | Melaleuca | P. digitatum and P. italicum | essential oil | [32] |
Eugenia caryophyllata | Eugenia | P. digitatum | essential oil, eugenol and β-caryophyllene | [33] |
T. vulgaris (thyme) | Thymus | P. digitatum | essential oil, thymol, carvacrol, p-cymene and δ-terpinene | [33,34] |
T. capitatus L. | Thymus | P. digitatum and P. italicum | volatile oil, carvacrol | [35] |
T. leptobotrys | Thymus | G. citri-aurantii and of P. digitatum and P. italicum | volatile oil, petroleum ether, chloroform, ethyl acetate extracts, thymol and carvacrol | [19,20,36,37] |
T. satureioides subsp. pseudomastichina | Thymus | G. citri-aurantii and of P. digitatum and P. italicum | borneol and thymol | [37] |
T. broussonnetii subsp. hannonis | Thymus | G. citri-aurantii and of P. digitatum and P. italicum | camphor and α-terpineol | [37] |
T. riatarum | Thymus | G. citri-aurantii and of P. digitatum and P. italicum | carvacrol, γ-terpinene and p-cymene | [37] |
O. syriacum | Origanum | P. digitatum | volatile oil | [28] |
O. vulgare | Origanum | P. digitatum | essential oil, thymol and carvacrol | [34] |
O. majorana | Origanum | P. digitatum | essential oil, thymol and carvacrol | [34] |
O. dictamus | Origanum | P. digitatum | essential oil, thymol and carvacrol | [34] |
Arenaria rubra | Arenaria | P. italicum | aqueous extract | [19,20] |
Anvillea radiata | Anvillea | P. italicum | petroleum ether, chloroform, ethyl acetate extracts | [19,20,36] |
Asteriscus graveolens | Asteriscus | P. italicum | petroleum ether, chloroform, ethyl acetate extracts | [19,20,36] |
Bubonium odorum | Bubonium | P. italicum | petroleum ether, chloroform, ethyl acetate extracts | [19,20,36] |
Cistus villosus | Cistus | P. digitatum and P. italicum | aqueous extract | [19,20] |
Halimium umbellatum | Halimium | P. italicum | methanol extract | [19,20,36] |
Hammada scoparia | Hammada | P. italicum | chloroform extract | [19,20,36] |
Ighermia pinifolia | Ighermia | P. italicum | petroleum ether extract | [19,20,36] |
Inula viscosa | Inula | P. italicum | petroleum ether, chloroform, ethyl acetate extracts | [19,20,36] |
Rubus ulmifolius | Rubus | P. italicum | aqueous extract | [19,20] |
Peganum harmala | Peganum | P. digitatum and P. italicum | aqueous extract | [19,20] |
Eucalyptus globulus | Eucalyptus | P. digitatum and P. italicum | aqueous extract | [19,20] |
Ceratonia siliqua | Ceratonia | P. digitatum | aqueous extract | [19,20] |
Yucca filifera Chaub | Yucca | P. italicum | ethanolic and hexanic extracts | [38] |
Chenopodium murale | Chenopodium | P. digitatum | aqueous extract | [15,39] |
Crepis aspera | Crepis | P. digitatum | aqueous extract | [15,39] |
Ranunculus asiaticus | Ranunculus | P. digitatum | aqueous extract | [15,39] |
Sisymbrium irio | Sisymbrium | P. digitatum | aqueous extract | [15] |
Chuquiraga atacamensis | Chuquiraga | P. digitatum | aqueous extracts, total phenolics | [40] |
Parastrephia phyliciformis | Parastrephia | P. digitatum | aqueous extracts, total phenolics | [40] |
Parastrephia lepidophylla | Parastrephia | P. digitatum | aqueous extracts, total phenolics | [40] |
Angelicae biseratae | Angelicae | P. digitatum and P. italicum | Coumarins, isobergapten, pimpinellin, sphondin, isopimpinellin | [41] |
Helichrysum aureonitens | Helichrysum | P. digitatum and P. italicum | galangin | [42] |
L. graveolens | Lippia | P. digitatum | ethanolic and hexanic extracts | [38] |
L. javanica | Lippia | P. digitatum and P. italicum | verbascoside | [43,44] |
L. rehmannii | Lippia | P. digitatum | verbascoside | [43] |
L. scaberrima | Lippia | P. digitatum | volatile oil, (d)-cinene, R-(-)-carvone and 1,8-cineole | [30] |
Astilbe myriantha Diels | Astilbe | P. digitatum | triterpenoid, 3β, 6β, 24-trihydroxyurs-12-en-27-oic acid | [45] |
Breonadia salicina | Breonadia | P. digitatum | triterpenoid, ursolic acid | [46] |
Lantana camara | Lantana | P. italicum | verbascoside | [44] |
Punica granatum | Punica | P. italicum and P. digitatum | ethanol, methanol and water extracts | [47,48] |
Withania somnifera | Withania | P. digitatum | caffeic acid, salicylic acid, 3, 4-dihydroxybenzoic acid | [49,50] |
Acacia seyal | Acacia | P. digitatum | methanol extracts, gallic acid | [49,50] |
Citrus Plants | Other name | Pathogens | Antifungal Constituents | References |
---|---|---|---|---|
C. aurantium | sour orange | P. citrophthora, P. italicum and Geotrichum | essential oils, polymethoxyflavones, tangeritin, nobiletin, sinensetin, heptamethoxyflavone and quercetogetin | [51,52] |
C. paradisi L. | grapefruit | P. digitatum and P. italicum | coumarins including Scoparone, seselin, umbelliferone, osthol, auraptene 7-geranoxycoumarin; essential oils, limonene, α-pinene, sabinene, myrcene, α-terpineol, linalool, citral, nootkatone | [53,54,55,56,57,58] |
C. japonica | kumquat | P. digitatum | scoparone and scopoletin | [59] |
C. sinensis | sweet orange | P. citrophthora, P. italicum and Geotrichum | scoparone and scopoletin, volatile oil, limonene, α-pinene, sabinene, myrcene, α-terpineol, linalool, citral; polymethoxyflavones | [52,58,60,61] |
C. limon | lemon | P. citrophthora, P. digitatum and P. italicum | waxy components, hexane extract, scoparone, xanthoxylin and xanthyletin; limettin, isopimpinellin, 5-geranoxy-7-methoxycoumarin and Scoparone; volatile oil, citral | [61,62,63,64,65,66] |
C. reticulata | mandarin | P. digitatum | waxy components, hexane extract, tangeritin, nobiletin | [61] |
C. clementina | clementine | P. citrophthora, P. italicum and Geotrichum | volatile oil, nobiletin, and sinensetin, heptamethoxyflavone, limonene, α-pinene, sabinene, myrcene, α-terpineol, linalool | [52,58] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Shen, Y.; Chen, C.; Wan, C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants 2019, 8, 26. https://doi.org/10.3390/plants8020026
Chen J, Shen Y, Chen C, Wan C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants. 2019; 8(2):26. https://doi.org/10.3390/plants8020026
Chicago/Turabian StyleChen, Jinyin, Yuting Shen, Chuying Chen, and Chunpeng Wan. 2019. "Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review" Plants 8, no. 2: 26. https://doi.org/10.3390/plants8020026