Autotoxicity of Diterpenes Present in Leaves of Cistus ladanifer L.
Abstract
:1. Introduction
- -
- Both show seasonal variation in their synthesis, but at different seasons. The flavonoids of the exudate vary from five or six (winter) to 22–25 (summer) mg flavonoids/g of leaves [12], increasing three or four folds during the summer. Diterpenes show their maximum and minimum concentration in winter (20.93 mg/g dry-w) and summer (8.57 mg/g dry-w), respectively [19].
- -
- Temperature is a determining factor in the synthesis of these compounds, and its effects also differ between the two families. High temperatures influence the qualitative composition of the secretion of flavonoids [12,13], and low temperature is the determining factor in the synthesis of diterpenes [19].
- -
2. Results
2.1. Germination Percentage
2.2. Germination Rate
2.3. Germination Rate Index
2.4. Development of the Seedlings of C. ladanifer
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Extraction of Flavonoids and Diterpenes
4.3. Chromatographic Separation
- -
- Fraction 1, with the presence of diterpenes (DTP) and a dry weight of 3.031 g.
- -
- Fraction 2, with the presence of flavonoids (FLV) and a dry weight of 0.186 g.
4.4. Germination Tests
- -
- Germination percentage (%G): (n° of germinated treated seeds/n° of germinated control seeds) × 100.
- -
- Germination rate (G): This is an arithmetic measure that indicates the days needed for germination to occur. It was calculated using the formula described by [42]:G = [(N1 × G1) + (N2 × G2) + ….. + (Nn×Gn)]/G1 + G2 + ….. + Gn
- -
- Germination rate index (GRI): This is the average number of seeds that germinate per day. It is calculated using the formula described by [43]:GRI = Σ (ni/ti)
- -
- Percentage of inhibition in root size: (root size of treated seeds/root size of control seeds) × 100.
- -
- − Percentage of inhibition in cotyledon size: (cotyledon size of treated seeds/cotyledon size of control seeds) × 100.
4.5. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- He, H.B.; Wang, H.B.; Fang, C.X.; Lin, Z.H.; Yu, Z.M.; Lin, W.X. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS ONE 2012, 7, e37201. [Google Scholar] [CrossRef] [PubMed]
- Gioria, M.; Osborne, B.A. Resource competition in plant invasions: Emerging pattern sandresearchneeds. Front. Plant Sci. 2014, 5, 501–521. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Xiaofeng, H.; Zhongfeng, Z.; Zhiqiang, Y.; Hui, J.X.L.; Bo, Q. Isolation, identification and autotoxicity effect of allelochemicals from rhizosphere soils of flue-cured tobacco. J. Agric. Food Chem. 2015, 63, 8975–8980. [Google Scholar] [CrossRef]
- Rial, C.; Novaes, P.; Varela, R.M.; Molinillo, J.M.; Macias, F.A. Phytotoxicity of cardoon (Cynara cardunculus) allelochemicals on standard target species and weeds. J. Agric. Food Chem. 2014, 62, 6699–6706. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.B.; Yang, J.X.; Gao, W.W. Autotoxicity of phenolic compounds from the soil of American ginseng (Panax quinquefolium L.). Allelopath. J. 2010, 25, 115–122. [Google Scholar]
- Yang, M.; Zhang, X.; Xu, Y.; Mei, X.; Jiang, B.; Liao, J.; Zhu, S. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLoS ONE 2015, 10, e0118555. [Google Scholar] [CrossRef] [PubMed]
- He, C.N.; Gao, W.W.; Yang, J.X.; Bi, W.; Zhang, X.S.; Zhao, Y.J. Identidication of autotoxic compounds from fibrou roots of Panax quinquefolium L. Plant Soil 2009, 318, 63–72. [Google Scholar] [CrossRef]
- Mallik, A. Conifer regeneration problems in boreal and temperate forests with ericaceous understory: Role of disturbance, seedbed limitation, and keystone species change. Crit. Rev. Plant Sci. 2003, 22, 341–366. [Google Scholar] [CrossRef]
- Weir, T.L.; Bais, H.P.; Vivanco, J.M. Intraspecific and interspecific interactions mediated by a phytotoxin, (−)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed). J. Chem. Ecol. 2003, 29, 2397–2412. [Google Scholar] [CrossRef]
- Nuñez, E. Jaral Ecology of Cistus ladanifer L. Ph.D. Thesis, University of Extremadura, Extremadura, Spain, 1989. [Google Scholar]
- Chaves, N. Variación Cualitativa y Cuantitativa de los Flavonoides del Exudado de Cistus ladanifer L. Como Respuesta a Diferentes Factores Ecológicos. Ph.D. Thesis, University of Extremadura, Extremadura, Spain, 1994. [Google Scholar]
- Chaves, N.; Escudero, J.C.; Gutierrez-Merino, C. Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J. Chem. Ecol. 1997, 23, 579–603. [Google Scholar] [CrossRef]
- Chaves, N.; Escudero, J.C. Variation of flavonoid synthesis induced by ecological factors. In Principles and Practices in Plant Ecology: Allelochemicals Interactions; Dakshini, K.M.N., Chester, F.L., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 267–285. [Google Scholar]
- Sosa, T.; Chaves, N.; Alías, J.C.; Escudero, J.C.; Henao, F.; Gutiérrez-Merino, C. Inhibition of mouth skeletal muscle relaxation by flavonoids of Cistus ladanifer L.: A plant defense mechanism against herbivores. J. Chem. Ecol. 2004, 30, 1087–1101. [Google Scholar] [CrossRef] [PubMed]
- Chaves, N.; Alías, J.C.; Sosa, T. Phytotoxicity of Cistus ladanifer L.: Role of allelopathy. Allelopath. J. 2016, 38, 113–131. [Google Scholar]
- Chaves, N.; Ríos, J.L.; Gutiérrez, C.; Escudero, J.C.; Olías, J.M. Analysis of secreted flavonoids of Cistus ladanifer L. by high-performance liquid chromatography-particle beam mass spectrometry. J. Chrom. A 1998, 799, 111–115. [Google Scholar] [CrossRef]
- Pascual, T.; Urones, J.G.; Gonzalez, M. Terpenoides monohidroxilados de la gomorresina de Cistus ladanifer L. An. Quim. 1977, 73, 1024–1028. [Google Scholar]
- Alías, J.C. Influence of Climatic Factor Son the Synthesis and Activity of Phytotoxis Compounds Secreted by Cistus ladanifer L. Ph.D. Thesis, Universidad of Extremadura, Extremadura, Spain, 2006. [Google Scholar]
- Alías, J.C.; Sosa, T.; Valares, C.; Escudero, J.C.; Chaves, N. Seasonal variation of Cistus ladanifer L. diterpenes. Plants 2012, 1, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Chaves, N.; Sosa, T.; Escudero, J.C. Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J. Chem. Ecol. 2001, 27, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Chaves, N.; Sosa, T.; Alías, J.C.; Escudero, J.C. Germination inhibition of herbs in Cistus ladanifer L. soil: Possible involvemente of allelochemicals. Allelopath. J. 2003, 11, 31–42. [Google Scholar]
- Pérez-García, F. Germination of Cistus ladanifer seed in relation to parent material. Plant Ecol. 1997, 133, 57–62. [Google Scholar] [CrossRef]
- Manzano, P.; Malo, J.; Peco, B. Sheep gut pasaje and survival of Mediterranean shrub seeds. Seed Sci. Res. 2005, 15, 21–28. [Google Scholar] [CrossRef]
- Alías, J.C.; Sosa, T.; Escudero, J.C.; Chaves, N. Autotoxicity against germination and seedling emergente in Cistus ladanifer L. Plant Soil 2006, 282, 327–332. [Google Scholar] [CrossRef]
- Chaves, N.; Sosa, T.; Valares, C.; Alías, J.C. Routes of incorporation of phytotoxic compounds of Cistus ladanifer L. into soil. Allelopath. J. 2015, 36, 25–36. [Google Scholar]
- Herranz, J.; Ferrandis, P.; Copete, M.A.; Duro, E.M.; Zalacaín, A. Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecol. 2006, 184, 259–272. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef]
- Sosa, T.; Alías, J.C.; Escudero, J.C.; Chaves, N. Interpopulational variation in the flavonoid composition of Cistus ladanifer L. exudate. Biochem. Syst. Ecol. 2005, 33, 353–364. [Google Scholar] [CrossRef]
- Dias, A.S.; Dias, L.S.; Pereira, I.P. Activity of water extracts of Cistus ladanifer and Lavandula stoechas in soil on germination and early growth of wheat and Phalaris minor. Allelopath. J. 2004, 14, 59–64. [Google Scholar]
- Verdeguer, M.; Blázquez, M.A.; Boira, H. Chemical composition and herbicidal activity of the essential oil from a Cistus ladanifer L. population from Spain. Nat. Prod. Lett. 2012, 26, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Seki, T.; Shigemori, H. Allelopathy and allelopathic substance in the moss Rhynchostegium pallidifolium. J. Plant Phys. 2010, 167, 468–471. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kaur, S.; Kohli, R.K.; Yadav, S.S. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung vean (Phaseolus aureus). J. Plant Phys. 2008, 165, 297–305. [Google Scholar] [CrossRef]
- Ruan, X.; Li, Z.-H.; Wang, Q.; Pan, C.-D.; Jiang, D.-A.; Geoff Wang, G. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles. Molecules 2011, 16, 8874–8893. [Google Scholar] [CrossRef]
- Inderjit; Nilsen, E. Bioassays and field studies for allelopathy in terrestrial plants: Progress and problems. Crit. Rev. Plan. Sci. 2003, 22, 221–238. [Google Scholar] [CrossRef]
- Chung, I.M.; Miller, D.A. Effect of alfalfa plant and soil extracts on germination and seedling growth. Agron. J. 1995, 87, 762–767. [Google Scholar] [CrossRef]
- Charoenying, P.; Teerarak, M.; Laosinwattana, C. An allelopathic substance isolated from Zanthoxylum limonella Alston fruit. Sci. Hort. 2010, 125, 411–416. [Google Scholar] [CrossRef]
- Viard-Crétat, F.; Gallet, C.; Lefebvre, M.; Lavorel, S. A leachate a day keeps the seedlings away: Mowing and the inhibitory effects of Festuca paniculata in subalpine grasslands. Ann. Bot. 2009, 103, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Bouhaouel, I.; Gfeller, A.; Fauconnier, M.-L.; Rezgui, S.; Amara, H.S.; Jardin, P. Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. BioControl 2015, 60, 425–436. [Google Scholar] [CrossRef]
- Vogth, T.Y.; Gülz, P.G. Isocratic column liquid chromatographic separation of a complex mixture of epicuticular flavonoid aglycones and intracellelar flavonol glycosides from Cistus laurifolius L. J. Chrom. 1991, 537, 453–459. [Google Scholar] [CrossRef]
- Jäderlund, A.; Zackrisson, O.; Nilsson, M.C. Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species. J. Chem. Ecol. 1996, 22, 973–986. [Google Scholar] [CrossRef]
- Pece, M.G.; Gaillard de Benítez, C.; Acosta, M.; Bruno, C.; Saavedra, S.; Buvenas, O. Germinación de Tipuana tipu (Benth.) O. Kuntze (tipa blanca) en condiciones de laboratorio. Quebracho 2010, 18, 5–15. [Google Scholar]
- Nakagawa. Teste de Vigor Baseados no Desempenho das Plântulas. Vigor de Sementes: Conceitos e Testes; ABRATES: Londrinas, Brasil, 1999. [Google Scholar]
- Maguire, J.D. Speed of germination in selection and evaluation for seddling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
Germination Rate | ||||
---|---|---|---|---|
Concentration | ||||
Solution | Control | 1 | ½ | ¼ |
Diterpenes | 4.02a | 9.11b | 8.10b | 7.05b |
Flavonoids | 4.02a | 3.60a | 3.33a | 3.30a |
Germination Rate Index | ||||
---|---|---|---|---|
Concentration | ||||
Solution | Control | 1 | ½ | ¼ |
Diterpenes | 16.57a | 5.36b | 10.84c | 10.00c |
Flavonoids | 16.57a | 17.81a | 20.16a | 17.08a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaves Lobón, N.; Ferrer de la Cruz, I.; Alías Gallego, J.C. Autotoxicity of Diterpenes Present in Leaves of Cistus ladanifer L. Plants 2019, 8, 27. https://doi.org/10.3390/plants8020027
Chaves Lobón N, Ferrer de la Cruz I, Alías Gallego JC. Autotoxicity of Diterpenes Present in Leaves of Cistus ladanifer L. Plants. 2019; 8(2):27. https://doi.org/10.3390/plants8020027
Chicago/Turabian StyleChaves Lobón, Natividad, Irene Ferrer de la Cruz, and Juan Carlos Alías Gallego. 2019. "Autotoxicity of Diterpenes Present in Leaves of Cistus ladanifer L." Plants 8, no. 2: 27. https://doi.org/10.3390/plants8020027
APA StyleChaves Lobón, N., Ferrer de la Cruz, I., & Alías Gallego, J. C. (2019). Autotoxicity of Diterpenes Present in Leaves of Cistus ladanifer L. Plants, 8(2), 27. https://doi.org/10.3390/plants8020027