Comparative Analysis of the Nitrogen Effect of Common Agricultural Practices and Rotation Systems in a Rainfed Mediterranean Environment
Abstract
:1. Introduction
2. Results
2.1. First Year Results
2.2. “Test Years”
2.3. “Residual Effect Years”
3. Discussion
4. Materials and Methods
- Conventional treatment (abv. “cnvl”). Continuous wheat system, where plots were fertilized at a rate of 300 kg ha−1 year−1 of a 20-20-0 fertilizer as pre-sowing fertilization and 90 kg ha−1 year−1 of a 34.5-0-0 fertilizer as top dressing. The total amount of N added was 90 kg ha−1. These fertilization practices are commonly used in many areas of Cyprus and do not vary according to the soil nutritional status, which is generally considered to be low. Straw was removed from the plots after harvesting.
- Straw incorporation (abv. “strw”) in a continuous wheat system. Straw in Cyprus is most frequently baled after harvesting, removed from the field and used as forage. In this treatment straw was incorporated in soil at a rate of 5.3 t ha−1 for the first year. From the second year onwards, the amount of straw added was that harvested in the plots of this treatment, after its temporary removal by a threshing machine for weighing. Inorganic fertilizers were added as in “cnvl”.
- Vetch for hay (abv. “vhay”). Soil was seeded with vetch the first year, received 100 kg ha−1 of a 0-48-0 phosphorus fertilizer only for that year, and left without inorganic fertilization for the following years of wheat crop. Aboveground biomass of vetch was cut during early stages of flowering and was removed from experimental plots.
- Vetch incorporation (abv. “vinc”). Plots were seeded with vetch the first year and treated as in “vhay” with no nitrogen fertilization, but aboveground biomass was incorporated in soil during flowering using rotavator.
- Vetch for seed (abv. “vgrn”). Plots were seeded with vetch the first year and treated as in “vhay” and “vinc”, but vetch was left to seed. After seed harvesting aboveground biomass was incorporated in soil.
- Fallow treatment (abv. “falw”). Plots were left fallow during first year followed by wheat the second and third year. Wild vegetation was mechanically destroyed at the beginning and the middle of the growing season. Wheat at the second and third year of the rotation was fertilized as in “cnvl” and “strw”.
- Sewage sludge application (abv. “sldg”) in a continuous wheat system. Sludge, some characteristics of which are shown in Table 5, had been air dried in the municipal waste water treatment plant for more than six months after anaerobic digestion. It was added to soil only the first year of each rotation cycle at a rate of 15 t ha−1 (dry weight basis). Plots that received sludge were not given any other fertilizer during the whole period of the rotation.
4.1. Meteorological Data
4.2. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jacobsen, S.-E.; Jensen, C.R.; Liu, F. Improving crop production in the arid Mediterranean climate. Field Crops Res. 2012, 128, 34–47. [Google Scholar] [CrossRef]
- Chan, K.Y.; Hodgson, A.S.; Bowman, A.M. Degradation of Australian vertisols after conversion from native grassland (Astrebla lappacea) to continuous cropping in a semi-arid subtropical environment. Trop. Grassl. 1995, 29, 210–217. [Google Scholar]
- Ball, B.C.; Bingham, I.; Rees, R.M.; Watson, C.A.; Litterick, A. The role of crop rotations in determining soil structure and crop growth conditions. Can. J. Soil Sci. 2005, 85, 557–577. [Google Scholar] [CrossRef]
- Wetzel, W.C.; Kharouba, H.M.; Robinson, M.; Holyoak, M.; Karban, R. Variability in plant nutrients reduces insect herbivore performance. Nature 2016, 539, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Wolf, B.; Snyder, G.H. Sustainable Soils: The Place of Organic Matter in Sustaining Soils and Their Productivity; The Haworth Press: Binghamton, NY, USA, 2003; pp. 285–307. [Google Scholar]
- López-Bellido, L.; Fuentes, M.; Castillo, J.E.; López-Garrido, F.J.; Fernández, E.J. Long-term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfed Mediterranean conditions. Agron. J. 1996, 88, 783–791. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Powlson, D.S.; Brookes, P.C.; Christensen, B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 1987, 19, 159–164. [Google Scholar] [CrossRef]
- Jarvis, S.C.; Barraclough, D.; Unwin, R.G.; Royle, S.M. Nitrate leaching from grazed grassland and after straw incorporation in arable soils. In Management Systems to Reduce the Impact of Nitrates; Germon, J.C., Ed.; Elsevier Applied Science: London, UK, 1989; pp. 110–125. [Google Scholar]
- Silgram, M.; Chambers, B.J. Effects of long-term straw management and fertilizer nitrogen additions on soil nitrogen supply and crop yields at two sites in eastern England. J. Agric. Sci. 2002, 139, 115–127. [Google Scholar] [CrossRef]
- Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy. Eur. J. Agron. 2016, 77, 188–198. [Google Scholar] [CrossRef]
- Lakhdar, A.; Scelza, R.; Achiba, W.B.; Scotti, R.; Rao, M.A.; Jedidi, N.; Abdelly, C.; Gianfreda, L. Effect of municipal solid waste compost and sewage sludge on enzymatic activities and wheat yield in a clayey-loamy soil. Soil Sci. 2011, 176, 15–21. [Google Scholar] [CrossRef]
- Whitmore, J.S. Drought Management on Farmland; Kluwer Academic: Dordrecht, The Netherlands, 2000; pp. 64–78. [Google Scholar]
- Ryan, J.; Pala, M.; Masri, S.; Singh, M.; Harris, H.C. Rainfed–based wheat rotations under Mediterranean conditions: Crop sequences, nitrogen fertilization, and stubble grazing in relation to grain and straw quality. Eur. J. Agron. 2008, 28, 112–118. [Google Scholar] [CrossRef]
- Probert, M.E.; Fergus, I.F.; Bridge, B.J.; McGarry, D.; Thomson, C.H.; Russell, J.S. The Properties and Management of Vertisols; Commonwealth Agricultural Bureau International: Wallingford, UK, 1987; pp. 1–36. [Google Scholar]
- Schwenke, G.D.; Peoples, M.B.; Turner, G.L.; Herridge, D.F. Does nitrogen fixation of commercial, dryland chickpea and faba bean crops in north-west New South Wales maintain or enhance soil nitrogen? Aust. J. Exp. Agric. 1998, 38, 61–70. [Google Scholar] [CrossRef]
- Cazzato, E.; Tufarelli, V.; Ceci, E.; Stellacci, A.M.; Laudadio, V. Quality, yield and nitrogen fixation of faba bean seeds as affected by sulphur fertilization. Acta Agric. Scand. Sect. B Soil Plant Sci. 2012, 62, 732–738. [Google Scholar] [CrossRef]
- Papastylianou, I.; Samios, T.H. Comparison of rotation in which barley for grain follows woollypod vetch or forage barley. J. Agric. Sci. 1987, 108, 609–615. [Google Scholar] [CrossRef]
- Papastylianou, I. The role of legumes in the farming systems of Cyprus. In The Role of Legumes in the Farming Systems of the Mediterranean Areas—Developments in Plant and Soil Sciences; Osman, A.E., Ibrahim, M.H., Jones, M.A., Eds.; Kluwer Academic Publishing: Dordrech, The Netherlands, 1988; pp. 39–50. [Google Scholar]
- Dalias, P. Grain legume effects on soil nitrogen mineralization potential and wheat productivity in a Mediterranean environment. Arch. Agron. Soil Sci. 2015, 61, 461–473. [Google Scholar] [CrossRef]
- Van Kessel, C.; Hartley, C. Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crops Res. 2000, 65, 165–181. [Google Scholar] [CrossRef]
- Schiltz, S.; Munier-Jolain, N.; Jeudy, C.; Burstin, J.; Salon, C. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiol. 2005, 137, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Caballero, R.; Goicoechea, E.; Hernaiz, P. Forage yields and quality of common vetch and oats sown at varying seeding ratios and seeding rates of vetch. Field Crops Res. 1995, 4, 135–140. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Bedard-Haughn, A.; Comeau, L.-P.; Sangster, A. Gross nitrogen mineralization in pulse-crop rotations on the Northern Great Plains. Nutr. Cycl. Agroecosyst. 2013, 95, 159–174. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crops Res. 2010, 115, 203–216. [Google Scholar] [CrossRef]
- Papastylianou, I. Productivity and nitrogen fertilizer requirements of barely in rotation systems in rainfed Mediterranean conditions. Eur. J. Agron. 1993, 2, 119–129. [Google Scholar] [CrossRef]
- Jones, M.J.; Arous, Z. Effect of time of harvest of vetch (Vicia sativa L.) on yields of subsequent barley in a dry Mediterranean environment. J. Agron. Crop Sci. 1999, 182, 291–294. [Google Scholar] [CrossRef]
- Jones, M.J.; Singh, M. Long-term yield patterns in barley-based cropping systems in northern Syria. 2. The role of feed legumes. J. Agric. Sci. Camb. 2000, 135, 237–249. [Google Scholar] [CrossRef]
- Avci, M.M.; Kader, A.; Taner, O.; Bayram, Y.; Ayşenur, K.; Erol, S.D.; Karaçam, M. Turkish experience on dryland agronomy: Lessons from the past and the recent experiments. J. Agric. Res. 2007, 45, 33–42. [Google Scholar]
- Pala, M.; Ryan, J.; Zhang, H.; Singh, M.; Harris, H.C. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric. Water Manag. 2007, 93, 136–144. [Google Scholar] [CrossRef]
- Dalias, P. Increased Yield Surplus of Vetch-Wheat Rotations under Drought in a Mediterranean Environment. Sci. World J. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Papastylianou, I. Land and rainfall use efficiency and nitrogen balance of rotation systems under rainfed conditions in Cyprus. In Proceedings of an International Workshop, Ankara 1989; Harris, H.C., Cooper, P.S.M., Pala, M., Eds.; International Centre for Agricultural Research in the Dry Areas: Aleppo, Syria, 1991; pp. 260–266. [Google Scholar]
- Brueck, H. Effects of nitrogen supply on water-use efficiency of higher plants. J. Plant Nutr. Soil Sci. 2008, 171, 210–219. [Google Scholar] [CrossRef]
- Van Herwaarden, A.F.; Farquhar, G.D.; Angus, J.F.; Richards, R.A.; Howe, G.N. ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertiliser. I. Biomass, grain yield, and water use. Aust. J. Agric. Res. 1998, 49, 1067–1081. [Google Scholar] [CrossRef]
- Unkovich, M.; Baldock, J.; Forbes, M. Variability in Harvest Index of Grain Crops and Potential Significance for Carbon Accounting: Examples from Australian Agriculture. Adv. Agron. 2010, 105, 173–219. [Google Scholar]
- Cazzato, E.; Laudadio, V.; Tufarelli, V. Effects of harvest period, nitrogen fertilization and mycorrhizal fungus inoculation on triticale (×Triticosecale Wittmack) forage yield and quality Renew. Agric. Food Syst. 2012, 27, 278–286. [Google Scholar] [CrossRef]
- Christensen, B.T. Barley straw decomposition under field conditions: Effect of placement and initial nitrogen content on weight loss and nitrogen dynamics. Soil Biol. Biochem. 1986, 18, 523–529. [Google Scholar] [CrossRef]
- Mary, B.; Recous, S.; Darwis, D.; Robin, D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil. 1996, 181, 71–82. [Google Scholar] [CrossRef]
- Bonciarelli, U.; Onofri, A.; Benincasa, P.; Farneselli, M.; Guiducci, M.; Pannacci, E.; Tosti, G.; Tei, F. Long-term evaluation of productivity, stability and sustainability for cropping systems in Mediterranean rainfed conditions. Eur. J. Agron. 2016, 77, 146–155. [Google Scholar] [CrossRef]
- Nyborg, M.; Solberg, E.D.; Izaurralde, R.C.; Malhi, S.S.; Molina-Ayala, M. Influence of long-term tillage, straw and N fertilizer on barley yield, plant-N uptake and soil-N balance. Soil Tillage Res. 1995, 36, 165–174. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Christensen, B.T. Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and ryegrass catch crops. Soil Use Manag. 2004, 20, 432–438. [Google Scholar] [CrossRef]
- Stewart, B.A.; Robinson, C.A. Are agroecosystems sustainable in semiarid regions? Adv. Agron. 1997, 60, 191–228. [Google Scholar]
- Orphanos, P.I.; Metochis, C. The water relation of barley grown continually or after fallow under semi-arid conditions. Exp. Agric. 1994, 30, 431–439. [Google Scholar] [CrossRef]
- Singh, B.; Singh, N. Physico-chemical, water and oil absorption and thermal properties of gluten isolated from different Indian wheat cultivars. J. Food Sci. Technol. 2006, 43, 251–255. [Google Scholar]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Hansen, B.; Kristensen, E.S.; Grant, R.; Høgh-Jensen, H.; Simmelsgaard, S.E.; Olesen, J.E. Nitrogen leaching from conventional versus organic farming systems—A systems modelling approach. Eur. J. Agron. 2000, 13, 65–82. [Google Scholar] [CrossRef]
- Karanja, N.K.; Kimenju, J.M.; Esilaba, A.O.; Jefwa, J.; Ayuke, F. Legume Based Cropping and Soil Biodiversity Dynamics. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management; Bationo, A., Waswa, B., Okeyo, J., Maina, F., Kihara, J., Mokwunye, U., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 67–83. [Google Scholar]
- Barry, E.R.; Brown, R.H.; Elliott, B.R. Cereal cyst nematode (Heterodera avenae) in Victoria: Influence of cultural practices on grain yields and nematode populations. Aust. J. Exp. Agric. Anim. Husb. 1974, 14, 566–571. [Google Scholar] [CrossRef]
Rotation Cycle No./Year of Harvesting | “cnvl” | “strw” | “vgrn” | “sldg” |
---|---|---|---|---|
Grain yield (t ha−1) | ||||
1/2007 | 5.60 | 4.02 * | 6.03 n.s. | |
2/2009 | 4.82 | 4.22 n.s. | 4.27 n.s. | |
3/2010 | 3.83 | 3.68 n.s. | 3.46 n.s. | |
4/2012 | 4.50 | 3.81 n.s. | 6.08 ** | |
Straw yield (t ha−1) | ||||
1/2007 | 6.71 | 5.51 * | 4.50 | 7.83 n.s. |
2/2009 | 5.90 | 4.80 n.s. | 4.96 | 5.74 n.s. |
3/2010 | 5.81 | 5.07 n.s. | 4.40 | 4.61 n.s. |
4/2012 | 5.79 | 4.75 n.s. | 4.23 | 8.18 ** |
Aboveground biomass (t ha−1) | ||||
1/2007 | 12.31 | 9.53 * | 13.86 n.s. | |
2/2009 | 10.72 | 9.02 n.s. | 10.01 n.s. | |
3/2010 | 9.64 | 8.75 n.s. | 8.07 n.s. | |
4/2012 | 10.29 | 8.56 * | 14.26 *** | |
N concentration in grain (%) | ||||
1/2007 | 2.21 | 2.05 n.s. | 2.32 n.s. | |
2/2009 | 2.25 | 2.33 n.s. | 2.49 * | |
3/2010 | 2.09 | 1.89 * | 1.95 n.s. | |
4/2012 | 2.50 | 2.29 n.s. | 2.57 n.s. | |
N concentration in straw (%) | ||||
1/2007 | 0.39 | 0.40 n.s. | 1.69 | 0.49 n.s. |
2/2009 | 0.44 | 0.45 n.s. | 1.57 | 0.53 n.s. |
3/2010 | 0.47 | 0.36 n.s. | 1.63 | 0.37 n.s. |
4/2012 | 0.64 | 0.70 n.s. | 1.42 | 0.69 n.s |
Total N in harvested grain (kg ha−1) | ||||
1/2007 | 111.99 | 74.23 ** | 127.01 n.s. | |
2/2009 | 97.81 | 88.37 n.s. | 83.21 n.s. | |
3/2010 | 71.12 | 62.18 n.s. | 59.60 n.s. | |
4/2012 | 99.96 | 77.69 n.s. | 138.69 * | |
Total N in harvested straw (kg ha−1) | ||||
1/2007 | 24.34 | 20.69 n.s. | 35.69 * | |
2/2009 | 24.70 | 20.13 n.s. | 27.26 n.s. | |
3/2010 | 25.77 | 16.77 * | 15.92 * | |
4/2012 | 33.84 | 30.23 n.s. | 50.86 ** | |
Total N in aboveground biomass (kg ha−1) | ||||
1/2007 | 136.33 | 94.92 * | 162.70 n.s. | |
2/2009 | 122.50 | 108.50 n.s. | 110.47 n.s. | |
3/2010 | 96.88 | 78.95 n.s. | 75.52 * | |
4/2012 | 133.80 | 107.92 * | 189.56 *** | |
Harvest index | ||||
1/2007 | 0.4549 | 0.4180 * | 0.4344 n.s. | |
2/2009 | 0.4498 | 0.4684 n.s. | 0.4357 n.s. | |
3/2010 | 0.3970 | 0.4253 n.s. | 0.4291 n.s. | |
4/2012 | 0.4381 | 0.4439 n.s. | 0.4264 n.s. | |
N harvest index | ||||
1/2007 | 0.8213 | 0.7797 n.s. | 0.7800 n.s. | |
2/2009 | 0.8016 | 0.8146 n.s. | 0.7531 n.s. | |
3/2010 | 0.7383 | 0.7883 n.s. | 0.7902 n.s. | |
4/2012 | 0.7472 | 0.7190 n.s. | 0.7316 n.s. |
Rotation Cycle No./Year of Harvesting | “cnvl” | “strw” | “vhay” | “vinc” | “vgrn” | “falw” | “sldg” |
---|---|---|---|---|---|---|---|
Grain yield (t ha−1) | |||||||
1/2008 | 2.19 | 1.60 n.s. | 2.99 * | 3.24 ** | 2.91 * | 2.33 n.s. | 2.16 n.s. |
2/2010 | 4.85 | 4.41 n.s. | 5.28 n.s. | 5.74 ** | 5.31 n.s. | 5.50 n.s. | 5.14 n.s. |
3/2011 | 4.09 | 3.76 n.s. | 5.16 n.s. | 6.48 *** | 4.78 n.s. | 5.61 * | 3.86 n.s. |
4/2013 | 3.41 | 2.64 n.s. | 3.69 n.s. | 5.01 *** | 4.90 *** | 4.07 n.s. | 4.25 * |
Straw yield (t ha−1) | |||||||
1/2008 | 3.88 | 3.42 n.s. | 3.99 n.s. | 4.67 n.s. | 4.12 n.s. | 4.13 n.s. | 3.54 n.s. |
2/2010 | 7.07 | 6.38 n.s. | 6.90 n.s. | 7.12 n.s. | 7.03 n.s. | 7.29 n.s. | 6.70 n.s. |
3/2011 | 5.59 | 5.37 n.s. | 5.69 n.s. | 6.94 * | 6.16 n.s. | 6.89 * | 5.33 n.s. |
4/2013 | 4.62 | 3.82 n.s. | 4.31 n.s. | 5.29 n.s. | 5.61 n.s. | 5.20 n.s. | 4.78 n.s. |
Above ground biomass (t ha−1) | |||||||
1/2008 | 6.07 | 5.02 n.s. | 6.98 n.s. | 7.90 ** | 7.03 n.s. | 6.46 n.s. | 5.70 n.s. |
2/2010 | 11.92 | 10.78 n.s. | 12.18 n.s. | 12.87 n.s. | 12.34 n.s. | 12.79 n.s. | 11.84 n.s. |
3/2011 | 9.68 | 9.13 n.s. | 10.85 n.s. | 13.43 ** | 10.94 n.s. | 12.50 * | 9.19 n.s. |
4/2013 | 8.04 | 6.46 n.s. | 7.99 n.s. | 10.30 * | 10.51 * | 9.27 n.s. | 9.03 n.s. |
N concentration in grain (%) | |||||||
1/2008 | 2.12 | 1.77 n.s. | 2.01 n.s. | 2.48 n.s. | 2.09 n.s. | 2.05 n.s. | 1.94 n.s. |
2/2010 | 1.95 | 1.97 n.s. | 2.03 n.s. | 2.06 n.s. | 2.03 n.s. | 2.00 n.s. | 2.05 n.s. |
3/2011 | 2.19 | 2.16 n.s. | 2.15 n.s. | 2.18 n.s. | 2.20 n.s. | 2.08 n.s. | 2.16 n.s. |
4/2013 | 2.15 | 2.05 n.s. | 1.96 n.s. | 2.04 n.s. | 2.06 n.s. | 1.87 n.s. | 2.14 n.s. |
N concentration in straw (%) | |||||||
1/2008 | 0.51 | 0.35 n.s. | 0.40 n.s. | 0.51 n.s. | 0.42 n.s. | 0.46 n.s. | 0.36 n.s. |
2/2010 | 0.46 | 0.47 n.s. | 0.40 n.s. | 0.45 n.s. | 0.46 n.s. | 0.43 n.s. | 0.50 n.s. |
3/2011 | 0.73 | 0.70 n.s. | 0.60 n.s. | 0.66 n.s. | 0.69 n.s. | 0.65 n.s. | 0.69 n.s. |
4/2013 | 0.43 | 0.40 n.s. | 0.36 n.s. | 0.36 n.s. | 0.40 n.s. | 0.37 n.s. | 0.43 n.s. |
Total N in harvested grain (kg ha−1) | |||||||
1/2008 | 41.59 | 24.78 n.s. | 54.06 n.s. | 70.23 *** | 54.81 n.s. | 41.89 n.s. | 38.00 n.s. |
2/2010 | 84.19 | 77.23 n.s. | 95.22 n.s. | 105.34 ** | 96.41 n.s. | 97.71 n.s. | 94.10 n.s. |
3/2011 | 80.45 | 73.81 n.s. | 100.27 n.s. | 126.74 ** | 93.96 n.s. | 104.13 n.s. | 74.92 n.s. |
4/2013 | 66.29 | 48.67 n.s. | 65.57 n.s. | 92.63 * | 91.37 * | 68.95 n.s. | 82.00 n.s. |
Total N in harvested straw (kg ha−1) | |||||||
1/2008 | 18.24 | 11.04 n.s. | 14.49 n.s. | 21.86 n.s. | 16.03 n.s. | 17.72 n.s. | 11.91 n.s. |
2/2010 | 30.51 | 28.13 n.s. | 26.23 n.s. | 29.99 n.s. | 30.50 n.s. | 29.59 n.s. | 31.15 n.s. |
3/2011 | 37.82 | 35.13 n.s. | 31.89 n.s. | 42.39 n.s. | 40.09 n.s. | 42.24 n.s. | 34.73 n.s. |
4/2013 | 18.26 | 14.40 n.s. | 14.41 n.s. | 18.18 n.s. | 21.19 n.s. | 17.96 n.s. | 19.59 n.s. |
Harvest index | |||||||
1/2008 | 0.3548 | 0.3155 n.s. | 0.4324 ** | 0.4065 n.s. | 0.4080 * | 0.3592 n.s. | 0.3754 n.s. |
2/2010 | 0.4069 | 0.4083 n.s. | 0.4347 n.s. | 0.4467 * | 0.4303 n.s. | 0.4302 n.s. | 0.4346 n.s. |
3/2011 | 0.4227 | 0.4113 n.s. | 0.4737 * | 0.4827 * | 0.4325 n.s. | 0.4485 n.s. | 0.4201 n.s. |
4/2013 | 0.4273 | 0.4098 n.s. | 0.4608 n.s. | 0.4882 * | 0.4668 n.s. | 0.4398 n.s. | 0.4724 n.s. |
N harvest index | |||||||
1/2008 | 0.6877 | 0.6921 n.s. | 0.7901 n.s. | 0.7623 n.s. | 0.7671 n.s. | 0.7040 n.s. | 0.7554 n.s. |
2/2010 | 0.7359 | 0.7327 n.s. | 0.7833 n.s. | 0.7799 n.s. | 0.7618 n.s. | 0.7670 n.s. | 0.7523 n.s. |
3/2011 | 0.6795 | 0.6756 n.s. | 0.7550 * | 0.7498 * | 0.6986 n.s. | 0.7123 n.s. | 0.6868 n.s. |
4/2013 | 0.7839 | 0.7729 n.s. | 0.8180 n.s. | 0.8377 n.s. | 0.8116 n.s. | 0.7908 n.s. | 0.8094 n.s. |
“cnvl” | “strw” | “vhay” | “vinc” | “vgrn” | “falw” | “sldg” | |
---|---|---|---|---|---|---|---|
Dry gluten (%) | 9.5 ab | 7.4 a | 8.9 a | 12.0 b | 10.0 ab | 9.30 ab | 8.6 a |
Farinograph water absorption (%) | 63.7 bcde | 58.4 a | 62.5 ad | 67.6 b | 64.2 bcde | 62.7 ae | 61.6 ac |
Alveograph W | 194.1 ab | 130.6 a | 154.3 ab | 243.9 b | 174.6 ab | 150.3 a | 155.1 ab |
Rotation Cycle No./Year of Harvesting | “cnvl” | “strw” | “vhay” | “vinc” | “vgrn” | “falw” | “sldg” |
---|---|---|---|---|---|---|---|
Grain yield (t ha−1) | |||||||
1/2009 | 2.74 | 2.07 n.s. | 3.44 n.s. | 3.93 n.s. | 2.31 n.s. | 4.48 * | 2.70 n.s. |
2/2011 | 3.90 | 3.23 ** | 3.15 ** | 3.77 n.s. | 3.16 ** | 4.21 n.s. | 3.50 n.s. |
3/2012 | 4.35 | 3.70 n.s. | 2.26 ** | 3.14 n.s. | 2.87 * | 4.51 n.s. | 4.08 n.s. |
4/2014 | 2.78 | 2.41 n.s. | 2.20 n.s. | 2.94 n.s. | 2.81 n.s. | 3.11 n.s. | 2.82 n.s. |
Straw yield (t ha−1) | |||||||
1/2009 | 6.09 | 7.25 n.s. | 5.01 n.s. | 5.41 n.s. | 5.71 n.s. | 7.19 n.s. | 6.15 n.s. |
2/2011 | 5.13 | 4.42 n.s. | 4.53 n.s. | 5.34 n.s. | 4.48 n.s. | 6.01 n.s. | 4.67 n.s. |
3/2012 | 4.84 | 4.31 n.s. | 2.73 ** | 3.68 n.s. | 3.29 * | 4.73 n.s. | 5.02 n.s. |
4/2014 | 4.77 | 4.37 n.s. | 3.68 n.s. | 4.21 n.s. | 4.04 n.s. | 5.64 n.s. | 4.81 n.s. |
Above ground biomass (t ha−1) | |||||||
1/ 2009 | 8.84 | 9.32 n.s. | 8.45 n.s. | 9.34 n.s. | 8.02 n.s. | 11.67 n.s. | 8.85 n.s. |
2/2011 | 9.03 | 7.65 n.s. | 7.68 n.s. | 9.11 n.s. | 7.64 n.s. | 10.22 n.s. | 8.17 n.s. |
3/2012 | 9.19 | 8.01 n.s. | 5.00 ** | 6.81 n.s. | 6.16 * | 9.24 n.s. | 9.10 n.s. |
4/2014 | 7.55 | 6.78 n.s. | 5.88 * | 7.15 n.s. | 6.85 n.s. | 8.74 n.s. | 7.62 n.s. |
N concentration in grain (%) | |||||||
1/2009 | 2.12 | 2.04 n.s. | 2.20 n.s. | 2.20 n.s. | 2.17 n.s. | 2.07 n.s. | 2.18 n.s. |
2/2011 | 2.24 | 2.17 n.s. | 2.22 n.s. | 2.22 n.s. | 2.18 n.s. | 2.24 n.s. | 2.24 n.s. |
3/2012 | 2.46 | 2.25 n.s. | 2.05 *** | 2.23 * | 2.12 ** | 2.38 n.s. | 2.18 ** |
4/2014 | 2.32 | 2.24 n.s. | 1.69 *** | 1.76 ** | 1.76 ** | 2.31 n.s. | 2.08 n.s. |
N concentration in straw (%) | |||||||
1/2009 | 0.55 | 0.54 n.s. | 0.42 n.s. | 0.35 n.s. | 0.45 n.s. | 0.34 n.s. | 0.51 n.s. |
2/2011 | 0.70 | 0.67 n.s. | 0.62 n.s. | 0.62 n.s. | 0.63 n.s. | 0.60 n.s. | 0.64 n.s. |
3/2012 | 0.60 | 0.60 n.s. | 0.54 n.s. | 0.60 n.s. | 0.55 n.s. | 0.57 n.s. | 0.56 n.s. |
4/2014 | 0.44 | 0.41 n.s. | 0.29 * | 0.31 n.s. | 0.25 ** | 0.37 n.s. | 0.36 n.s. |
Total N in harvested grain (kg ha−1) | |||||||
1/ 2009 | 53.09 | 39.50 n.s. | 69.76 n.s. | 78.86 n.s. | 45.38 n.s. | 86.16 * | 58.41 n.s. |
2/2011 | 78.09 | 62.77 ** | 62.56 ** | 74.54 n.s. | 61.94 ** | 84.11 n.s. | 69.98 n.s. |
3/2012 | 95.36 | 74.16 n.s. | 41.43 *** | 62.85 * | 54.42 ** | 95.21 n.s. | 78.13 n.s. |
4/2014 | 71.24 | 53.19 n.s. | 55.67 n.s. | 79.06 n.s. | 77.05 n.s. | 84.54 n.s. | 79.40 n.s. |
Total N in harvested straw (kg ha−1) | |||||||
1/2009 | 13.22 | 17.19 n.s. | 8.03 n.s. | 8.01 n.s. | 10.07 n.s. | 10.03 n.s. | 12.61 n.s. |
2/2011 | 34.49 | 28.10 n.s. | 27.19 n.s. | 31.12 n.s. | 26.40 n.s. | 24.92 n.s. | 27.66 n.s. |
3/2012 | 26.22 | 23.28 n.s. | 13.22 ** | 19.39 n.s. | 16.36 * | 24.46 n.s. | 25.32 n.s. |
4/2014 | 18.76 | 14.12 n.s. | 11.52 n.s. | 15.32 n.s. | 13.04 n.s. | 18.24 n.s. | 16.10 n.s. |
Harvest index | |||||||
1/2009 | 0.3163 | 0.2267 n.s. | 0.4021 n.s. | 0.4290 ** | 0.2967 n.s. | 0.3818 n.s. | 0.3135 n.s. |
2/2011 | 0.4357 | 0.4301 n.s. | 0.4084 n.s. | 0.4148 n.s. | 0.4130 n.s. | 0.4116 n.s. | 0.4302 n.s. |
3/2012 | 0.4747 | 0.4646 n.s. | 0.4530 n.s. | 0.4598 n.s. | 0.4658 n.s. | 0.4906 n.s. | 0.4453 n.s. |
4/2014 | 0.3699 | 0.3548 n.s. | 0.3758 n.s. | 0.4100 n.s. | 0.4096 n.s. | 0.3565 n.s. | 0.3696 n.s. |
N harvest index | |||||||
1/2009 | 0.7911 | 0.6918 n.s. | 0.8796 n.s. | 0.9100 n.s. | 0.8141 n.s. | 0.8901 n.s. | 0.8127 n.s. |
2/2011 | 0.7006 | 0.6972 n.s. | 0.7001 n.s. | 0.7067 n.s. | 0.7014 n.s. | 0.7066 n.s. | 0.7163 n.s. |
3/2012 | 0.7854 | 0.7595 n.s. | 0.7558 n.s. | 0.7556 n.s. | 0.7666 n.s. | 0.7961 n.s. | 0.7544 n.s. |
4/2014 | 0.7936 | 0.7902 n.s. | 0.8287 n.s. | 0.8405 n.s. | 0.8550 n.s. | 0.8246 n.s. | 0.8347 n.s. |
Harvest Year | Total N (%) | NH4 (ppm) | Moisture Content (%) | pH | Organic Matter (%) | CaCO3 (%) | Sand (%) | Silt (%) | Clay (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Soil | 0.085 | 6.2 | 7.94 | 1.53 | 15 | 39 | 26 | 35 | ||
Sewage sludge | 2007 | 3.6 | 1102 | 8.2 | 6.83 | 60 | ||||
2009 | 3.0 | 980 | 7.9 | 7.05 | 63 | |||||
2010 | 3.9 | 1415 | 9.1 | 7.90 | 63 | |||||
2012 | 4.9 | 1350 | 8.5 | 7.65 | 62 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalias, P.; Neocleous, D. Comparative Analysis of the Nitrogen Effect of Common Agricultural Practices and Rotation Systems in a Rainfed Mediterranean Environment. Plants 2017, 6, 61. https://doi.org/10.3390/plants6040061
Dalias P, Neocleous D. Comparative Analysis of the Nitrogen Effect of Common Agricultural Practices and Rotation Systems in a Rainfed Mediterranean Environment. Plants. 2017; 6(4):61. https://doi.org/10.3390/plants6040061
Chicago/Turabian StyleDalias, Panagiotis, and Damianos Neocleous. 2017. "Comparative Analysis of the Nitrogen Effect of Common Agricultural Practices and Rotation Systems in a Rainfed Mediterranean Environment" Plants 6, no. 4: 61. https://doi.org/10.3390/plants6040061
APA StyleDalias, P., & Neocleous, D. (2017). Comparative Analysis of the Nitrogen Effect of Common Agricultural Practices and Rotation Systems in a Rainfed Mediterranean Environment. Plants, 6(4), 61. https://doi.org/10.3390/plants6040061