EDDS-Enhanced Phytoremediation of Cd–Zn Co-Contaminated Soil by Sedum lineare: Mechanisms of Metal Uptake, Soil Improvement, and Microbial Community Modulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Preparation and Contamination Procedure
2.2. Plant Culture and EDDS Application
2.3. Experimental Design
2.4. Metal Analysis in Plant and Soil
2.5. Plant Accumulation Assessment
2.6. Plant Growth and Physiological Parameters
2.7. Soil Physicochemical Analysis
2.8. Microbial Community Analysis
2.9. Statistical Analysis
3. Results
3.1. The Physiological Responses of S. lineare Under Heavy Metal Stress
3.1.1. Tolerance of S. lineare to Heavy Metals
3.1.2. Change of Chlorophyll Content in S. lineare
3.1.3. Change of Oxidative Stress and Antioxidant Enzyme Activities
3.1.4. Change of the S-Nitrosoglutathione Reductase (GSNOR) Activity
3.2. Metal Accumulation and Translocation
3.2.1. EDDS Enhanced Cd Accumulation in Roots
3.2.2. Zn Promotes Cd Translocation Under Co-Contamination While EDDS Inhibits It
3.2.3. Competitive Uptake and Translocation of Fe/Mn and Cd/Zn
3.3. Soil Remediation Efficiency
3.3.1. Increased Metal Bioavailability
3.3.2. Enhanced Total Removal Rates of Cd and Zn
3.3.3. Transformation of Metal Speciation
3.3.4. Improvement of Soil Physicochemical Properties
3.4. Microbial Community Response
3.4.1. Changes in Alpha Diversity
3.4.2. Changes in β Diversity
3.4.3. Shifts in Microbial Community Structure
3.4.4. Functional Shifts Revealed by KEGG Pathway Prediction
4. Discussion
4.1. Synergistic Enhancement of Phytoremediation Efficiency
4.2. Interplay Between Heavy Metals and Essential Nutrients
4.3. Integrated Recovery of Soil Health and Microbial Ecology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Z.; Liu, K.; Grunwald, S.; Smith, P.; Ciais, P.; Wang, B.; Wadoux, A.M.J.; Ferreira, C.; Karunaratne, S.; Shurpali, N.; et al. Advancing soil organic carbon prediction: A comprehensive review of technologies, AI, process-based and hybrid modelling approaches. Adv. Sci. 2025, 12, e04152. [Google Scholar] [CrossRef]
- Yu, B.; Miao, X.; Ouyang, S. Soil heavy metal pollution trends for intensive vegetable production system in Beijing-Tianjin-Hebei region, China (2000–2024) and human health implications. Environ. Res. 2025, 283, 122178. [Google Scholar] [CrossRef]
- Zeb, M.; Khan, K.; Younas, M.; Farooqi, A.; Cao, X.; Kavil, Y.N.; Alelyani, S.S.; Alkasbi, M.M.; Al-Sehemi, A.G. A review of heavy metals pollution in riverine sediment from various Asian and European countries: Distribution, sources, and environmental risk. Mar. Pollut. Bull. 2024, 206, 116775. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, C.; Ke, X.; Pan, J.; Wei, G.; Chen, Y.; Wei, C.; Li, F.; Preis, S. Nationwide review of heavy metals in municipal sludge wastewater treatment plants in China: Sources, composition, accumulation and risk assessment. J. Hazard. Mater. 2022, 437, 129267. [Google Scholar] [CrossRef] [PubMed]
- Sirgedaitė-Šėžienė, V.; Striganavičiūtė, G.; Šilanskienė, M.; Kniuipytė, I.; Praspaliauskas, M.; Vaškevičienė, I.; Lemanas, E.; Vaitiekūnaitė, D. Evaluating Populus tremula L. and Salix caprea L. for phytoremediation: Growth, metal uptake, and biochemical responses under arsenic, cadmium, and lead stress. Front. Plant Sci. 2025, 16, 1617432. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, Y.; Wang, Q.; Ma, H.; Li, X.; Wang, Q.; Yang, Q. Tanning wastewater restructured nitrogen-transforming bacteria communities and promoted N2O emissions in receiving river riparian sediments. Environ. Res. 2024, 260, 119580. [Google Scholar] [CrossRef]
- Cao, L.; Xie, H.; Sun, R.; He, L.; Dai, Z.; Li, C. Microplastics and heavy metals reshape mangrove rhizosphere microbiomes and compromise carbon fixation potential. Ecotoxicol. Environ. Saf. 2025, 303, 118900. [Google Scholar] [CrossRef]
- Gao, Y.; Weng, W.; Huang, K.; Ren, S.; Jordan, R.W.; Jiang, S.J.; Ji, Y.; Gu, Y.G. Foodborne metal(loid) contamination from coastal petrochemical industrial zone to countryside and urban zones: Spatial distribution and public health implications. J. Hazard. Mater. 2025, 496, 139525. [Google Scholar] [CrossRef]
- Chen, C.; Bongers, F.J.; Schmid, B.; Ma, K.; Liu, X. Ecosystem consequences of functional diversity in forests and implications for restoration. New Phytol. 2025, 247, 1081–1097. [Google Scholar] [CrossRef] [PubMed]
- Igwe, A.N.; Callwood, K.A.; Shelton, D.S. Restoring landscapes and communities: Insights from critical, urban, and plant ecology. Environ. Sci. Ecotechnol. 2025, 27, 100601. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, J.; Liu, Z.; Wei, H.; Zhang, J. Polyethylene microplastics alter soil microbial community assembly and ecosystem multifunctionality. Environ. Int. 2024, 183, 108360. [Google Scholar] [CrossRef]
- Jha, A.; Barsola, B.; Pathania, D.; Raizada, P.; Thakur, P.; Singh, P.; Rustagi, S.; Khosla, A.; Chaudhary, V. Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production. Environ. Res. 2024, 252, 118926. [Google Scholar] [CrossRef]
- Dai, S.; Feng, W.; Song, F.; Li, T.; Tao, Y.; Yang, F.; Miao, Q.; Duan, P.; Liao, H.; Shi, H.; et al. Review of biological algal fertilizer technology: Alleviating salinization, sequestering carbon, and improving crop productivity. Bioresour. Technol. 2025, 429, 132507. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Tu, C.; Liu, G.M.; Li, Y.; Wang, Y.; Zhu, X.; Si, S.C.; Luo, R.L.; Li, Z.Y.; Luo, Y.M. Waste biomass-derived organic matter for sustainable soil remediation: Enhancing heavy metal removal and eluent reuse in agricultural application. Bioresour. Technol. 2025, 435, 132876. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Uddin, M.N.; Ara-Sharmeen, I.; Alharby, H.F.; Alzahrani, Y.; Hakeem, K.R.; Zhang, L. Assisting phytoremediation of heavy metals using chemical amendments. Plants 2019, 8, 295. [Google Scholar] [CrossRef]
- Bucheli-Witschel, M.; Egli, T. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol. Rev. 2001, 25, 69–106. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.C.; Wang, H.H.; Chen, Y.M.; Wang, M.K.; Liu, C.C. Removal of heavy metals from contaminated paddy soils using chemical reductants coupled with dissolved organic carbon solutions. J. Hazard. Mater. 2021, 403, 123549. [Google Scholar] [CrossRef]
- Tandy, S.; Bossart, K.; Mueller, R.; Ritschel, J.; Hauser, L.; Schulin, R.; Nowack, B. Extraction of Heavy Metals from Soils Using Biodegradable Chelating Agents. Environ. Sci. Technol. 2004, 38, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Hauser, L.; Tandy, S.; Schulin, R.; Nowack, B. Column Extraction of Heavy Metals from Soils Using the Biodegradable Chelating Agent EDDS. Environ. Sci. Technol. 2005, 39, 6819–6824. [Google Scholar] [CrossRef]
- Drozd, A.; Ju, Y.; Kolodynska, D. Improved Soil Amendment by Integrating Metal Complexes and Biodegradable Complexing Agents in Superabsorbents. Materials 2023, 17, 141. [Google Scholar] [CrossRef]
- Sharma, P.; Rathee, S.; Ahmad, M.; Raina, R.; Batish, D.R.; Singh, H.P. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Solanum nigrum. Int. J. Phytoremediat. 2023, 25, 1106–1115. [Google Scholar] [CrossRef]
- Xu, Z.; Pan, J.; Ullah, N.; Duan, Y.; Hao, R.; Li, J.; Huang, Q.; Xu, L. 5-Aminolevulinic acid mitigates the chromium-induced changes in Helianthus annuus L. as revealed by plant defense system enhancement. Plant Physiol. Biochem. 2023, 198, 107701. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Qin, X.; Liang, X.; Huang, Q.; Peng, Y. Effects of EDDS on the Cd uptake and growth of Tagetes patula L. and Phytolacca americana L. in Cd-contaminated alkaline soil in northern China. Environ. Sci. Pollut. Res. Int. 2020, 27, 25248–25260. [Google Scholar] [CrossRef] [PubMed]
- Beiyuan, J.; Fang, L.; Chen, H.; Li, M.; Liu, D.; Wang, Y. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process. Environ. Pollut. 2021, 268, 115719. [Google Scholar] [CrossRef]
- McDougall, D.R.; Kihara, S.; Reinhardt, J.; Miskelly, G.M.; McGillivray, D.J.; Jeffs, A.G. Biodegradable chelating agent improves the survival of early larvae for shellfish aquaculture. Aquat. Toxicol. 2020, 228, 105645. [Google Scholar] [CrossRef] [PubMed]
- Kołodyńska, D.; Drozd, A.; Ju, Y. Superabsorbents and their application for heavy metal Ion removal in the presence of EDDS. Polymers 2021, 13, 3688. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Sun, G.; Liang, X.; Sun, Y.; Wang, L.; Huang, Q. Comparative effects of Tagetes patula L. extraction, mercapto-palygorskite immobilisation, and the combination thereof on Cd accumulation by wheat in Cd-contaminated soil. Ecotoxicol. Environ. Saf. 2021, 224, 112639. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Kiamarsi, Z.; Han, R.; Kafi, M.; Lutts, S. Effect of NaCl and EDDS on heavy metal accumulation in Kosteletzkya pentacarpos in polymetallic polluted soil. Plants 2023, 12, 1656. [Google Scholar] [CrossRef]
- Shan, Q.; Liu, X.; Zhang, J.; Chen, G.; Liu, S.; Zhang, P.; Wang, Y. Analysis on the tolerance of four ecotype plants against copper stress in soil. Procedia Environ. Sci. 2011, 10, 1802–1810. [Google Scholar] [CrossRef]
- Ning, Z.; Xiao, T.; Xiao, E. Antimony in the soil-plant system in an Sb mining/smelting area of southwest China. Int. J. Phytoremediat. 2015, 17, 1081–1089. [Google Scholar] [CrossRef]
- Yang, S.; Yin, R.; Wang, C.; Wang, J. Improved efficiency of Sedum lineare (Crassulaceae) in remediation of arsenic-contaminated soil by phosphate-dissolving strain P-1 in association with phosphate rock. Environ. Geochem. Health 2023, 45, 8317–8336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liao, H. Epibrassinolide improves the growth performance of Sedum lineare upon Zn stress through boosting antioxidative capacities. PLoS ONE 2021, 16, e0257172. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, Q.; Yan, Y.; Fu, D. Exogenous abscisic acid reduces water consumption in Sedum lineare for green roofs: Insights from morpho-physio-biochemical responses and multi-omics. Plant Physiol. Biochem. 2025, 229, 110696. [Google Scholar] [CrossRef]
- Leng, Y.; Li, Y.; Wen, Y.; Zhao, H.; Wang, Q.; Li, S.W. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. Ecotoxicol. Environ. Saf. 2020, 204, 111098. [Google Scholar] [CrossRef]
- Luo, P.; Wu, J.; Li, T.-T.; Shi, P.; Ma, Q.; Di, D.-W. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants 2024, 13, 1174. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Wang, Y.; Liu, Z.; Kronzucker, H.J.; Wang, Z.; Shi, W.; Li, G. Ion toxicity in waterlogged soils: Mechanisms of root response and adaptive strategies. Front. Plant Sci. 2025, 16, 1653008. [Google Scholar] [CrossRef]
- Bandara, T.; Franks, A.; Xu, J.; Chathurika, J.; Tang, C. Biochar aging alters the bioavailability of cadmium and microbial activity in acid contaminated soils. J. Hazard. Mater. 2021, 420, 126666. [Google Scholar] [CrossRef]
- Dong, S.; Li, L.; Chen, W.; Chen, Z.; Wang, Y.; Wang, S. Evaluation of heavy metal speciation distribution in soil and the accumulation characteristics in wild plants: A study on naturally aged abandoned farmland adjacent to tailings. Sci. Total Environ. 2024, 917, 170594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, K.; Duan, Y.; Sun, X.; Lin, L.; An, Q.; Altaf, M.M.; Zhu, Z.; Liu, F.; Jiao, Y.; et al. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica. J. Hazard. Mater. 2024, 465, 133266. [Google Scholar] [CrossRef]
- Tandy, S.; Ammann, A.; Schulin, R.; Nowack, B. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environ. Pollut. 2006, 142, 191–199. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Bai, Z.; Pei, J.; Yang, S.; Wang, J. Overexpression of E. coli formaldehyde metabolic genes pleiotropically promotes Arabidopsis thaliana growth by regulating redox homeostasis. J. Hazard. Mater. 2025, 488, 137324. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, B.; Zhang, S.; Yang, S.; Lu, M.Z.; Wang, J. The overexpression of E. coli formaldehyde metabolism genes in Arabidopsis conferred varying degrees of resistance to oxidative stress induced by small organic compounds. J. Hazard. Mater. 2025, 493, 138352. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.-P.; Yu, M.; Cao, N.; Yan, J. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chem. Geol. 2018, 501, 86–94. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Han, N.; Peng, X.; Zhang, T.; Qiang, Y.; Li, X.; Zhang, W. A new quantitative 16S rRNA amplicon sequencing method. Sheng Wu Gong Cheng Xue Bao 2020, 36, 2548–2555. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramteke, P.W.; Gupta, R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 2021, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef]
- Kosolsaksakul, P.; Farmer, J.G.; Oliver, I.W.; Graham, M.C. Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environ. Pollut. 2014, 187, 153–161. [Google Scholar] [CrossRef]
- Xie, M.; Gao, X.; Zhang, S.; Fu, X.; Le, Y.; Wang, L. Cadmium stimulated cooperation between bacterial endophytes and plant intrinsic detoxification mechanism in Lonicera japonica thunb. Chemosphere 2023, 325, 138411. [Google Scholar] [CrossRef]
- Zhu, G.; Xiao, H.; Guo, Q.; Zhang, Z.; Zhao, J.; Yang, D. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicol. Environ. Saf. 2018, 158, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Fatnani, D.; Parida, A.K. Uptake, impact, adaptive mechanisms, and phytoremediation of heavy metals by plants: Role of transporters in heavy metal sequestration. Plant Physiol. Biochem. 2025, 221, 109578. [Google Scholar] [CrossRef]
- Spielmann, J.; Leonhardt, N.; Neveu, J.; Vert, G. Canonical tyrosine-based motifs are required for constitutive endocytosis and polarity of IRT1 and contribute to metal uptake. Plant J. 2025, 124, e70524. [Google Scholar] [CrossRef]
- Cheng, Y.; Bao, Y.; Chen, X.; Yao, Q.; Wang, C.; Chai, S.; Zeng, J.; Fan, X.; Kang, H.; Sha, L.; et al. Different nitrogen forms differentially affect Cd uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.) seedlings. J. Hazard. Mater. 2020, 400, 123209. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.E.; Long, X.X.; Ye, H.B.; He, Z.L.; Calvert, D.V.; Stoffella, P.J. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 2004, 259, 181–189. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, B.; Liu, H.; Liang, X.; Ma, W.; Shi, Z.; Yang, S. Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation. Ecotoxicol. Environ. Saf. 2019, 183, 109562. [Google Scholar] [CrossRef]
- Wu, G.; Islam, M.S.; Fu, Q.; Liu, Y.; Zhu, J.; Fang, L.; Hu, H. Impact of citric acid on cadmium immobilization in soil amended with biochar. J. Environ. Sci. 2025, 158, 324–336. [Google Scholar] [CrossRef]
- Fatima, F.; Pathak, N.; Srivastava, D.; Verma, S.R. Molecular Detection and Exploration of Diversity Among Fungal Consortium Involved in Phosphate Solubilization. Geomicrobiol. J. 2020, 38, 29–35. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, X.; Huang, S.; Wang, X.; Jia, X.; Wang, H.; Zhou, J.; Ma, L. Novel insights into microbial strategies for antimony (Sb) transformation coupled with carbon utilization in groundwater ecosystem. Environ. Int. 2025, 203, 109752. [Google Scholar] [CrossRef]
- Xiao, Y.; Dong, M.; Yang, B.; Wang, S.; Liang, S.; Liu, D.; Zhang, H. Strengthening bioremediation potential: Enterobacter ludwigii ES2 for combined nicosulfuron and Cd contamination through whole genome and microbial diversity community analysis. J. Hazard. Mater. 2024, 478, 135476. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fredrickson, J.K.; Zachara, J.M.; Shi, L. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front. Microbiol. 2015, 6, 1075. [Google Scholar] [CrossRef] [PubMed]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shen, H.; Liu, Z.; Wang, C.; Chu, Y.; Zhang, C.; Yu, Y.; Yang, S. EDDS-Enhanced Phytoremediation of Cd–Zn Co-Contaminated Soil by Sedum lineare: Mechanisms of Metal Uptake, Soil Improvement, and Microbial Community Modulation. Plants 2026, 15, 231. https://doi.org/10.3390/plants15020231
Shen H, Liu Z, Wang C, Chu Y, Zhang C, Yu Y, Yang S. EDDS-Enhanced Phytoremediation of Cd–Zn Co-Contaminated Soil by Sedum lineare: Mechanisms of Metal Uptake, Soil Improvement, and Microbial Community Modulation. Plants. 2026; 15(2):231. https://doi.org/10.3390/plants15020231
Chicago/Turabian StyleShen, Haochen, Ziyi Liu, Chen Wang, Ying Chu, Chuhan Zhang, Yang Yu, and Shaohui Yang. 2026. "EDDS-Enhanced Phytoremediation of Cd–Zn Co-Contaminated Soil by Sedum lineare: Mechanisms of Metal Uptake, Soil Improvement, and Microbial Community Modulation" Plants 15, no. 2: 231. https://doi.org/10.3390/plants15020231
APA StyleShen, H., Liu, Z., Wang, C., Chu, Y., Zhang, C., Yu, Y., & Yang, S. (2026). EDDS-Enhanced Phytoremediation of Cd–Zn Co-Contaminated Soil by Sedum lineare: Mechanisms of Metal Uptake, Soil Improvement, and Microbial Community Modulation. Plants, 15(2), 231. https://doi.org/10.3390/plants15020231

