Differential Regulation of Gene Expression, Ion Homeostasis, and Antioxidant Defense Confers Salinity Tolerance During Seed Germination in Wheat
Abstract
1. Introduction
2. Results
2.1. Sodium (Na+), Potassium (K+) and Phosphorus (P)-Related Traits
2.2. The Activity of Some Antioxidant Enzymes Under Control Conditions and Salt Stress
2.2.1. Analysis of Variance (ANOVA)
2.2.2. Correlation Analysis
2.2.3. Bidirectional Clustering Heatmap for All Traits Under Control and Salinity
2.2.4. Principal Component Analysis (PCA) for All Traits Under Control and Salinity
2.3. Gene Expression Profiling of the Vacuolar Pyrophosphatase (TaAVP1) Gene and the Na+/H+ Antiporter (NHX1) Under Control and Salt Stress
3. Discussion
3.1. Roles of Mineral-Related Traits and Antioxidant Enzymes in Salinity Tolerance
3.2. Gene Expression Profiling of the AVP (A Vacuolar Pyrophosphatase Similar to AVP1) and NHX1 (A Na+/H+ Antiporter)
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.2. Antioxidant Enzyme Activities
4.2.1. Extraction and Measuring
Ascorbate Peroxidase Assay
Catalase Assay
Glutathione Reductase Assay
4.3. Estimation of Sodium (Na+), Potassium (K+) and Phosphorus (P) Contents
4.4. Gene Expression Analysis
RNA Extraction, cDNA Preparation, and Real-Time PCR
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of variance |
| APX | Ascorbate peroxidase |
| ASRT | Academy of Scientific Research and Technology |
| AVP1 | Vacuolar H+-pyrophosphatase |
| CAT | Catalase |
| cDNA | Complementary DNA |
| DNase | Deoxyribonuclease |
| EC | Enzyme Commission number |
| EDTA | Ethylenediaminetetraacetic acid |
| FW | Fresh weight |
| GR | Glutathione reductase |
| GWAS | Genome-wide association study |
| H+-ATPase | Proton adenosine triphosphatase |
| H+-PPase | Proton pyrophosphatase |
| H2O2 | Hydrogen peroxide |
| H2PO4− | Dihydrogen phosphate ion |
| K+ | Potassium ion |
| K+/Na+ | Potassium to sodium ratio |
| Na+ | Sodium ion |
| Na+/K+ | Sodium to potassium ratio |
| NaCl | Sodium chloride |
| NaOCl | Sodium hypochlorite |
| NBT | Nitro blue tetrazolium |
| NHX1 | Na+/H+ antiporter gene |
| PCA | Principal component analysis |
| PCR | Polymerase chain reaction |
| Pi | Inorganic phosphate |
| qPCR | Quantitative polymerase chain reaction |
| RCBD | Randomized complete block design |
| RL | Root length |
| RNA | Ribonucleic acid |
| RNeasy | RNA easy extraction kit |
| ROS | Reactive oxygen species |
| SL | Shoot length |
| SNG | Scientists for Next Generation (Scholarships Program) |
| SOD | Superoxide dismutase |
| TaAVP1 | Vacuolar H+-pyrophosphatase gene (in Triticum aestivum) |
| TNHX1 | Triticum Na+/H+ antiporter |
| TVP1 | Triticum vacuolar pyrophosphatase |
| ΔΔCT | Delta–delta cycle threshold |
References
- Ashraf, M.; Foolad, M.R. Pre-Sowing Seed Treatment-A Shotgun Approach to Improve Germination, Plant Growth, and Crop Yield Under Saline and Non-Saline Conditions. Adv. Agron. 2005, 88, 223–271. [Google Scholar]
- Amro, A.; Harb, S.; Youssef, K.; Ali, M.M.F.; Mohammed, A.G.; Mourad, A.M.I.; Afifi, M.; Börner, A.; Sallam, A. Growth Responses and Genetic Variation among Highly Ecologically Diverse Spring Wheat Genotypes Grown under Seawater Stress. Front. Plant Sci. 2022, 13, 996538. [Google Scholar] [CrossRef]
- Said, A.A.; Moursi, Y.S.; Sallam, A. Association Mapping and Candidate Genes for Physiological Non-Destructive Traits: Chlorophyll Content, Canopy Temperature, and Specific Leaf Area under Normal and Saline Conditions in Wheat. Front. Genet. 2022, 13, 980319. [Google Scholar] [CrossRef]
- Epstein, E. Crops Tolerant of Salinity and Other Mineral Stresses. In Agriculture, Ecosystems & Environment; Elsevier: Amsterdam, The Netherlands, 1985; pp. 181–182. [Google Scholar]
- Epstein, E.; Norlyn, J.D.; Rush, D.W.; Kingsbury, R.W.; Kelley, D.B.; Cunningham, G.A.; Wrona, A.F. Saline Culture of Crops: A Genetic Approach. Science 1980, 210, 399–404. [Google Scholar] [CrossRef]
- Kingsbury, R.W.; Epstein, E.; Pearcy, R.W. Physiological Responses to Salinity in Selected Lines of Wheat. Plant Physiol. 1984, 74, 417–423. [Google Scholar] [CrossRef]
- Pirasteh-Anosheh, H.; Ranjbar, G.; Pakniyat, H.; Emam, Y. Physiological Mechanisms of Salt Stress Tolerance in Plants: An Overview. In Plant-Environment Interaction: Responses and Approaches to Mitigate Stress; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 141–160. [Google Scholar]
- Greenway, H.; Munns, R. Mechanisms of Salt Tolerance in Nonhalophytes. Annu. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Munns, R.; Day, D.A.; Fricke, W.; Watt, M.; Arsova, B.; Barkla, B.J.; Bose, J.; Byrt, C.S.; Chen, Z.H.; Foster, K.J.; et al. Energy Costs of Salt Tolerance in Crop Plants. New Phytol. 2020, 225, 1072–1090. [Google Scholar] [CrossRef] [PubMed]
- Rubio, F.; Nieves-Cordones, M.; Horie, T.; Shabala, S. Doing ‘Business as Usual’ Comes with a Cost: Evaluating Energy Cost of Maintaining Plant Intracellular K+ Homeostasis under Saline Conditions. New Phytol. 2020, 225, 1097–1104. [Google Scholar] [CrossRef]
- Shabala, S.; Chen, G.; Chen, Z.H.; Pottosin, I. The Energy Cost of the Tonoplast Futile Sodium Leak. New Phytol. 2020, 225, 1105–1110. [Google Scholar] [CrossRef]
- Moussavi-Nik, M.; Rengel, Z.; Pearson, J.N.; Hollamby, G. Dynamics of Nutrient Remobilisation from Seed of Wheat Genotypes during Imbibition, Germination and Early Seedling Growth. Plant Soil 1997, 197, 271–280. [Google Scholar] [CrossRef]
- Garrett, K. Sustainable Agriculture. Environ. Manag. Pract. Compart. Stress. Sect. 2013, 166–178. [Google Scholar]
- Watanabe, T.; Broadley, M.R.; Jansen, S.; White, P.J.; Takada, J.; Satake, K.; Takamatsu, T.; Tuah, S.J.; Osaki, M. Evolutionary Control of Leaf Element Composition in Plants: Rapid Report. New Phytol. 2007, 174, 516–523. [Google Scholar] [CrossRef]
- White, P.J.; Karley, A.J. Potassium. In Plant Cell Monographs; Springer: Berlin/Heidelberg, Germany, 2010; pp. 199–224. [Google Scholar]
- Maryum, Z.; Luqman, T.; Nadeem, S.; Smud, K.; Wang, B.; Ditta, A.; Khan, M.K.R. An Overview of Salinity Stress, Mechanism of Salinity Tolerance and Strategies for Its Management in Cotton. Front. Plant Sci. 2022, 13, 3919. [Google Scholar] [CrossRef] [PubMed]
- Essa, T.A. Effect of Salinity Stress on Growth and Nutrient Composition of Three Soybean (Glycine max L. Merrill) Cultivars. J. Agron. Crop Sci. 2002, 188, 86–93. [Google Scholar] [CrossRef]
- Mardukhi, B.; Rejali, F.; Daei, G.; Ardakani, M.R.; Malakouti, M.J.; Miransari, M. Mineral Uptake of Mycorrhizal Wheat (Triticum aestivum L.) under Salinity Stress. Commun. Soil Sci. Plant Anal. 2015, 46, 343–357. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Benito, B.; González-Guerrero, M. Unravelling Potassium Nutrition in Ectomycorrhizal Associations. New Phytol. 2014, 201, 707–709. [Google Scholar] [CrossRef]
- Houston, K.; Qiu, J.; Wege, S.; Hrmova, M.; Oakey, H.; Qu, Y.; Waugh, R. Barley Sodium Content Is Regulated by Natural Variants of the Na+ Transporter HvHKT1;5. Commun. Biol. 2020, 3, 258. [Google Scholar] [CrossRef]
- Solis, C.A.; Yong, M.T.; Venkataraman, G.; Milham, P.; Zhou, M.; Shabala, L.; Holford, P.; Shabala, S.; Chen, Z.H. Sodium Sequestration Confers Salinity Tolerance in an Ancestral Wild Rice. Physiol. Plant. 2021, 172, 1594–1608. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Jiang, C. Recent Advancement of Molecular Understanding for Combating Salinity Stress in Maize. In Molecular Breeding in Wheat, Maize and Sorghum: Strategies for Improving Abiotic Stress Tolerance and Yield; CABI Publishing: Oxfordshire, UK, 2021; pp. 247–266. [Google Scholar]
- Farooq, M.; Zahra, N.; Ullah, A.; Nadeem, F.; Rehman, A.; Kapoor, R.; Al-Hinani, M.S.; Siddique, K.H.M. Salt Stress in Wheat: Effects, Tolerance Mechanisms, and Management. J. Soil Sci. Plant Nutr. 2024, 24, 8151–8173. [Google Scholar] [CrossRef]
- Shabala, S.; Chen, X.; Yun, P.; Zhou, M. Salinity Tolerance in Wheat: Rethinking the Targets. J. Exp. Bot. 2025, eraf152. [Google Scholar] [CrossRef]
- Nasri, N.; Maatallah, S.; Kaddour, R.; Lachâal, M. Effect of Salinity on Arabidopsis thaliana Seed Germination and Acid Phosphatase Activity. Arch. Biol. Sci. 2016, 68, 17–23. [Google Scholar] [CrossRef]
- Sonbol, H.A.; Taha, A.A.; Baddour, G.A.; Othman, M.M. Effect of Salinity Stress on Seed Germination and Seedling Growth of Some Crops. J. Soil Sci. Agric. Eng. 2013, 4, 417–427. [Google Scholar] [CrossRef]
- El-Maarouf-Bouteau, H.; Bailly, C. Oxidative Signaling in Seed Germination and Dormancy. Plant Signal. Behav. 2008, 3, 175–182. [Google Scholar] [CrossRef]
- Gomes, M.P.; Garcia, Q.S. Reactive Oxygen Species and Seed Germination. Biology 2013, 68, 351–357. [Google Scholar] [CrossRef]
- Mangal, V.; Lal, M.K.; Tiwari, R.K.; Altaf, M.A.; Sood, S.; Kumar, D.; Bharadwaj, V.; Singh, B.; Singh, R.K.; Aftab, T. Molecular Insights into the Role of Reactive Oxygen, Nitrogen and Sulphur Species in Conferring Salinity Stress Tolerance in Plants. J. Plant Growth Regul. 2023, 42, 554–574. [Google Scholar] [CrossRef]
- Shabala, S. Linking Ploidy Level with Salinity Tolerance: NADPH-Dependent “ROS-Ca2+ Hub” in the Spotlight. J. Exp. Bot. 2019, 70, 1063–1067. [Google Scholar] [CrossRef]
- Chourasia, K.N.; Lal, M.K.; Tiwari, R.K.; Dev, D.; Kardile, H.B.; Patil, V.U.; Kumar, A.; Vanishree, G.; Kumar, D.; Bhardwaj, V.; et al. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life 2021, 11, 545. [Google Scholar] [CrossRef]
- Moursi, Y.S.; Dawood, M.F.A.; Sallam, A.; Thabet, S.G.; Alqudah, A.M. Antioxidant Enzymes and Their Genetic Mechanism in Alleviating Drought Stress in Plants. In Organic Solutes, Oxidative Stress, and Antioxidant Enzymes Under Abiotic Stressors; CRC Press: Boca Raton, FL, USA, 2021; pp. 233–262. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Alsahli, A.; Mohamed, A.K.; Alaraidh, I.; Al-Ghamdi, A.; Al-Watban, A.; El-Zaidy, M.; Alzahrani, S.M. Salicylic Acid Alleviates Salinity Stress through the Modulation of Biochemical Attributes and Some Key Antioxidants in Wheat Seedlings. Pakistan J. Bot. 2019, 51, 1551–1559. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Zinta, G.; Hegab, M.M.; Pandey, R.; Asard, H.; Abuelsoud, W. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs. Front. Plant Sci. 2016, 7, 276. [Google Scholar] [CrossRef]
- Cembrowska-Lech, D.; Rybak, K. Nanopriming of Barley Seeds—A Shotgun Approach to Improve Germination under Salt Stress Conditions by Regulating of Reactive Oxygen Species. Plants 2023, 12, 405. [Google Scholar] [CrossRef]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene Expression Profiling of Plants under Salt Stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Kawaura, K.; Mochida, K.; Ogihara, Y. Microarray Analysis of Salt-Responsive Genes in Common Wheat. Genes Genet. Syst. 2008, 81, 1–3. [Google Scholar]
- Nakayama, R.; Safi, M.T.; Ahmadzai, W.; Sato, K.; Kawaura, K. Comparative Transcriptome Analysis of Synthetic and Common Wheat in Response to Salt Stress. Sci. Rep. 2022, 12, 11534. [Google Scholar] [CrossRef]
- Mansour, M.M.F. Role of Vacuolar Membrane Transport Systems in Plant Salinity Tolerance. J. Plant Growth Regul. 2022, 42, 1364–1401. [Google Scholar] [CrossRef]
- Martínez-Alcántara, B.; Martínez-Cuenca, M.R.; Quiñones, A.; Iglesias, D.J.; Primo-Millo, E.; Forner-Giner, M.A. Comparative Expression of Candidate Genes Involved in Sodium Transport and Compartmentation in Citrus. Environ. Exp. Bot. 2015, 111, 52–62. [Google Scholar] [CrossRef]
- Pons, R.; Cornejo, M.J.; Sanz, A. Differential Salinity-Induced Variations in the Activity of H +-Pumps and Na+/H+ Antiporters That Are Involved in Cytoplasm Ion Homeostasis as a Function of Genotype and Tolerance Level in Rice Cell Lines. Plant Physiol. Biochem. 2011, 49, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Bao, A.K.; Wang, S.M.; Wu, G.Q.; Xi, J.J.; Zhang, J.L.; Wang, C.M. Overexpression of the Arabidopsis H+-PPase Enhanced Resistance to Salt and Drought Stress in Transgenic Alfalfa (Medicago sativa L.). Plant Sci. 2009, 176, 232–240. [Google Scholar] [CrossRef]
- Anjaneyulu, E.; Reddy, P.S.; Sunita, M.S.; Kishor, P.B.K.; Meriga, B. Salt Tolerance and Activity of Antioxidative Enzymes of Transgenic Finger Millet Overexpressing a Vacuolar H+-Pyrophosphatase Gene (SbVPPase) from Sorghum Bicolor. J. Plant Physiol. 2014, 171, 789–798. [Google Scholar] [CrossRef]
- Benderradji, L.; Messaoudi, N.; Elhadef Elokki, L.; Ghadbane, M.; Medjekal, S.; Brini, F. Multiple Genes (SOS, HKT, TVP) Expression in Two Contrasting Bread Wheat (Triticum aestivum L.), Cultivars on In Vitro Saline Stress Conditions. In Sustainable Energy-Water-Environment Nexus in Deserts; Springer: Berlin/Heidelberg, Germany, 2022; pp. 635–642. [Google Scholar]
- Fu, L.; Wu, D.; Zhang, X.; Xu, Y.; Kuang, L.; Cai, S.; Zhang, G.; Shen, Q. Vacuolar H+-Pyrophosphatase HVP10 Enhances Salt Tolerance via Promoting Na+ Translocation into Root Vacuoles. Plant Physiol. 2022, 188, 1248–1263. [Google Scholar] [CrossRef] [PubMed]
- Mott, I.W.; Wang, R.R.C. Comparative Transcriptome Analysis of Salt-Tolerant Wheat Germplasm Lines Using Wheat Genome Arrays. Plant Sci. 2007, 173, 327–339. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.; Halford, N.G.; Xu, R.; He, T.; Yang, B.; Zhou, L.; Guo, H.; Liu, C. Ion Homeostasis and Coordinated Salt Tolerance Mechanisms in a Barley (Hordeum vulgare L.)Doubled Haploid Line. BMC Plant Biol. 2025, 25, 52. [Google Scholar] [CrossRef]
- Sun, Y.; Kong, X.; Li, C.; Liu, Y.; Ding, Z. Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions. PLoS ONE 2015, 10, e0124032. [Google Scholar] [CrossRef] [PubMed]
- Ahanger, M.A.; Agarwal, R.M. Salinity Stress Induced Alterations in Antioxidant Metabolism and Nitrogen Assimilation in Wheat (Triticum aestivum L) as Influenced by Potassium Supplementation. Plant Physiol. Biochem. 2017, 115, 449–460. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Refay, Y.; Abdella, K.A. Comparative Performance of Multivariable Agro-Physiological Parameters for Detecting Salt Tolerance of Wheat Cultivars under Simulated Saline Field Growing Conditions. Front. Plant Sci. 2017, 8, 255157. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, S.; Hu, Y.; Wu, F.; Hu, Q.; Chen, G.; Cai, J.; Wu, T.; Moran, N.; Yu, L.; et al. The Role of a Potassium Transporter Oshak5 in Potassium Acquisition and Transport from Roots to Shoots in Rice at Low Potassium Supply Levels. Plant Physiol. 2014, 166, 945–959. [Google Scholar] [CrossRef]
- Cuin, T.A.; Betts, S.A.; Chalmandrier, R.; Shabala, S. A Root’s Ability to Retain K+ Correlates with Salt Tolerance in Wheat. J. Exp. Bot. 2008, 59, 2697–2706. [Google Scholar] [CrossRef]
- Shabala, L.; Zhang, J.; Pottosin, I.; Bose, J.; Zhu, M.; Fuglsang, A.T.; Velarde-Buendia, A.; Massart, A.; Hill, C.B.; Roessner, U.; et al. Cell-Type-Specific H+-ATPase Activity in Root Tissues Enables K+ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress. Plant Physiol. 2016, 172, 2445–2458. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Chhillar, H.; Chopra, P.; Khanna, R.R.; Khan, M.I.R. Potassium: A Track to Develop Salinity Tolerant Plants. Plant Physiol. Biochem. 2021, 167, 1011–1023. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Santa María, G.; Epstein, E.; Luo, M.C.; Dvořák, J. Mapping of the K+/Na+ Discrimination Locus Kna1 in Wheat. Theor. Appl. Genet. 1996, 92, 448–454. [Google Scholar] [CrossRef]
- Flowers, T.J.; Hajibagheri, M.A. Salinity Tolerance in Hordeum Vulgare: Ion Concentrations in Root Cells of Cultivars Differing in Salt Tolerance. Plant Soil 2001, 231, 1–9. [Google Scholar] [CrossRef]
- Akram, M.; Malik, M.A.; Ashraf, M.Y.; Saleem, M.F.; Hussain, M. Competitive seedling growth and K+/Na+ ratio in different maize (Zea mays L.) hybrids under salinity stress. Pakistan J. Bot. 2007, 39, 2553–2563. [Google Scholar]
- Genc, Y.; Taylor, J.; Lyons, G.; Li, Y.; Cheong, J.; Appelbee, M.; Sutton, T. Bread Wheat with High Salinity and Sodicity Tolerance. Front. Plant Sci. 2019, 10, 1280. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic Adjustment and Energy Limitations to Plant Growth in Saline Soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Hafeez, A.; Rasheed, R.; Hussain, I.; Farooq, U.; Rizwan, M.; Ali, S. Evaluation of Physio-Morphological and Biochemical Responses for Salt Tolerance in Wheat (Triticum aestivum L.) Cultivars. J. Plant Growth Regul. 2023, 42, 4402–4422. [Google Scholar] [CrossRef]
- Kamanga, R.M.; Kopa, F.; Kamala, F.D.; Sefasi, A.; Ndakidemi, P.A. Screening and Evaluation of Salinity Stress Tolerance in Local Malawian Tomato Cultivars. Plant Physiol. Reports 2023, 28, 259–271. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef]
- Sairam, R.K.; Srivastava, G.C.; Agarwal, S.; Meena, R.C. Differences in Antioxidant Activity in Response to Salinity Stress in Tolerant and Susceptible Wheat Genotypes. Biol. Plant. 2005, 49, 85–91. [Google Scholar] [CrossRef]
- Rady, M.M.; Kuşvuran, A.; Alharby, H.F.; Alzahrani, Y.; Kuşvuran, S. Pretreatment with Proline or an Organic Bio-Stimulant Induces Salt Tolerance in Wheat Plants by Improving Antioxidant Redox State and Enzymatic Activities and Reducing the Oxidative Stress. J. Plant Growth Regul. 2019, 38, 449–462. [Google Scholar] [CrossRef]
- Shafi, A.; Chauhan, R.; Gill, T.; Swarnkar, M.K.; Sreenivasulu, Y.; Kumar, S.; Singh, A.K. Expression of SOD and APX Genes Positively Regulates Secondary Cell Wall Biosynthesis and Promotes Plant Growth and Yield in Arabidopsis under Salt Stress. Plant Mol. Biol. 2015, 87, 615–631. [Google Scholar] [CrossRef]
- Methela, N.J.; Islam, M.S.; Das, A.K.; Raihan, H.U.Z.; Rohman, M.M.; Chowdhury, A.K.; Mun, B.G. Antioxidant Mechanisms in Salt-Stressed Maize (Zea mays L.) Seedlings: Comparative Analysis of Tolerant and Susceptible Genotypes. Appl. Biol. Chem. 2024, 67, 109. [Google Scholar] [CrossRef]
- Gupta, M.; Sharma, P.; Sarin, N.B.; Sinha, A.K. Differential Response of Arsenic Stress in Two Varieties of Brassica juncea L. Chemosphere 2009, 74, 1201–1208. [Google Scholar] [CrossRef]
- Scandalios, J.G. Oxidative Stress: Molecular Perception and Transduction of Signals Triggering Antioxidant Gene Defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- Shim, I.S.; Momose, Y.; Yamamoto, A.; Kim, D.W.; Usui, K. Inhibition of Catalase Activity by Oxidative Stress and Its Relationship to Salicylic Acid Accumulation in Plants. Plant Growth Regul. 2003, 39, 285–292. [Google Scholar] [CrossRef]
- Cavalcanti, F.R.; Oliveira, J.T.A.; Martins-Miranda, A.S.; Viégas, R.A.; Silveira, J.A.G. Superoxide Dismutase, Catalase and Peroxidase Activities Do Not Confer Protection against Oxidative Damage in Salt-Stressed Cowpea Leaves. New Phytol. 2004, 163, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Sofo, A.; Scopa, A.; Nuzzaci, M.; Vitti, A. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. Int. J. Mol. Sci. 2015, 16, 13561–13578. [Google Scholar] [CrossRef]
- Ahmadi, J.; Pour-Aboughadareh, A.; Fabriki Ourang, S.; Khalili, P.; Poczai, P. Unraveling Salinity Stress Responses in Ancestral and Neglected Wheat Species at Early Growth Stage: A Baseline for Utilization in Future Wheat Improvement Programs. Physiol. Mol. Biol. Plants 2020, 26, 537–549. [Google Scholar] [CrossRef]
- Ramzan, M.; Gillani, M.; Shah, A.A.; Shah, A.N.; Kauser, N.; Jamil, M.; Ullah, S. Triticum aestivum: Antioxidant Gene Profiling and Morpho-Physiological Studies under Salt Stress. Mol. Biol. Rep. 2023, 50, 2569–2580. [Google Scholar] [CrossRef] [PubMed]
- Chaffei Haouari, C.; Hajjaji Nasraoui, A.; Carrayol, E.; Gouia, H. Response of Two Wheat Genotype to Long-Term Salinity Stress in Relation to Oxidative Stress and Osmolyte Concentration. Cereal Res. Commun. 2013, 41, 388–399. [Google Scholar] [CrossRef]
- Yassin, M.; El Sabagh, A.; Mekawy, A.M.M.; Islam, M.S.; Hossain, A.; Barutcular, C.; Alharby, H.; Bamagoos, A.; Liu, L.; Ueda, A.; et al. Comparative Performance of Two Bread Wheat (Triticum aestivum L.) Genotypes under Salinity Stress. Appl. Ecol. Environ. Res. 2019, 17, 5029–5041. [Google Scholar] [CrossRef]
- Gaxiola, R.A.; Li, J.; Undurraga, S.; Dang, L.M.; Allen, G.J.; Alper, S.L.; Fink, G.R. Drought- and Salt-Tolerant Plants Result from Overexpression of the AVP1 H+-Pump. Proc. Natl. Acad. Sci. USA 2001, 98, 11444–11449. [Google Scholar] [CrossRef]
- Fan, Y.; Yin, X.; Xie, Q.; Xia, Y.; Wang, Z.; Song, J.; Jiang, X. Co-Expression of SpSOS1 and SpAHA1 in Transgenic Arabidopsis Plants Improves Salinity Tolerance. BMC Plant Biol. 2019, 19, 74. [Google Scholar] [CrossRef]
- Hasseb, N.M.; Sallam, A.; Karam, M.A.; Gao, L.; Wang, R.R.C.; Moursi, Y.S. High-LD SNP Markers Exhibiting Pleiotropic Effects on Salt Tolerance at Germination and Seedlings Stages in Spring Wheat. Plant Mol. Biol. 2022, 108, 585–603. [Google Scholar] [CrossRef] [PubMed]
- Moursi, Y.S.; Thabet, S.G.; Amro, A.; Dawood, M.F.A.; Baenziger, P.S.; Sallam, A. Detailed Genetic Analysis for Identifying QTLs Associated with Drought Tolerance at Seed Germination and Seedling Stages in Barley. Plants 2020, 9, 1425. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.A.; Ahmed, A.A.M.; Schierenbeck, M.; Hussein, M.Y.; Baenziger, P.S.; Börner, A.; Sallam, A. Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology. Genes 2023, 14, 373. [Google Scholar] [CrossRef] [PubMed]
- Hetz, W.; Hochholdinger, F.; Schwall, M.; Feix, G. Isolation and Characterization of Rtcs, a Maize Mutant Deficient in the Formation of Nodal Roots. Plant J. 1996, 10, 845–857. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-dhindsa, P.; Thorpe, T.A. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Spinach Chloroplasts Scavenge Hydrogen Peroxide on Illumination. Plant Cell Physiol. 1980, 21, 1295–1307. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.K.; Vierheller, T.L.; Thorne, C.A. Assay of Glutathione Reductase in Crude Tissue Homogenates Using 5,5′-Dithiobis(2-Nitrobenzoic Acid). Anal. Biochem. 1988, 175, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Utz, H. PLABSTAT: A Computer Program for the Statistical Analysis of Plant Breeding Experiments; Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim: Stuttgart, Germany, 2001. [Google Scholar]
- R Core, T. R: A Language and Environment for Statistical Computing 2025. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3967248 (accessed on 20 June 2025).
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A Free Online Platform for Data Visualization and Graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Microsoft Corporation. Microsoft 365 MSO, version 2511; Microsoft: Redmond, WA, USA, 2025. Available online: https://www.microsoft.com/microsoft-365 (accessed on 5 June 2025).







| Gene Bank ID | Accession Name | Country | Character | Na+ and K+ Traits | Antioxidant Enzymes Activity | Gene Expression |
|---|---|---|---|---|---|---|
| PI220127 | Kandahar | Afghanistan | Tolerant | √ | √ | √ |
| PI542666 | Ghati | Algeria | Tolerant | √ | √ | × |
| PI201414 | Javelin 48 | Australia | Tolerant | √ | √ | √ |
| PI525241 | 1049 | Morocco | Tolerant | √ | √ | × |
| PI525221 | 1018d | Morocco | Tolerant | √ | √ | √ |
| PI532249 | Kule | Oman | Tolerant | √ | √ | × |
| 122 | Sohag-5 | Egypt | Susceptible | √ | √ | √ |
| Source of Variance | K+ | Na+ | K+/Na+ | Na+/K+ | P | APX | CAT | GR | SOD |
|---|---|---|---|---|---|---|---|---|---|
| Treatments | 0.97 | 8.58 * | 26.36 ** | 8.30 * | 0.89 | 11.26 * | 0.92 | 1.97 | 5.98 + |
| Replications | 1.47 | 6.21 ** | 0.38 | 3.31 + | 0.18 | 0.11 | 4.94 * | 1.88 | 2.35 |
| Genotypes | 93.93 ** | 5910.30 ** | 390.57 ** | 1151.24 ** | 9018.13 ** | 2148.59 ** | 4565.21 ** | 392.11 ** | 89.85 ** |
| Treatment × Genotype | 57.25 ** | 5455.80 ** | 332.69 ** | 1098.89 ** | 12,438.75 ** | 965.85 ** | 605.26 ** | 565.14 ** | 42.63 ** |
| Accession Number/Probe Set | Annotation/Predicted Function | Primer Sequence (5′-3′) | Amplicon (bp) | Reference |
|---|---|---|---|---|
| AK4544458/TaAffx.25629.1.S1 | Vacuolar pyrophosphatase similar to AVP1 (TaAVP1) | Fwd: GACCGGTCTTGCCATTGATG | 162 | [43] |
| Rev: CTGAGCCAATTGCGAATCCC | ||||
| AY296910 | Na+/H+ antiporter (NHX1) | Fwd: GCCTGGTTCACCCATAGAGA | ||
| Rev: CACCGAAAGAATCCCAAGAG | 159 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sallam, A.; Hasseb, N.M.; Karam, M.A.; Börner, A.; Zheng, X.; Moursi, Y.S. Differential Regulation of Gene Expression, Ion Homeostasis, and Antioxidant Defense Confers Salinity Tolerance During Seed Germination in Wheat. Plants 2026, 15, 230. https://doi.org/10.3390/plants15020230
Sallam A, Hasseb NM, Karam MA, Börner A, Zheng X, Moursi YS. Differential Regulation of Gene Expression, Ion Homeostasis, and Antioxidant Defense Confers Salinity Tolerance During Seed Germination in Wheat. Plants. 2026; 15(2):230. https://doi.org/10.3390/plants15020230
Chicago/Turabian StyleSallam, Ahmed, Nouran M. Hasseb, Mohamed A. Karam, Andreas Börner, Xu Zheng, and Yasser S. Moursi. 2026. "Differential Regulation of Gene Expression, Ion Homeostasis, and Antioxidant Defense Confers Salinity Tolerance During Seed Germination in Wheat" Plants 15, no. 2: 230. https://doi.org/10.3390/plants15020230
APA StyleSallam, A., Hasseb, N. M., Karam, M. A., Börner, A., Zheng, X., & Moursi, Y. S. (2026). Differential Regulation of Gene Expression, Ion Homeostasis, and Antioxidant Defense Confers Salinity Tolerance During Seed Germination in Wheat. Plants, 15(2), 230. https://doi.org/10.3390/plants15020230

