Structural Elucidation of a Novel Pectic Polysaccharide from Zizyphus jujuba cv. Muzao, a Potential Natural Stabiliser
Abstract
1. Introduction
2. Results
2.1. Isolation of the Weak Acidic
2.2. Purification of the ZMP2
2.3. Monosaccharides Composition
2.4. FT-IR Spectroscopy
2.5. Glycosidic Linkage Patterns
2.6. One-Dimensional NMR Analysis of ZMP2
2.7. Two-Dimensional NMR Analysis of ZMP2
3. Discussion
4. Materials and Methods
4.1. Materials and Regents
4.2. Crude Polysaccharide Preparation
4.3. DEAE-52 Ion-Exchange Chromatography
4.4. Purification
4.5. Purity and Molecular Weight Determination by HPGPC
4.6. Preparation of Partially Hydrolyzed Fractions
4.7. Monosaccharides Composition Determination
4.7.1. Preparation of Standards and Samples
4.7.2. Ion Chromatography Conditions
4.8. Fourier Transform Infrared Spectrometer (FT-IR)
4.9. Methylation Analysis
4.9.1. Methylation
4.9.2. Hydrolysis, Reduction, and Acetylation
4.9.3. GC-MS Analysis
4.10. Nuclear Magnetic Resonance (NMR) Analysis
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Zhao, L. Current situation and control measures of main diseases in Lyuliang jujube production area. Agric. Technol. 2020, 40, 100–101. [Google Scholar] [CrossRef]
- Zhang, B. Discussion on river levee treatment of Linxian section of Qiushui River. Shaanxi Water Resour. 2025, 4, 41–43. [Google Scholar] [CrossRef]
- Ren, Z. The 72 transformations of a small jujube. Shanxi Dly. 2025, 20, 005. [Google Scholar] [CrossRef]
- Rahman, M.J.; Ambigaipalan, P.; Shahidi, F. Biological activities of camelina and sophia seeds phenolics: Inhibition of LDL oxidation, DNA damage, and pancreatic lipase and α-glucosidase activities. J. Food Sci. 2018, 83, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Shi, Q.; Zhou, W.; Wang, D.; Hang, F.; Wei, H.; Tertuliano, M.I.E.; Aabideen, M.Z.U. Optimization of the extraction process of goji berry pectin using response surface methodology and its suitability as thickener for yogurt. Heliyon 2024, 10, e40708. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; He, Z.; Bao, X.; Wang, M.; Yin, S.; Song, L.; Peng, Q. Purification, in-depth structure analysis, and antioxidant stress activity of a novel pectin-type polysaccharide from Ziziphus jujuba cv. Muzao residue. J. Funct. Foods 2021, 80, 104439. [Google Scholar] [CrossRef]
- Ferrer, D.S.; Wachtendorff, D.L.; Munizaga, G.T.; Won, M.P. Effect of pulsed electric fields (PEF) and ultrasound (US) assisted-extraction technologies on the recovery of functional clean-label starches from banana peels. LWT 2025, 236, 118669. [Google Scholar] [CrossRef]
- Masud, A.; Kirty, P.; Singh, D.B.; Nabi, D.B.; Vikas, N. Exploring the versatility of diverse hydrocolloids to transform techno-functional, rheological, and nutritional attributes of food fillings. Food Hydrocoll. 2024, 146, 109275. [Google Scholar] [CrossRef]
- Contreras, R.A.; Nicholls, A.M.; Lauzan, G.; Vidal, C.; Sujanto, M.; Pizarro, M. Screening and Optimization of Natural Hydrocolloids for the Stabilization of Pea Protein Solutions. Food Biophys. 2025, 20, 132. [Google Scholar] [CrossRef]
- Ozturk, O.K.; Salgado, A.M.; Holding, D.R.; Campanella, O.H.; Hamaker, B.R. Dispersion of zein into pea protein with alkaline agents imparts cohesive and viscoelastic properties for plant-based food analogues. Food Hydrocoll. 2023, 134, 108044. [Google Scholar] [CrossRef]
- Amorim, T.A.; Carvalho, A.J.B.A.; Figueiredo, L.S.; Lima, M.S.; Sarinho, A.M.; Santos, N.C.; Lisboa, H.M.; Gusmão, T.A.S.; Gusmão, R.P. Structure-function relationship and antioxidant mechanisms of pectin from red and white pitaya peels for functional food applications. Food Hydrocoll. 2025, 167, 111455. [Google Scholar] [CrossRef]
- Kaur, G.; Khan, Z.S.; Toker, Ö.S.; Bhat, M.S.; Basyigit, B.; Kurt, A.; Rustagi, S.; Suri, S.; Hatami, S.; Fayaz, S.; et al. Innovative approaches to pectin processing: Enhancing techno-functional properties for applications in food and beyond. Bioact. Carbohydr. Diet. Fibre 2024, 32, 100437. [Google Scholar] [CrossRef]
- Khubber, S.; Kazemi, M.; Amiri Samani, S.; Lorenzo, J.M.; Simal Gandara, J.; Barba, F.J. Structural-functional Variability in Pectin and Effect of Innovative Extraction Methods: An Integrated Analysis for Tailored Applications. Food Rev. Int. 2023, 39, 2352–2377. [Google Scholar] [CrossRef]
- Condezo-Hoyos, L.; Cortés-Avendaño, P.; Lama-Quispe, S.; Calizaya-Milla, Y.E.; Méndez-Albiñana, P.; Villamiel, M. Structural, chemical, and technofunctional properties of pectin modified by green and novel intermediate frequency ultrasound procedure. Ultrason. Sonochem. 2024, 102, 106743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Vlach, J.; Black, I.M.; Archer Hartmann, S.; Heiss, C.; Azadi, P.; Urbanowicz, B.R. The pectin puzzle: Decoding the fine structure of rhamnogalacturonan-I (RG-I) in Arabidopsis thaliana uncovers new pectin features. Carbohydr. Polym. 2025, 368, 124161. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhao, M.; You, L.; Lin, L. Demonstration of the effective intestinal immunity activity of a high-branched rhamnogalacturonan-I type pectin from wolfberry via exploration of its interaction with colon biological and mechanical barrier. Carbohydr. Polym. 2025, 373, 124610. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Chen, G.; Dong, X.; Kou, L.; Wang, J.; Xu, H. Impact of high-pressure homogenization on the homogalacturonan and rhamnogalacturonan-I regions of pectin in strawberry pulp and their interaction with anthocyanins. Food Chem. 2025, 494, 145989. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Y.; Ji, H.; Guo, J.; Shi, M.; Lai, F.; Ji, X. Structural characteristics and antioxidant activity of a low-molecular-weight jujube polysaccharide by ultrasound assisted metal-free Fenton reaction. Food Chem. X 2024, 24, 101908. [Google Scholar] [CrossRef]
- Ji, X.; Hou, C.; Yan, Y.; Shi, M.; Liu, Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [Google Scholar] [CrossRef]
- Ji, X.; Yan, Y.; Hou, C.; Shi, M.; Liu, Y. Structural characterization of a galacturonic acid-rich polysaccharide from Ziziphus jujuba cv. Muzao. Int. J. Biol. Macromol. 2020, 147, 844–852. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, F.; Zhang, R.; Liu, F.; Peng, Q.; Wang, M. An acidic polysaccharide from Ziziphus jujuba cv. Muzao: Purification and structural characterization. Food Chem. 2019, 274, 494–499. [Google Scholar] [CrossRef]
- Huo, J.; Zhang, M.; Sun, Q.; Chen, Y. Combination of Hydrocolloid and Ultrasound Assistance to Improve the Stability of Lemon Juice After Thawing. J. Food Process. Eng. 2025, 48, e70181. [Google Scholar] [CrossRef]
- Ma, S.; Yang, Z.; Sun, H.; Wu, T.; Pan, S.; Xu, X. Multiscale comparative study of pectin extraction from broccoli stalk using alkaline and enzymatic modifications: Structural characterization and gelling properties. Int. J. Biol. Macromol. 2025, 330, 148164. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, Y.; Zheng, B.; Xie, J.; Chen, Y.; Lin, H.; Liu, H.; Hu, X.; Yu, Q. Structural characterization and immunomodulatory activity of a novel pectin polysaccharide extracted from Gardenia jasminoides fruit. Carbohydr. Polym. 2025, 369, 124337. [Google Scholar] [CrossRef]
- Fan, R.; Zhang, W.; Wang, L.; Fei, T.; Xiao, J.; Wang, L. Structural Characterization of a Novel Pectin Polysaccharide from Mango (Mangifera indica L.) Peel and Its Regulatory Effects on the Gut Microbiota in High-Fat Diet-Induced Obese Mice. Foods 2025, 14, 2910. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, C.; Liu, D.; Hu, M.; Cui, J.; Wang, F.; Zeng, L.; Zheng, J. A novel prebiotic enzymatic hydrolysate of citrus pectin during juice processing. Food Hydrocoll. 2024, 146, 109198. [Google Scholar] [CrossRef]
- Liviz, C.A.M.; Maciel, G.M.; Pedro, A.C.; Ribeiro, I.S.; Fernandes, I.A.A.; Pinheiro, D.F.; Lima, N.P.; Martins, L.R.R.; Haminiuk, C.W.I. Physicochemical properties, bioactive compounds, and pesticide residues in commercial fruit juices. Microchem. J. 2025, 218, 115144. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Zhang, H.; Liu, Y.; Zhu, C. Effect of different processing methods of hawthorn on the properties and emulsification performance of hawthorn pectin. Carbohydr. Polym. 2022, 298, 120121. [Google Scholar] [CrossRef]
- Xie, X.; Shen, W.; Zhou, Y.; Ma, L.; Xu, D.; Ding, J.; He, L.; Shen, B.; Zhou, C. Characterization of a polysaccharide from Eupolyphaga sinensis Walker and its effective antitumor activity via lymphocyte activation. Int. J. Biol. Macromol. 2020, 162, 31–42. [Google Scholar] [CrossRef]
- Zhou, Y.; Qian, C.; Yang, D.; Tang, C.; Xu, X.; Liu, E.; Zhong, J.; Zhu, L.; Zhao, Z. Purification, Structural Characterization and Immunomodulatory Effects of Polysaccharides from Amomum villosum Lour. on RAW 264.7 Macrophages. Molecules 2021, 26, 2672. [Google Scholar] [CrossRef]
- Li, J.; Ai, L.; Hang, F.; Ding, S.; Liu, Y. Composition and antioxidant activity of polysaccharides from jujuba by classical and ultrasound extraction. Int. J. Biol. Macromol. 2014, 63, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, S.; Feng, W.; Zhang, Z.; Li, H. Structural characterization and immunomodulatory activities of two polysaccharides from Rehmanniae Radix Praeparata. Int. J. Biol. Macromol. 2021, 186, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Huang, L.; Zhang, C.; Xie, P.; Cheng, J.; Wang, X.; Liu, L. Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. Int. J. Biol. Macromol. 2020, 153, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wang, Z.; Zhou, R.; Cao, S. A polysaccharide from Umbilicaria yunnana: Structural characterization and anti-inflammation effects. Int. J. Biol. Macromol. 2020, 151, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Cui, S.W.; Kang, J.; Ding, H.; Wang, Q.; Wang, C. Non-starch polysaccharides from American ginseng: Physicochemical investigation and structural characterization. Food Hydrocoll. 2015, 44, 320–327. [Google Scholar] [CrossRef]
- Sims, I.M.; Carnachan, S.M.; Bell, T.J.; Hinkley, S.F. Methylation analysis of polysaccharides: Technical advice. Carbohydr. Polym. 2018, 188, 1–7. [Google Scholar] [CrossRef]
- Hu, T.; Tan, F.; Li, L.; An, K.; Zou, B.; Wen, J.; Wu, J.; Xiao, G.; Yu, Y.; Xu, Y. Structural elucidation and physicochemical properties of litchi polysaccharide with the promoting effect on exopolysaccharide production by Weissella confusa. Int. J. Biol. Macromol. 2023, 253, 126944. [Google Scholar] [CrossRef]
- Méndez Albiñana, P.; Rodrigues Díez, R.; Rodríguez Rodríguez, P.; Moreno, R.; Muñoz Valverde, D.; Casani, L.; Blanco Rivero, J. Structure and properties of citrus pectin as influencing factors of biomarkers of metabolic syndrome in rats fed with a high-fat diet. Curr. Res. Food Sci. 2025, 10, 101014. [Google Scholar] [CrossRef]
- Qi, X.; Liu, Y.; Zhou, Y.; Li, H.; Yang, J.; Liu, S.; He, X.; Li, L.; Zhang, C.; Yu, H. A pectic polysaccharide from Typhonii rhizoma: Characterization and antiproliferative activity in K562 cells through regulating mitochondrial function and energy metabolism. Carbohydr. Polym. 2025, 348, 122897. [Google Scholar] [CrossRef]
- Xu, X.; He, Z.; Luo, X.; Peng, J.; Ning, X.; Mayo, K.H.; Tai, G.; Zhang, M.; Zhou, Y. RG-I-containing sugar domains from Centella asiatica bind strongly to galectin-3 to inhibit cell–cell interactions. Chem. Biol. Technol. Agric. 2024, 11, 93. [Google Scholar] [CrossRef]
- Huang, G.; Chen, F.; Yang, W.; Huang, H. Preparation, deproteinization, and comparison of bioactive polysaccharides. Trends Food Sci. Technol. 2021, 109, 564–568. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, J.; Cheng, H.; Chen, S.; Ye, X.; Chen, J. Galactan side chains dominate thermal aggregation of RGI-rich pectin during drying, resulting in poor solubility. Carbohydr. Polym. 2025, 370, 124416. [Google Scholar] [CrossRef]
- Mao, Y.; Dewi, S.R.; Harding, S.E.; Binner, E. Influence of ripening stage on the microwave-assisted pectin extraction from banana peels: A feasibility study targeting both the Homogalacturonan and Rhamnogalacturonan-I region. Food Chem. 2024, 460, 140549. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, H.; Jia, S.; Sun, D.; Zhang, J.; Zhao, X.; Fang, X.; Wang, X.; Xu, C.; Cao, R. Optimized sand tube irrigation combined with nitrogen application improves jujube yield as well as water and nitrogen use efficiencies in an arid desert region of Northwest China. Front. Plant Sci. 2024, 15, 1351392. [Google Scholar] [CrossRef] [PubMed]
- Ippolitov, V.; Anugwom, I.; Mänttäri, M.; Mänttäri, M.K. Comparison between membrane filtration and antisolvent addition methods for the recovery and recycling of a deep eutectic solvent after biomass pretreatment. Ind. Crops Prod. 2025, 226, 120755. [Google Scholar] [CrossRef]
- Wang, T.; Wu, X.; Li, X.; Feng, W.; Wang, R.; Huang, K. Preparation of salt-free Pleurotus eryngii protein with enhanced colloidal stability and emulsifying properties by ceramic membrane filtration. Food Hydrocoll. 2025, 160, 110825. [Google Scholar] [CrossRef]
- Aung, T.; Nayab; Kim, C.Y.; Kim, M.J. Optimized enzyme-assisted ultrasonic extraction and encapsulation of Curcuma longa for jelly incorporation and in-vitro bioactives release. Food Chem. 2025, 495, 146339. [Google Scholar] [CrossRef]
- Vo, T.P.; Nguyen, T.H.T.; Nguyen, H.B.T.; Nguyen, H.N.; Le, N.V.N.; Ha, M.H.; Pham, G.B.; Nguyen, D.Q. Enhancing phenolic and flavonoid recovery from Vietnamese balm using green solvent-based ultrasonic-enzymatic-assisted extraction. Ultrason. Sonochem. 2025, 121, 107546. [Google Scholar] [CrossRef]
- Chen, B.J.; Khoo, H.E.; Li, X.; Peng, B. Application of α-amylase-assisted extraction of longan seed polysaccharides in preparation of chromium-free tanning agents. Mater. Today Chem. 2025, 50, 103181. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Z.; Gao, L.; Zhang, Y.; Zhang, R. Ultrasound-assisted extraction, structural characterization and antioxidant activity evaluation of polysaccharides from Ziziphus jujuba. Food Ferment. Ind. 2021, 47, 120–126. [Google Scholar] [CrossRef]
- Ji, X.; Yin, M.; Hou, C.; Liu, Y. Research progress on extraction, separation, purification, and biological activities of Ziziphus jujuba polysaccharides. Sci. Technol. Food Ind. 2020, 41, 346–353+358. [Google Scholar] [CrossRef]
- Zou, X.; Xiao, J.; Chi, J.; Zhang, M.; Zhang, R.; Jia, X.; Mei, D.; Dong, L.; Yang, Y.; Huang, F. Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques. Int. J. Biol. Macromol. 2022, 223, 663–672. [Google Scholar] [CrossRef]
- Imiołek, M.; Fekete, S.; Rudaz, S.; Guillarme, D. Ion exchange chromatography of biotherapeutics: Fundamental principles and advanced approaches. J. Chromatogr. A 2025, 1742, 465672. [Google Scholar] [CrossRef]
- Xie, L.; Cai, W.; Zhang, H.; Chen, Y. Isolation, purification, and anticoagulant activity of tea polysaccharides. Food Ferment. Ind. 2012, 38, 191–195. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Y.; Zhou, S.; Yip, K.M.; Xu, J.; Chen, H.; Zhao, Z. Laser microdissection hyphenated with high-performance gel permeation chromatography-charged aerosol detector and ultra-performance liquid chromatography-triple quadrupole mass spectrometry for histochemical analysis of polysaccharides in herbal medicine: Ginseng, a case study. Int. J. Biol. Macromol. 2018, 107, 332–342. [Google Scholar] [CrossRef]
- Huang, X.; He, X.; Yang, Q.; Zhang, C.; Zhou, N. Determination of monosaccharide composition of Stachys sieboldii polysaccharides by PMP pre-column derivatization HPLC. Food Ferment. Ind. 2020, 46, 250–256. [Google Scholar] [CrossRef]
- Nagar, S.; Lakhera, A.K.; Kumar, V. Upgrading Methylation Method for Structural Studies of Polysaccharides: Case Analysis of a Bioactive Polysaccharide from Acacia tortilis. J. Biol. Act. Prod. Nat. 2020, 10, 70–85. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.N.; Liang, J.; Zhu, X.H.; Kuang, H.X.; Xia, Y.G. An alternative GC–MS library for methylation analysis of polysaccharides via partially methylated aldononitrile acetates. Carbohydr. Polym. 2025, 366, 123832. [Google Scholar] [CrossRef]









| Monosaccharide | ZMP2 (mol%) | ZMP2n5 (mol%) | ZMP2y5 (mol%) | ZMP2n1 (mol%) | ZMP2y1 (mol%) |
|---|---|---|---|---|---|
| Fuc | 0.000 ± 0.000 | 0.008 ± 0.001 | 0.015 ± 0.002 | 0.014 ± 0.003 | 0.000 ± 0.000 |
| GalN | 0.080 ± 0.005 | 0.048 ± 0.006 | 0.043 ± 0.004 | 0.053 ± 0.007 | 0.023 ± 0.002 |
| Rha | 0.000 ± 0.000 | 0.038 ± 0.005 | 0.018 ± 0.001 | 0.038 ± 0.004 | 0.039 ± 0.003 |
| Ara | 0.128 ± 0.010 | 0.185 ± 0.015 | 0.121 ± 0.011 | 0.174 ± 0.012 | 0.154 ± 0.013 |
| GlcN | 0.003 ± 0.001 | 0.002 ± 0.000 | 0.000 ± 0.000 | 0.002 ± 0.001 | 0.000 ± 0.000 |
| Gal | 0.097 ± 0.008 | 14.434 ± 0.821 | 0.116 ± 0.009 | 0.132 ± 0.010 | 0.103 ± 0.008 |
| Glc | 0.124 ± 0.009 | 16.334 ± 0.915 | 0.191 ± 0.012 | 0.098 ± 0.007 | 0.433 ± 0.025 |
| GlcNAc | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.010 ± 0.001 | 0.002 ± 0.000 | 0.000 ± 0.000 |
| Xyl | 0.000 ± 0.000 | 18.925 ± 1.105 | 0.000 ± 0.000 | 0.015 ± 0.002 | 0.000 ± 0.000 |
| Man | 0.000 ± 0.000 | 19.542 ± 1.210 | 0.000 ± 0.000 | 0.012 ± 0.001 | 0.000 ± 0.000 |
| Fru | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 |
| Rib | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 |
| GalA | 0.497 ± 0.028 | 0.440 ± 0.032 | 0.443 ± 0.030 | 0.399 ± 0.025 | 0.191 ± 0.015 |
| GulA | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 |
| GlcA | 0.071 ± 0.006 | 0.062 ± 0.005 | 0.044 ± 0.003 | 0.055 ± 0.004 | 0.057 ± 0.004 |
| ManA | 0.000 ± 0.000 | 0.005 ± 0.001 | 0.000 ± 0.000 | 0.007 ± 0.001 | 0.000 ± 0.000 |
| RT | Methylated Sugar | Mass Fragments (m/z) | Molar Ratio | Type of Linkage |
|---|---|---|---|---|
| 17.74 | 2,3,5-Me3-Araf | 43, 71, 87, 101, 117, 129, 145, 161 | 0.171 ± 0.012 | Araf-(1→ |
| 20.788 | 2,4-Me2-Rhap | 43, 58, 85, 89, 99, 117, 127, 131, 159, 201 | 0.055 ± 0.006 | →3)-Rhap-(1→ |
| 21.365 | 2,4-Me2-Araf | 43, 85, 99, 101, 117, 127, 161, 159 | 0.056 ± 0.005 | →3)-Araf-(1→ |
| 23.596 | 2,3-Me2-Araf | 43, 71, 87, 99, 101, 117, 129, 161, 189 | 0.058 ± 0.008 | →5)-Araf-(1→ |
| 27.154 | 2,3,4,6-Me4-Galp | 43, 71, 87, 101, 117, 129, 145, 161, 205 | 0.026 ± 0.003 | Galp-(1→ |
| 27.966 | 2-Me1-Araf | 43, 58, 85, 99, 117, 127, 159, 201 | 0.021 ± 0.004 | →3,5)-Araf-(1→ |
| 29.817 | 2,3,6-Me3-Galp | 43, 87, 99, 101, 113, 117, 129, 131, 161, 173, 233 | 0.216 ± 0.015 | →4)-Galp-(1→ |
| 31.632 | 2,3,6-Me3-Glcp | 43, 87, 99, 101, 113, 117, 129, 131, 161, 173, 233 | 0.232 ± 0.013 | →4)-Glcp-(1→ |
| 34.784 | 2,6-Me2-Galp | 43, 87, 99, 117, 129, 143, 159 | 0.051 ± 0.009 | →3,4)-Galp-(1→ |
| 36.147 | 2,3-Me2-Galp | 43, 71, 85, 87, 99, 101, 117, 127, 159, 161, 201, 261 | 0.053 ± 0.007 | →4,6)-Galp-(1→ |
| 38.655 | 2,3-Me2-Glcp | 43, 71, 85, 87, 99, 101, 117, 127, 159, 161, 201 | 0.030 ± 0.001 | →4,6)-Glcp-(1→ |
| 39.813 | 2,4-Me2-Galp | 43, 87, 117, 129, 159, 189, 233 | 0.032 ± 0.002 | →3,6)-Galp-(1→ |
| Residues | H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | H6a,b/C6 | H6b |
|---|---|---|---|---|---|---|---|
| α-L-Araf-(1→ | 5.17 | 4.13 | 3.87 | 4.06 | 3.76 | 3.64 | |
| 110.62 | 82.62 | 77.97 | 85.22 | 62.64 | |||
| α-L-Araf-(1→ | 4.96 | 4 | 3.83 | 3.91 | 3.69 | 3.36 | |
| 108.77 | 82.7 | 77.8 | 85.1 | 62.33 | |||
| →5)-α-L-Araf-(1→ | 5.01 | 4.07 | 3.94 | 4.15 | 3.82 | 3.75 | |
| 108.88 | 82.18 | 78.12 | 83.68 | 68.27 | |||
| →3,5)-α-L-Araf-(1→ | 5.04 | 4.21 | 4 | 4.24 | 3.86 | 3.75 | |
| 108.9 | 80.61 | 83.65 | 83.3 | 67.8 | |||
| →4)-α-D-GalAp-(1→ | 4.97 | 3.67 | 3.93 | 4.32 | 4.68 | 3.73 | |
| 100.38 | 69.4 | 70.05 | 79.15 | 72.65 | 176.7 | 54.13 | |
| α-D-GalAp-(1→ | 5.7 | 4.17 | 3.64 | 3.87 | ns | ||
| 108.18 | 72.1 | 71.31 | 70.7 | ns | 176.5 | ||
| →3,4)-α-D-GalAp-(1→ | 4.83 | 4.17 | 4.09 | 4.48 | 5.07 | ||
| 101.34 | 72.7 | 82.55 | 80.28 | 71.83 | 176.7 | ||
| →4)-α-D-GalAp | 5.22 | 3.74 | 3.95 | 4.34 | 4.72 | ||
| 93.62 | 69.6 | 75.3 | 79.12 | 72.7 | 172.36 | ||
| →4)-β-D-GalAp | 4.51 | 3.41 | 3.66 | 4.27 | 4.66 | ||
| 97.48 | 72.82 | 73.28 | 79.19 | 72.75 | 172.16 | ||
| →4)-β-D-Glcp-(1→ | 4.46 | 3.3 | 3.63 | 3.64 | 3.47 | 3.95 | 3.79 |
| 103.84 | 74.17 | 71.58 | 80.16 | 76.69 | 61.67 | ||
| →4,6)-β-D-Glcp-(1→ | 4.5 | 3.27 | 3.44 | 3.58 | 3.64 | 4.18 | 3.8 |
| 103.83 | 76.7 | 74.1 | 77.25 | 75.41 | 70.2 | ||
| →4,6)-β-D-Galp-(1→ | 4.39 | 3.28 | 3.47 | 3.22 | 3.62 | 3.34 | |
| 105.23 | 74.34 | 76.18 | 83.22 | 74.1 | 70.48 | ||
| →3,6)-β-D-Galp-(1→ | 4.55 | 3.62 | 3.81 | 4.08 | 3.87 | 3.96 | 3.65 |
| 104.3 | 72.79 | 77.98 | 70.5 | 73.34 | 70.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ye, Z.; Wang, W.; Li, Y.; Yang, C.; Mao, K. Structural Elucidation of a Novel Pectic Polysaccharide from Zizyphus jujuba cv. Muzao, a Potential Natural Stabiliser. Plants 2026, 15, 59. https://doi.org/10.3390/plants15010059
Ye Z, Wang W, Li Y, Yang C, Mao K. Structural Elucidation of a Novel Pectic Polysaccharide from Zizyphus jujuba cv. Muzao, a Potential Natural Stabiliser. Plants. 2026; 15(1):59. https://doi.org/10.3390/plants15010059
Chicago/Turabian StyleYe, Zheng, Wenjing Wang, Yumei Li, Chun Yang, and Kai Mao. 2026. "Structural Elucidation of a Novel Pectic Polysaccharide from Zizyphus jujuba cv. Muzao, a Potential Natural Stabiliser" Plants 15, no. 1: 59. https://doi.org/10.3390/plants15010059
APA StyleYe, Z., Wang, W., Li, Y., Yang, C., & Mao, K. (2026). Structural Elucidation of a Novel Pectic Polysaccharide from Zizyphus jujuba cv. Muzao, a Potential Natural Stabiliser. Plants, 15(1), 59. https://doi.org/10.3390/plants15010059
