MicroRNA-Mediated Hormonal Control of Fruit Morphology
Abstract
1. Introduction
2. MicroRNA-Mediated Regulation of Hormone Pathways in Fruit Development
2.1. Evolutionary Conservation and Functional Divergence of miRNAs in Fruit Development
2.2. miRNA–Hormone Interplay During Fruit Development: Crosstalk, Feedback Loops, and Regulatory Networks
3. MicroRNA-Mediated Regulation of Hormone Pathways in Fruit Development Under Temperature Stress
3.1. The Effects of Temperature Stress on Fruit
3.2. Regulation of miRNAs During Fruit Development by Temperature Stress
3.3. Regulatory Roles of MicroRNAs in Grafting Systems Underlying Temperature Stress Responses
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anne, N.; Magnus, R.; Karin, W. Sustainable Fruit Consumption: The Influence of Color, Shape and Damage on Consumer Sensory Perception and Liking of Different Apples. Sustainability 2019, 11, 4626. [Google Scholar] [CrossRef]
- Lin, M.; Fawole, O.A.; Saeys, W.; Wu, D.; Wang, J.; Opara, U.L.; Nicolai, B.; Chen, K. Mechanical damages and packaging methods along the fresh fruit supply chain: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 10283–10302. [Google Scholar] [CrossRef] [PubMed]
- Snouffer, A.; Kraus, C.; van der Knaap, E. The shape of things to come: Ovate family proteins regulate plant organ shape. Curr. Opin. Plant Biol. 2020, 53, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.R.; Muños, S.; Anderson, C.; Sim, S.C.; Michel, A.; Causse, M.; Gardener, B.B.; Francis, D.; van der Knaap, E. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 2011, 156, 275–285. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; McGregor, C.; Liu, S.; Luan, F.; Gao, M.; Weng, Y. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theor. Appl. Genet. 2020, 133, 1–21. [Google Scholar] [CrossRef]
- Cirilli, M.; Baccichet, I.; Chiozzotto, R.; Silvestri, C.; Rossini, L.; Bassi, D. Genetic and phenotypic analyses reveal major quantitative loci associated to fruit size and shape traits in a non-flat peach collection (P. persica L. Batsch). Hortic. Res. 2021, 8, 232. [Google Scholar] [CrossRef]
- Zhan, J.; Meyers, B.C. Plant Small RNAs: Their Biogenesis, Regulatory Roles, and Functions. Annu. Rev. Plant Biol. 2023, 74, 21–51. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Chen, D.; Wu, X.; Huang, D.; Chen, L.; Li, L.; Deng, X.; Xu, Q. Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genom. 2014, 15, 695. [Google Scholar] [CrossRef]
- Ye, X.; Song, T.; Liu, C.; Feng, H.; Liu, Z. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology. Hereditas 2014, 151, 220–228. [Google Scholar] [CrossRef]
- Zuo, J.; Wang, Y.; Zhu, B.; Luo, Y.; Wang, Q.; Gao, L. Network analysis of noncoding RNAs in pepper provides insights into fruit ripening control. Sci. Rep. 2019, 9, 8734. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Chang, H.; Zhou, J.; Luo, Y.; Zhang, K.; Zuo, J.; Wang, B. SRNAome and transcriptome analysis provide insight into strawberry fruit ripening. Genomics 2020, 112, 2369–2378. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Han, J. Nobel-winning microRNA, the micromaestro of gene silencing. Mol. Cells 2024, 47, 100123. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yu, H.; Tang, G.; Huang, T. Small but powerful: Function of microRNAs in plant development. Plant Cell Rep. 2018, 37, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef]
- Kong, X.; He, M.; Guo, Z.; Zhou, Y.; Chen, Z.; Qu, H.; Zhu, H. microRNA regulation of fruit development, quality formation and stress response. Fruit Res. 2021, 1, 5. [Google Scholar] [CrossRef]
- Varkonyi-Gasic, E.; Lough, R.H.; Moss, S.M.; Wu, R.; Hellens, R.P. Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172. Plant Mol. Biol. 2012, 78, 417–429. [Google Scholar] [CrossRef]
- Qin, Z.; Li, C.; Mao, L.; Wu, L. Novel insights from non-conserved microRNAs in plants. Front. Plant Sci. 2014, 5, 586. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, X.; Luo, Z.; Zhang, Q.; Liu, J. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biol. 2015, 15, 11. [Google Scholar] [CrossRef]
- Liang, Y.; Guan, Y.; Wang, S.; Li, Y.; Zhang, Z.; Li, H. Identification and characterization of known and novel microRNAs in strawberry fruits induced by Botrytis cinerea. Sci. Rep. 2018, 8, 10921. [Google Scholar] [CrossRef]
- Li, G.; Chen, C.; Chen, P.; Meyers, B.C.; Xia, R. sRNAminer: A multifunctional toolkit for next-generation sequencing small RNA data mining in plants. Sci. Bull. 2024, 69, 784–791. [Google Scholar] [CrossRef]
- Cuperus, J.T.; Fahlgren, N.; Carrington, J.C. Evolution and functional diversification of MIRNA genes. Plant Cell 2011, 23, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Ferreira e Silva, G.F.; Silva, E.M.; Azevedo Mda, S.; Guivin, M.A.; Ramiro, D.A.; Figueiredo, C.R.; Carrer, H.; Peres, L.E.; Nogueira, F.T. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J. 2014, 78, 604–618. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, S.; Zhai, L.; Cui, Y.; Tang, G.; Huo, J.; Li, X.; Bian, S. The miR156/SPL12 module orchestrates fruit colour change through directly regulating ethylene production pathway in blueberry. Plant Biotechnol. J. 2024, 22, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.R.; Zhang, C.L.; Wang, X.; Liu, D.D.; Liu, X.; Chen, G.L.; Wang, Q.; Qu, M.S.; Yang, K.; You, C.X.; et al. MicroRNA156-SPL13B Module Induces Parthenocarpy Through the Gibberellin Pathway. Plant Biotechnol. J. 2025, 23, 5536–5549. [Google Scholar] [CrossRef]
- Gao, J.; Chen, L.; Yuan, N.; Liu, Y.; Sun, Y.; Ke, L. Multifaceted Regulation and Functional Versatility of miR164 in Plant: From Molecular Mechanisms to Crop Improvement. Physiol. Plant. 2025, 177, e70548. [Google Scholar] [CrossRef]
- Liu, X.; Xu, T.; Dong, X.; Liu, Y.; Liu, Z.; Shi, Z.; Wang, Y.; Qi, M.; Li, T. The role of gibberellins and auxin on the tomato cell layers in pericarp via the expression of ARFs regulated by miRNAs in fruit set. Acta Physiol. Plant. 2016, 38, 77. [Google Scholar] [CrossRef]
- Damodharan, S.; Zhao, D.; Arazi, T. A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J. 2016, 86, 458–471. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Wang, C.; Ge, M. Characterisation of early fruit development-specific miRNAs and their targets in peach using small RNA and degradome sequencing. Fruit Res. 2025, 5, e021. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, F.; Deng, Y.; Zhong, F.; Tian, P.; Lin, D.; Deng, J.; Zhang, Y.; Huang, T. Sly-miR159 regulates fruit morphology by modulating GA biosynthesis in tomato. Plant Biotechnol. J. 2022, 20, 833–845. [Google Scholar] [CrossRef]
- Yao, J.L.; Xu, J.; Cornille, A.; Tomes, S.; Karunairetnam, S.; Luo, Z.; Bassett, H.; Whitworth, C.; Rees-George, J.; Ranatunga, C.; et al. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. Plant J. 2015, 84, 417–427. [Google Scholar] [CrossRef]
- Yao, J.L.; Tomes, S.; Xu, J.; Gleave, A.P. How microRNA172 affects fruit growth in different species is dependent on fruit type. Plant Signal. Behav. 2016, 11, e1156833. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.Y.; Nath, U.K.; Vrebalov, J.; Gapper, N.; Lee, J.M.; Lee, D.J.; Kim, C.K.; Giovannoni, J. Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor. BMC Plant Biol. 2020, 20, 283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, T.; Li, N.; Tang, G.; Tang, J. MicroRNA166: Old Players and New Insights into Crop Agronomic Traits Improvement. Genes 2024, 15, 944. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Zeng, J.; Yun, Z.; Hu, C.; Yang, B.; Qu, H.; Jiang, Y.; Zhu, H. Characterization of miRNA-mediated auxin signaling during banana (Musa spp.) fruit ripening. Postharvest Biol. Technol. 2022, 193, 112045. [Google Scholar] [CrossRef]
- Hua, B.; Wu, J.; Han, X.; Bian, X.; Xu, Z.; Sun, C.; Wang, R.; Zhang, W.; Liang, F.; Zhang, H.; et al. Auxin homeostasis is maintained by sly-miR167-SlARF8A/B-SlGH3.4 feedback module in the development of locular and placental tissues of tomato fruits. New Phytol. 2024, 241, 1177–1192. [Google Scholar] [CrossRef]
- Wang, C.; Jogaiah, S.; Zhang, W.; Abdelrahman, M.; Fang, J.G. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy. J. Exp. Bot. 2018, 69, 3639–3650. [Google Scholar] [CrossRef]
- Cao, D.; Wang, J.; Ju, Z.; Liu, Q.; Li, S.; Tian, H.; Fu, D.; Zhu, H.; Luo, Y.; Zhu, B. Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Genes 2016, 247, 1–12. [Google Scholar] [CrossRef]
- Cai, S.; Zhou, P.; Liu, Z. Functional characteristics of a double negative feedback loop mediated by microRNAs. Cogn. Neurodyn. 2013, 7, 417–429. [Google Scholar] [CrossRef]
- Megraw, M.; Cumbie, J.S.; Ivanchenko, M.G.; Filichkin, S.A. Small Genetic Circuits and MicroRNAs: Big Players in Polymerase II Transcriptional Control in Plants. Plant Cell 2016, 28, 286–303. [Google Scholar] [CrossRef]
- Carvalho, A., Jr.; Vicente, M.H.; Ferigolo, L.F.; Silva, E.M.; Lira, B.S.; Teboul, N.; Levy, M.; Serrano-Bueno, G.; Peres, L.E.P.; Sablowski, R.; et al. The miR319-based repression of SlTCP2/LANCEOLATE activity is required for regulating tomato fruit shape. Plant J. 2025, 121, e17174. [Google Scholar] [CrossRef]
- Li, X.; Bian, H.; Song, D.; Ma, S.; Han, N.; Wang, J.; Zhu, M. Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann. Bot. 2013, 111, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, H.J.; Yang, Y.Z.; Zhu, Z.Z.; Li, Y.N.; Qu, D.; Zhao, Z.Y. mdm-miR828 Participates in the Feedback Loop to Regulate Anthocyanin Accumulation in Apple Peel. Front. Plant Sci. 2020, 11, 608109. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Mou, W.; Xia, R.; Li, L.; Zawora, C.; Ying, T.; Mao, L.; Liu, Z.; Luo, Z. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. Hortic. Res. 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef]
- Sato, S.; Peet, M.M.; Thomas, J.F. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ. 2000, 23, 719–726. [Google Scholar] [CrossRef]
- Erickson, A.N.; Markhart, A.H. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 2002, 25, 123–130. [Google Scholar] [CrossRef]
- Firon, N.; Shaked, R.; Peet, M.M.; Pharr, D.M.; Zamski, E.; Rosenfeld, K.; Althan, L.; Pressman, E. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic. 2006, 109, 212–217. [Google Scholar] [CrossRef]
- Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010, 61, 1959–1968. [Google Scholar] [CrossRef]
- Giorno, F.; Wolters-Arts, M.; Mariani, C.; Rieu, I. Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development. Plants 2013, 2, 489–506. [Google Scholar] [CrossRef]
- Negi, S.; Kumar, P.; Kumar, A.; Kumar, V.; Irfan, M. Environmental variables affecting apple fruit development and bioactive compounds: Biochemical insights and biotechnological advances. J. Plant Growth Regul. 2025, 7, 1–12. [Google Scholar] [CrossRef]
- Christopher, M. A review of fruit development in strawberry: High temperatures accelerate flower development and decrease the size of the flowers and fruit. J. Hortic. Sci. Biotechnol. 2023, 98, 409–431. [Google Scholar] [CrossRef]
- Du, X.; Song, Y.; Pan, L.; Cui, S. Optimizing cucumber (Cucumis sativus L.) fruit metabolomics under elevated CO2 and high-temperature stress in the greenhouse. Horticulturae 2024, 11, 10. [Google Scholar] [CrossRef]
- Sharif, R.; Su, L.; Chen, X.; Qi, X. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Hortic. Res. 2022, 9, uhab024. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xin, M.; Zhou, X.; Liu, C.; Li, S.; Liu, D.; Xu, Y.; Qin, Z. The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber. Plant Mol. Biol. 2017, 95, 519–531. [Google Scholar] [CrossRef]
- Meng, Y.; Zhu, P.; Gou, C.; Cheng, C.; Li, J.; Chen, J. Auxin and ethylene play important roles in parthenocarpy under low-temperature stress revealed by transcriptome analysis in cucumber (Cucumis sativus L.). J. Plant Growth Regul. 2024, 43, 1137–1152. [Google Scholar] [CrossRef]
- Correa, J.P.O.; Silva, E.M.; Nogueira, F.T.S. Molecular control by non-coding RNAs during fruit development: From gynoecium patterning to fruit ripening. Front. Plant Sci. 2018, 9, 1760. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, C.; Xu, Q.; Chen, X.; Jiang, F.; Zhang, Y.; Hu, W.; Zheng, S.; Su, W.; Jiang, J. Integrated analysis of the metabolome, transcriptome and miRNome reveals crucial roles of auxin and heat shock proteins in the heat stress response of loquat fruit. Sci. Hortic. 2022, 294, 110764. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, R.; Duan, W.; Meng, L.; Song, H.; Wang, Q.; Li, J.; Xu, X. Chilling injury of tomato fruit was alleviated under low-temperature storage by silencing Sly-miR171e with short tandem target mimic technology. Front. Nutr. 2022, 9, 906227. [Google Scholar] [CrossRef]
- Clepet, C.; Devani, R.S.; Boumlik, R.; Hao, Y.; Morin, H.; Marcel, F.; Verdenaud, M.; Mania, B.; Brisou, G.; Citerne, S.; et al. The miR166-SlHB15A regulatory module controls ovule development and parthenocarpic fruit set under adverse temperatures in tomato. Mol. Plant 2021, 14, 1185–1198. [Google Scholar] [CrossRef]
- da Silva, E.M.; Nogueira, F.T.S. Guarding tomato fruit setting in adverse temperatures through the miRNA166-SlHB15A regulatory module. Mol. Plant 2021, 14, 1046–1048. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, J.W.; Bade, R.; Men, Z.H.; Hasi, A. Genome-wide identification and phylogenetic analysis of the SBP-box gene family in melons. Genet. Mol. Res. 2014, 13, 8794–8806. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, S.; Chen, F.; Liu, B.; Wu, L.; Li, F.; Zhang, J.; Bao, M.; Liu, G. Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genom. 2018, 19, 193. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Su, L.; Chen, X.; Qi, X. Involvement of auxin in growth and stress response of cucumber. Veg. Res. 2022, 2, 13. [Google Scholar] [CrossRef]
- Li, N.; Euring, D.; Cha, J.Y.; Lin, Z.; Lu, M.; Huang, L.J.; Kim, W.Y. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. Front. Plant Sci. 2020, 11, 627969. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, P.; Li, M.; Zhu, D.; Ma, H.; Xu, H.; Li, S.; Wei, J.; Bian, X.; Wang, M.; et al. Heat stress impairs floral meristem termination and fruit development by affecting the BR-SlCRCa cascade in tomato. Plant Commun. 2024, 5, 100790. [Google Scholar] [CrossRef]
- Spiegelman, Z.; Golan, G.; Wolf, S. Don’t kill the messenger: Long-distance trafficking of mRNA molecules. Genes 2013, 213, 1–8. [Google Scholar] [CrossRef]
- Kalantidis, K.; Schumacher, H.T.; Alexiadis, T.; Helm, J.M. RNA silencing movement in plants. Biol. Cell 2008, 100, 13–26. [Google Scholar] [CrossRef]
- Haroldsen, V.M.; Szczerba, M.W.; Aktas, H.; Lopez-Baltazar, J.; Odias, M.J.; Chi-Ham, C.L.; Labavitch, J.M.; Bennett, A.B.; Powell, A.L. Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement. Front. Plant Sci. 2012, 3, 39. [Google Scholar] [CrossRef]
- Melnyk, C.W.; Molnar, A.; Baulcombe, D.C. Intercellular and systemic movement of RNA silencing signals. EMBO J. 2011, 30, 3553–3563. [Google Scholar] [CrossRef]
- Molnar, A.; Melnyk, C.W.; Bassett, A.; Hardcastle, T.J.; Dunn, R.; Baulcombe, D.C. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 2010, 328, 872–875. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Liu, Y.; Wang, L.; Jiang, J.; Zhao, S.; Fang, W.; Chen, F.; Guan, Z. Long-distance transport RNAs between rootstocks and scions and graft hybridization. Planta 2022, 255, 96. [Google Scholar] [CrossRef]
- Cheng, S.L.H.; Xu, H.; Ng, J.H.T.; Chua, N.H. Systemic movement of long non-coding RNA ELENA1 attenuates leaf senescence under nitrogen deficiency. Nat. Plants 2023, 9, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Q.; Zhang, R.; Liu, M.; Wang, C.; Liu, Z.; Xiang, C.; Lu, X.; Zhang, X.; Li, X.; et al. Rootstock-scion exchanging mRNAs participate in the pathways of amino acids and fatty acid metabolism in cucumber under early chilling stress. Hortic. Res. 2022, 9, uhac031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhi, Z.; Tian, L.; Zhou, R.; Chen, H.; Yue, H.; Li, F.; Zhu, G.P.; Jia, W.; Zhang, M. Integrated multi-omics analyses reveal the roles of apricot miR166a and miR396c in the growth and development of apricot-peach grafted chimera. Int. J. Biol. Macromol. 2025, 318, 145121. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, Y.; Zhang, P.; Song, X.; Wang, X.; Zheng, Z.; Pei, D. Rootstock of distant hybrid activates transcription factors of scion cultivar to promote growth and yield in walnut. Plant Biotechnol. J. 2025, 23, 4302–4317. [Google Scholar] [CrossRef]
- Xanthopoulou, A.; Tsaballa, A.; Ganopoulos, I.; Kapazoglou, A.; Avramidou, E.; Aravanopoulos, F.; Moysiadis, T.; Osathanunkul, M.; Tsaftaris, A.; Doulis, A. Ιntra-species grafting induces epigenetic and metabolic changes accompanied by alterations in fruit size and shape of Cucurbita pepo L. Plant Growth Regul. 2019, 87, 93–108. [Google Scholar] [CrossRef]
- Cui, Q.; Xie, L.; Dong, C.; Gao, L.; Shang, Q. Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Sci. 2021, 304, 110803. [Google Scholar] [CrossRef]
- Shrestha, S.; Mattupalli, C.; Miles, C. Effect of grafting compatibility on fruit yield and quality of cantaloupe in a mediterranean-type climate. Horticulturae 2022, 8, 888. [Google Scholar] [CrossRef]
- Miao, L.; Li, Q.; Sun, T.S.; Chai, S.; Wang, C.; Bai, L.; Sun, M.; Li, Y.; Qin, X.; Zhang, Z.; et al. Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Hortic. Res. 2021, 8, 146. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. microRNAs in action: Biogenesis, function and regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef]
- Bawa, G.; Liu, Z.; Yu, X.; Tran, L.P.; Sun, X. Introducing single cell stereo-sequencing technology to transform the plant transcriptome landscape. Trends Plant Sci. 2024, 29, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, J.; Mitić, T.; Caporali, A. Exploring microRNAs, One Cell at a Time. Noncoding RNA 2025, 11, 73. [Google Scholar] [CrossRef] [PubMed]



| miRNA | Direct Target Genes | Evidence Type | Downstream Target Genes | Hormone Crosstalk | Phenotypic Effects | Species | Reference |
|---|---|---|---|---|---|---|---|
| miR156 | SPL 13B | Predicted | GA biosynthesis genes, MdKO, MdKAO2 and MdGA20ox | Regulate GA accumulation | Induced parthenocarpy | Tomato | [24] |
| Predicted | Histone modification gene, MdMSI | Promote GA deactivation | |||||
| miR393 | TIR1/AFB2 | Predicted | Undetermined | Maintain the dynamic balance of auxin | Regulate cell proliferation and fruit enlargement | Peach | [28] |
| Predicted | Induced ethylene biosynthesis through auxin signaling pathway | Induced fruit ripening | Banana | [34] | |||
| miR160 | ARF10B | Validated | Undetermined | Inhibit auxin biosynthesis | Regulate cell division and preserve the fruit morphology | Tomato | [27] |
| ARF8, ARF10, ARF16 | Validated | Undetermined | Auxin signaling pathway | Regulate the formation of pericarp cell layers | Tomato | [26] | |
| miR167 | ARF8B | Validated | Acyl acid amino synthetase gene, SlGH3.4 | Disruption of auxin balance | Defective locular and placental tissues in tomato fruit | Tomato | [35] |
| miR172 | AP2 | Validated | Ethylene synthesis gene, ACS2, ACS4, ACO1 | Promote ethylene synthesis | Regulates fruit ripening | Tomato | [32] |
| miR159 | GAMYB | Validated | GA biosynthesis gene GA3ox2 | Regulate GA accumulation | Influencing fruit morphology | Tomato | [29] |
| Predicted | Undetermined | GA signaling pathway | Induced parthenocarpy | Grape | [36] | ||
| miR396 | GRFs | Validated | Undetermined | Regulate auxin biosynthesis | Inhibited fruit enlargement | Tomato | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Du, K.; Zhang, D.; Lv, W.; Chen, G.; Bao, L.; Li, X.; Mu, W.; Dan, Z. MicroRNA-Mediated Hormonal Control of Fruit Morphology. Plants 2026, 15, 167. https://doi.org/10.3390/plants15010167
Du K, Zhang D, Lv W, Chen G, Bao L, Li X, Mu W, Dan Z. MicroRNA-Mediated Hormonal Control of Fruit Morphology. Plants. 2026; 15(1):167. https://doi.org/10.3390/plants15010167
Chicago/Turabian StyleDu, Kanghua, Da Zhang, Weiwu Lv, Guangping Chen, Lingfeng Bao, Xiaomei Li, Wanfu Mu, and Zhong Dan. 2026. "MicroRNA-Mediated Hormonal Control of Fruit Morphology" Plants 15, no. 1: 167. https://doi.org/10.3390/plants15010167
APA StyleDu, K., Zhang, D., Lv, W., Chen, G., Bao, L., Li, X., Mu, W., & Dan, Z. (2026). MicroRNA-Mediated Hormonal Control of Fruit Morphology. Plants, 15(1), 167. https://doi.org/10.3390/plants15010167

