Effects of Toxic Concentrations of Cadmium, Lead, or Zinc on Leaf Morphology, Anatomy and Calcium Oxalate Content in Metallicolous and Non-Metallicolous Ecotypes of Dianthus carthusianorum L.
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological Studies
2.2. Anatomical and Histochemical Study
2.3. Insoluble and Soluble Oxalate Concentrations
3. Materials and Methods
3.1. Plant Material and Growth Conditions
3.2. Morphological Parameters and Water Content
3.3. Preparation of Leaf Samples for Anatomical and Histological Analyses
3.4. Anatomical and Histological Analyses
3.5. Determination of Soluble and Insoluble Oxalate Concentrations
3.6. Statistical Analyzes
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghori, N.-H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Krówczyńska, N.; Pietrowska-Borek, M. From signal perception to adaptive responses: A comprehensive review of plant mechanisms under cadmium, lead, and aluminum stress. Environ. Exp. Bot. 2025, 238, 106240. [Google Scholar] [CrossRef]
- Chukwu, E.C.; Gülser, C. Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Secur. 2025, 18, 100178. [Google Scholar] [CrossRef]
- Ejaz, U.; Khan, S.M.; Khalid, N.; Ahmad, Z.; Jehangir, S.; Fatima Rizvi, Z.; Lho, L.H.; Han, H.; Raposo, A. Detoxifying the heavy metals: A multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 2023, 14, 1154571. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants 2021, 4, 635. [Google Scholar] [CrossRef]
- Paunov, M.; Koleva, L.; Vassilev, A.; Vangronsveld, J.; Goltsev, V. Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in Durum Wheat. Int. J. Mol. Sci. 2018, 19, 787. [Google Scholar] [CrossRef]
- Minkina, T.; Rajput, V.; Fedorenko, G.; Fedorenko, A.; Mandzhieva, S.; Sushkova, S.; Morin, T.; Yao, J. Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environ. Geochem. Health 2020, 42, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, E.; Labudda, M. Dual role of metallic trace elements in stress biology—From negative to beneficial impact on plants. Int. J. Mol. Sci. 2019, 20, 3117. [Google Scholar] [CrossRef]
- Yadav, V.; Arif, N.; Kováč, J.; Singh, V.P.; Tripathi, D.K.; Chauhan, D.K.; Vaculík, M. Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review. Plant Physiol. Bioch. 2021, 159, 100–112. [Google Scholar] [CrossRef]
- Tupan, C.I.; Azrianingsih, R. Accumulation and deposition of lead heavy metal in the tissues of roots, rhizomes and leaves of seagrass Thalassia hemprichii (Monocotyledoneae, Hydrocharitaceae). AACL Bioflux 2016, 9, 580–589. [Google Scholar]
- Sridhar, B.B.M.; Han, F.X.; Diehl, S.V.; Monts, D.L.; Su, Y. Effect of phytoaccumulation of arsenic and chromium on structural and ultrastructural changes of brake fern (Pteris vittata). Braz. J. Plant Physiol. 2011, 23, 285–293. [Google Scholar] [CrossRef]
- Al-Saadi, S.A.A.M.; Al-Asaadi, W.M.; Al-Waheeb, A.N.H. The effect of some heavy metals accumulation on physiological and anatomical characteristic of some Potamogeton L. plant. J. Ecol. Environ. Sci. 2013, 4, 100–108. [Google Scholar]
- Karabourniotis, G.; Horner, H.T.; Bresta, P.; Nikolopoulos, D.; Liakopoulos, G. New insights into the functions of carbon-calcium inclusions in plants. New Phytol. 2020, 228, 845–854. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Li, D.; Li, X.; Fu, L. Research progress on the formation, function, and impact of calcium oxalate crystals in plants. Crystallogr. Rev. 2024, 30, 31–60. [Google Scholar] [CrossRef]
- Gal, A.; Hirsch, A.; Siegel, S.; Li, C.; Aichmayer, B.; Politi, Y.; Fratzl, P.; Weiner, S.; Addadi, L. Plant cystoliths: A complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. Chemistry 2012, 18, 10262–10270. [Google Scholar] [CrossRef] [PubMed]
- Fernández Honaine, M.; Borrelli, N.L.; Martínez Tosto, A.C. A review of anatomical and phytolith studies of cystoliths: Silica-calcium phytoliths in dicotyledonous angiosperms. Bot. J. Linn. Soc. 2023, 202, 149–165. [Google Scholar] [CrossRef]
- Gabel, N.H.; Wise, R.R.; Rogers, G.K. Distribution of cystoliths in the leaves of Acanthaceae and its effect on leaf surface anatomy. Blumea 2021, 65, 224–232. [Google Scholar] [CrossRef]
- Paiva, E.A.S. Are calcium oxalate crystals a dynamic calcium store in plants? New Phytol. 2019, 223, 1707–1711. [Google Scholar] [CrossRef]
- Khan, M.I.; Bashir, N.; Pandith, S.; Shah, M.; Reshi, Z.; Shahzad, A. Rhubarb: A novel model plant to study the conundrum of calcium oxalate synthesis. Food Chem. 2024, 434, 137458. [Google Scholar] [CrossRef]
- Paiva, E.A.S.; Machado, S.R. Role of intermediary cells in Peltodon radicans (Lamiaceae) in the transfer of calcium and formation of calcium oxalate crystals. Braz. Arch. Biol. Technol. 2005, 48, 147–153. [Google Scholar] [CrossRef]
- Villard, C.; Larbat, R.; Munakata, R.; Hehn, A. Defence mechanisms of Ficus: Pyramiding strategies to cope with pests and pathogens. Planta 2019, 249, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Peschiutta, M.L.; Bucci, S.J.; Goldstein, G.; Scholz, G.F. Leaf herbivory and calcium oxalate crystal production in Prunus avium. Arthropod Plant Interact. 2020, 14, 727–732. [Google Scholar] [CrossRef]
- Tooulakou, G.; Giannopoulos, A.; Nikolopoulos, D.; Bresta, P.; Dotsika, E.; Orkoula, M.G.; Kontoyannis, C.G.; Fasseas, C.; Liakopoulos, G.; Klapa, M.I.; et al. Reevaluation of the plant “gemstones”: Calcium oxalate crystals sustain photosynthesis under drought conditions. Plant Signal. Behav. 2016, 11, e1215793. [Google Scholar] [CrossRef]
- Borkowska, I.; Domaciuk, M.; Hanaka, A.; Wójcik, M. Kryształy szczawianu wapnia—Budowa morfologiczna, występowanie i funkcje w tkankach roślinnych. In Badania i Rozwój Młodych Naukowców w Polsce. Uprawa Roślin i Ochrona Środowiska; Nyćkowiak, J., Leśny, J., Eds.; Młodzi Naukowcy: Poznań, Poland, 2019; pp. 13–19. ISBN 9788366392489. [Google Scholar]
- Du, X.; Ren, X.; Wang, L.; Yang, K.; Xin, G.; Jia, G.; Ni, X.; Liu, W. Calcium oxalate degradation is involved in aerenchyma formation in Typha angustifolia leaves. Funct. Plant Biol. 2018, 45, 922–934. [Google Scholar] [CrossRef]
- Leandro, T.D.; Rodrigues, T.M.; Clark, L.G.; Scatena, V.L. Fusoid cells in the grass family Poaceae (Poales): A developmental study reveals homologies and suggests new insights into their functional role in young leaves. Ann. Bot. 2018, 122, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Stefanowicz, A.M.; Woch, M.W.; Kapusta, P. Inconspicuous waste heaps left by historical Zn–Pb mining are hot spots of soil contamination. Geoderma 2014, 235–236, 1–8. [Google Scholar] [CrossRef]
- Wójcik, M.; Sugier, P.; Siebielec, G. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci. Total Environ. 2014, 487, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, E.; Labudda, M.; Różańska, E.; Hanus-Fajerska, E.; Koszelnik-Leszek, A. Structural, physiological and genetic diversification of Silene vulgaris ecotypes from heavy metal-contaminated areas and their synchronous in vitro cultivation. Planta 2019, 249, 1761–1778. [Google Scholar] [CrossRef]
- Wójcik, M.; Dresler, S.; Jawor, E.; Kowalczyk, K.; Tukiendorf, A. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum. Chemosphere 2013, 90, 1249–1257. [Google Scholar] [CrossRef]
- Ciarkowska, K.; Hanus-Fajerska, E.; Gambuś, F.; Muszyńska, E.; Czech, T. Phytostabilization of Zn-Pb ore flotation tailings with Dianthus carthusianorum and Biscutella laevigata after amending with mineral fertilizers or sewage sludge. J. Environ. Manag. 2017, 189, 78–83. [Google Scholar] [CrossRef]
- Kostrakiewicz-Gierałt, K. The impact of disturbance on the site conditions and regeneration of a Dianthus carthusianorum population in sand grassland. Phytol. Balc. 2017, 23, 361–370. [Google Scholar]
- Załecka, R.; Wierzbicka, M. The adaptation of Dianthus carthusianorum L. (Caryophyllaceae) to growth on a zinc–lead heap in southern Poland. Plant Soil 2002, 246, 249–257. [Google Scholar] [CrossRef]
- Wójcik, M.; Dresler, S.; Tukiendorf, A. Physiological mechanisms of adaptation of Dianthus carthusianorum L. to growth on a Zn-Pb waste deposit—the case of chronic multi-metal and acute Zn stress. Plant Soil 2015, 390, 237–250. [Google Scholar] [CrossRef]
- Wójcik, M.; Tukiendorf, A. Accumulation and tolerance of lead in two contrasting ecotypes of Dianthus carthusianorum. Phytochemistry 2014, 100, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Dresler, S.; Plak, A.; Tukiendorf, A. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids. Environ. Sci. Pollut. Res. 2015, 22, 7906–7910. [Google Scholar] [CrossRef]
- Wierzbicka, M.; Rostański, A. Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: A review. Acta Biol. Cracov. Ser. Bot. 2002, 44, 7–19. [Google Scholar]
- Fiałkiewicz, B.; Rostański, A. Morphological variability of Cardaminopsis halleri (L.) Hayek from selected habitats in the Silesian Upland (Southern Poland). Biodiv. Res. Conserv. 2006, 1, 37–44. [Google Scholar] [CrossRef]
- Przedpełska, E.; Wierzbicka, M. Arabidopsis arenosa (Brassicaceae) from a lead–zinc waste heap in southern Poland—A plant with high tolerance to heavy metals. Plant Soil 2007, 299, 43–53. [Google Scholar] [CrossRef]
- Wójcik, M.; Gonnelli, C.; Selvi, F.; Dresler, S.; Rostański, A.; Vangronsveld, J. Metallophytes of serpentine and calamine soils—Their unique ecophysiology and potential for phytoremediation. Adv. Bot. Res. 2017, 83, 1–42. [Google Scholar]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramteke, P.W.; Gupta, R.A. Comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 2022, 12, 43. [Google Scholar] [CrossRef]
- Rucińska-Sobkowiak, R. Water relations in plants subjected to heavy metal stresses. Acta Physiol. Plant. 2016, 38, 257. [Google Scholar] [CrossRef]
- Vaculík, M.; Pavlovič, A.; Lux, A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicol. Environ. Saf. 2015, 120, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Tóth, C.; Vincze, G.; Irinyiné-Oláh, K.; Uri, Z.; Vígh, S.; Simon, L. The effect of toxic elements on the microanatomy of the leaves of Salix alba L. J. Agric. Rural Dev. 2022, 11, 139–145. [Google Scholar]
- Rabêlo, F.H.S.; Gaziola, S.A.; Rossi, M.L.; Silveira, N.M.; Wójcik, M.; Bajguz, A.; Piotrowska-Niczyporuk, A.; Lavres, J.; Linhares, F.S.; Azevedo, R.A.; et al. Unraveling the mechanisms controlling Cd accumulation and Cd-tolerance in Brachiaria decumbens and Panicum maximum under summer and winter weather conditions. Physiol. Plant. 2020, 173, 13160. [Google Scholar] [CrossRef] [PubMed]
- da Silva Paiva, W.; de Araujo, M.A.; Rosalem, P.F.; Ferreira, T.; Bomfim, N.C.; Gonçalves, R.A.; Martins, A.; Camargos, L.S.; Chen, J. Lead effect on the morphophysiology of leaves and roots of Peltophorum dubium (Spreng.) Taub., a potential phytostabilizer. Int. J. Environ. Sci. Technol. 2024, 21, 2735–2746. [Google Scholar] [CrossRef]
- da Silva Cunha, L.F.; de Oliveira, V.P.; do Nascimento, A.W.S.; da Silva, B.R.S.; Batista, B.L.; Alsahli, A.A.; Lobato, A.K.D.S. Leaf application of 24-epibrassinolide mitigates cadmium toxicity in young Eucalyptus urophylla plants by modulating leaf anatomy and gas exchange. Physiol. Plant. 2020, 173, 67–87. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Lin, S.; Hse, C.; Ding, Y. Anatomical characteristics of fusoid cells and vascular bundles in Fargesia yunnanensis leaves. J. For. Res. 2016, 27, 1237–1247. [Google Scholar] [CrossRef]
- Clark, L.G. The function of fusoid cells in bamboo: An hypothesis. Am. J. Bot. 1991, 78, 22. [Google Scholar]
- March, R.H.; Clark, L.G. Sun-shade variation in bamboo (Poaceae: Bambusoideae) leaves. Telopea 2011, 13, 93–104. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Sultana, P.; Tah, J. Morphological architecture of foliar stomata in M2 carnation (Dianthus caryophyllus L.) genotypes using Scanning Electron Microscopy (SEM). Electron. J. Plant Breed. 2011, 2, 583–588. [Google Scholar]
- Faheed, F.; Mazen, A.; Elmohsen, S.A. Physiological and ultrastructural studies on calcium oxalate crystal formation in some plants. Turk. J. Bot. 2013, 37, 139–152. [Google Scholar] [CrossRef]
- Paiva, É.A.S. Do calcium oxalate crystals protect against herbivory? Sci. Nat. 2021, 108, 24. [Google Scholar] [CrossRef] [PubMed]
- Pereira de Arruda, E.C.; da Costa Lima, G.; de Paiva Farias, R. Leaf anatomical traits and their ecological significance for Acrostichum aureum (Pteridaceae), a remarkable fern species growing in mangroves. Aquat. Bot. 2021, 171, 103379. [Google Scholar] [CrossRef]
- Wang, M.; Vasconcelos, M.W.; Carvalho, S.M.P. Role of calcium nutrition on product quality and disorder susceptibility of horticultural crops. In Calcium Transport Elements in Plants; Upadhyay, S.K., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 315–335. [Google Scholar]
- Weber, E.; Levy, D.; Ben Sasson, M.; Fitch, A.N.; Pokroy, B. Structural analysis of metal-doped calcium oxalate. RSC Adv. 2015, 5, 98626–98633. [Google Scholar] [CrossRef]
- Letort, F.; Chavez, E.; Blommaert, H.; Campillo, S.; Sentenac, S.; Tisserand, D.; Martin, R.; Denti, S.; Sarret, G. Calcium oxalate crystals in cacao trees and their interactions with cadmium. Plant Physiol. Biochem. 2025, 220, 109499. [Google Scholar] [CrossRef]
- Giannopoulos, A.; Nikolopoulos, D.; Bresta, P.; Samantas, A.; Reppa, C.; Karaboiki, K.; Dotsika, E.; Fasseas, C.; Liakopoulos, G.; Karabourniotis, G. Cystoliths of Parietaria judaica can serve as an internal source of CO2 for photosynthetic assimilation when stomata are closed. J. Exp. Bot. 2019, 70, 5753–5763. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.J. The water-culture method of growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1959, 347, 26–29. [Google Scholar]
- Ribeiro, V.C.; Leitão, C.A.E. Utilisation of toluidine blue O pH 4.0 and histochemical inferences in plant sections obtained by free-hand. Protoplasma 2020, 257, 993–1008. [Google Scholar] [CrossRef]
- Badria, F.A.; Aboelmaaty, S.W. Plant histochemistry: A versatile and indispensible tool in localization of gene expression, enzymes, cytokines, secondary metabolites and detection of plants infection and pollution. Acta Sci. Pharm. Sci. 2019, 3, 88–100. [Google Scholar] [CrossRef]
- Robil, J.L.M.; Tolentino, V.S. Histological localization of tannins at different developmental stages of vegetative and reproductive organs in Medinilla magnifica (Melastomataceae). Flora 2015, 217, 82–87. [Google Scholar] [CrossRef]
- Ursache, R.; Andersen, T.G.; Marhavy, P.; Geldner, N. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J. 2018, 93, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Jabłonowski, W. Oxalate content in some foods of plant origin. Roczniki PZH 1964, 15, 411–420. [Google Scholar]
- Mishra, D.; Mishra, N.; Musale, H.; Samal, P.; Mishra, S.; Swain, D. Determination of seasonal and developmental variation in oxalate content of Anagallis arvensis plant by titration and spectrophotometric method. Pharma Innov. 2017, 105, 105–111. [Google Scholar]








| Field Site | Controlled Conditions | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| M | NM | M | NM | |||||||
| Parameter | 0 | Cd | Pb | Zn | 0 | Cd | Pb | Zn | ||
| fresh weight of leaves [g] | 0.243 b ±0.12 | 0.685 a ±0.06 | 0.444 a ±0.16 | 0.382 a ±0.1 | 0.338 a ±0.03 | 0.238 a** ±0.06 | 0.753 a ±0.26 | 0.382 a* ±0.13 | 0.344 a** ±0.03 | 0.241 a*** ±0.08 |
| dry weight of leaves [g] | 0.017 b ±0.01 | 0.070 a ±0.02 | 0.027 b ±0.02 | 0.021 a ±0.01 | 0.039 a ±0.03 | 0.027 a** ±0.03 | 0.085 a ±0.01 | 0.052 a** ±0.01 | 0.039 a** ±0.03 | 0.023 a*** ±0.02 |
| water content [% of fresh weight] | 93.00 a ±7.4 | 89.78 a ±3.5 | 93,91 a ±5.0 | 94.50 a ±3.6 | 88.46 a ±11.2 | 89,90 a ±9.8 | 88.7 b ±8.4 | 86.39 a ±17.8 | 88.66 a ±9.3 | 90.46 a ±8.0 |
| leaf length [cm] | 5.1 b ±0.94 | 7.3 a ±1.6 | 7.6 a ±1.31 | 6.2 a** ±0.81 | 6.3 a** ±0.61 | 5.3 a*** ±0.51 | 7.3 a ±0.63 | 4.9 b*** ±0.85 | 5.2 b*** ±0.75 | 5.4 a*** ±0.72 |
| leaf width [cm] | 0.32 a ±0.08 | 0.36 a ±0.05 | 0.27 a ±0.05 | 0.28 a ±0.04 | 0.29 a ±0.03 | 0.29 a ±0.09 | 0.26 a ±0.05 | 0.25 a ±0.05 | 0.27 a ±0.05 | 0.27 a ±0.05 |
| leaf area [cm2] | 1.29 a ±0.81 | 1.33 a ±0.69 | 1.67 a ±0.55 | 1.38 a ±0.63 | 1.27 a ±0.78 | 1.33 a ±0.84 | 1.18 a ±0.64 | 1.34 a ± 0.57 | 1.40 a ±0.49 | 1.33 a ±0.57 |
| Field Sites | Controlled Conditions | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| M | NM | M | NM | |||||||
| Parameter | 0 | Cd | Pb | Zn | 0 | Cd | Pb | Zn | ||
| leaf blade thickness [mm] | 0.33 a ±0.03 | 0.32 a ±0.02 | 0.33 a ±0.03 | 0.33 a ±0.03 | 0.33 a ±0.03 | 0.32 a ±0.01 | 0.32 a ±0.02 | 0.32 a ±0.02 | 0.32 a ±0.03 | 0.32 a ±0.02 |
| upper cuticle thickness [µm] | 3.74 a ±0.45 | 3.78 a ±0.38 | 3.47 a ±0.3 | 3.61 a ±0.71 | 3.41 a ±0.62 | 3.66 a ±0.61 | 3.7 a ±0.58 | 3.62 a ±0.89 | 3.51 a ±0.61 | 3.7 a ±0.8 |
| lower cuticle thickness [µm] | 3.74 a ±0.18 | 3.69 a ±0.25 | 3.67 a ±0.15 | 3.61 a ±0.12 | 3.41 a ±0.29 | 3.66 a ±0.21 | 3.75 a ±0.33 | 3.62 a ±0.18 | 3.51 a ±0.23 | 3.7 a ±0.18 |
| upper epidermis thickness [µm] | 40.18 a ±1.1 | 41.07 a ±1.12 | 40.93 a ±1.18 | 40.74 ±0.86 | 40.94 a ±1.32 | 41.57 a ±0.87 | 40.61 a ±0.59 | 40.65 a ±0.89 | 40.38 a ±0.74 | 40.72 a ±1.43 |
| lower epidermis thickness [µm] | 40.18 a ±1.1 | 41.07 a ±1.12 | 40.93 a ±1.18 | 40.74 ±0.86 | 40.94 a ±1.32 | 41.57 a ±0.87 | 40.61 a ±0.59 | 40.65 a ±0.89 | 40.38 a ±0.74 | 40.72 a ±1.43 |
| palisade mesophyll thickness [µm] | 109.83 a ±1.17 | 109.95 a ±0.99 | 110.25 a ±1.49 | 108.61 a ±2.96 | 111.38 a ±1.58 | 110.07 a ±1.45 | 111.25 a ±1.07 | 111.25 a ±1.36 | 113.11 a ±1.63 | 111.59 a ±3.27 |
| spongy mesophyll thickness [µm] | 131.95 a ±2.00 | 132.75 a ±3.36 | 130 a ±2.74 | 132.81 a* ±2.94 | 128.68 a ±2.82 | 132.57 a* ±1.62 | 132.8 a ±2.17 | 131.75 a ±2.19 | 130.68 a* ±1.52 | 131.19 a ±3.28 |
| area of air spaces (per cross-section) [µm2] | 2409.7 a ±227.9 | 2657.8 a ±414.5 | 2124.4 a ±139.8 | 2268.7 b ±300.9 | 2649.1 b* ±489.0 | 1814.9 a** ±96.7 | 1438.6 b ±52.4 | 3141.4 a*** ±138.7 | 3966.3 a*** ±216.1 | 4021.4 a*** ±411.2 |
| Field Sites | Controlled Conditions | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| M | NM | M | NM | |||||||
| Parameter | 0 | Cd | Pb | Zn | 0 | Cd | Pb | Zn | ||
| type of CaOx crystals | irregular shape | druses | druses | druses | druses styloids | druses | druses | druses | druses | druses |
| number of crystals (per cross-section) • | 82.3 a ±7.0 | 3.2 b ±0.8 | 5 a 1.1 | 13 a*** 3.0 | 16 a*** 1.7 | 4 a 2.1 | 4.2 a ±1.6 | 9 b** ±2.4 | 8.2 b** ±1.5 | 6.8 b** ±0.8 |
| area of crystals per cross section [µm2] • | 646.1 a ±212.5 | 728.7 a ±368.8 | 1043.4 a ±247 | 2999 a*** ±1329.5 | 3803.3 a*** ±1834.2 | 3653.9 a*** ±2234.1 | 960.4 a ±336.7 | 3096.1 a*** ±1155.3 | 3115.2 a*** ±1308.3 | 2073.7 a *** ±703.7 |
| number of crystals (per cross-section) •• | 8 a ±1.8 | 2.7 a ±1.0 | 4.5 a ±1.2 | 6.7 a* ±1.8 | 6.7 a** ±0.8 | 8 a** ±1.7 | 3.5 a ±2.4 | 3.8 b ±2.0 | 2.8 b ±2.1 | 3.5 b ±1.4 |
| area of crystals on cross section [µm2] •• | 431 a ±181.9 | 456.9 a ± 197.7 | 399.7 a ± 170.2 | 488 a ± 254.1 | 353.8 b ± 158.7 | 487.7 a* ± 231 | 381.1 a ± 196.0 | 422.8 a ±218 | 491.6 a** ± 207.5 | 342.3 b ± 175.2 |
| Microscope for Analysis | Dye | Cell Structure/Compound Visualized by the Dye | Reference |
|---|---|---|---|
| light microscope | toluidine blue | cell wall, crystals | [60] |
| Sudan IV | suberized cell wall, cuticle, oil droplets, crystals | [61] | |
| ruthenium red | pectin, collenchyma, very clearly visible crystals | [61] | |
| Shiff’s reagent | polysaccharides | [60] | |
| 10% FeCl3 in methanol | polyphenols (tannins, lignins) | [62] | |
| fluorescence microscope | auramine O (excitation light 400–440 mm) | cuticle, lignin, and suberin in plant cell walls | [63] |
| aniline blue (excitation light 330–360 nm) | β-1,3- and 2,4-glucans, vascular bundles | [61] | |
| calcofluor (excitation light 365–410 nm) | cellulose, polysaccharides, β-1,3-glucans in the cell wall, pectins | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Borkowska-Drela, I.; Domaciuk, M.; Szczuka, E.; Vangronsveld, J.; Wójcik, M. Effects of Toxic Concentrations of Cadmium, Lead, or Zinc on Leaf Morphology, Anatomy and Calcium Oxalate Content in Metallicolous and Non-Metallicolous Ecotypes of Dianthus carthusianorum L. Plants 2026, 15, 157. https://doi.org/10.3390/plants15010157
Borkowska-Drela I, Domaciuk M, Szczuka E, Vangronsveld J, Wójcik M. Effects of Toxic Concentrations of Cadmium, Lead, or Zinc on Leaf Morphology, Anatomy and Calcium Oxalate Content in Metallicolous and Non-Metallicolous Ecotypes of Dianthus carthusianorum L. Plants. 2026; 15(1):157. https://doi.org/10.3390/plants15010157
Chicago/Turabian StyleBorkowska-Drela, Izabela, Marcin Domaciuk, Ewa Szczuka, Jaco Vangronsveld, and Małgorzata Wójcik. 2026. "Effects of Toxic Concentrations of Cadmium, Lead, or Zinc on Leaf Morphology, Anatomy and Calcium Oxalate Content in Metallicolous and Non-Metallicolous Ecotypes of Dianthus carthusianorum L." Plants 15, no. 1: 157. https://doi.org/10.3390/plants15010157
APA StyleBorkowska-Drela, I., Domaciuk, M., Szczuka, E., Vangronsveld, J., & Wójcik, M. (2026). Effects of Toxic Concentrations of Cadmium, Lead, or Zinc on Leaf Morphology, Anatomy and Calcium Oxalate Content in Metallicolous and Non-Metallicolous Ecotypes of Dianthus carthusianorum L. Plants, 15(1), 157. https://doi.org/10.3390/plants15010157

