Advances in Micro- and Macrobiological Strategies for Pest Control in Berry Production Systems: A Critical Review
Abstract
1. Introduction
2. Arthropod Pest Management in Berries: Conventional and New Options
3. Role of Entomopathogenic Nematodes in IPM Programs for Berry Production
4. Physiological and Ecological Determinants of BVs, EPFs, and EPNs in Berry Pest Management
5. Predatory Arthropods in Berry Production: New Strategies and Current Challenges
| Type | Feeding Habits | Species Example | Prey |
|---|---|---|---|
| I | Highly specific predators | Phytoseiulus persimilis | Tetranychus spider mites |
| II | Selective predators | Neoseiulus californicus | Phytophagous mites |
| III | Generalist predators | Amblyseius swirskii | Primarily predators of a wide range of arthropods (mites, thrips, whiteflies, psyllids, etc.). Occasional pollen feeders (Figure 3) |
| IV | Pollen feeders | Euseius sp. | Primarily pollen feeders, occasional generalist predators |

6. Wasps as an Essential Part of IPM: The Case of Spotted Wing Drosophila (SWD)
7. Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bader Ul Ain, H.; Tufail, T.; Javed, M.; Arshad, M.U.; Hussain, M.; Gull Khan, S.; Bashir, S.; Al Jbawi, E.; Abdulaali Saewan, S. Phytochemical Profile and Pro-Healthy Properties of Berries. Int. J. Food Prop. 2022, 25, 1714–1735. [Google Scholar] [CrossRef]
- Zhou, J.; Li, M.; Li, Y.; Xiao, Y.; Luo, X.; Gao, S.; Ma, Z.; Sadowski, N.; Timp, W.; Dardick, C.; et al. Comparison of Red Raspberry and Wild Strawberry Fruits Reveals Mechanisms of Fruit Type Specification. Plant Physiol. 2023, 193, 1016–1035. [Google Scholar] [CrossRef]
- Álvarez-Díaz, J.A.; Sánchez, E.A.L.; Ortega, T.A.; Escalera-Gallardo, C.; Moncayo-Estrada, R.; Rivera-Chávez, M.; Arroyo-Damián, M.; Juárez-Aguilar, A.; Gómez-Arroyo, S.; Badillo-Velazquez, D.; et al. Plaguicidas Y Salud En Cojumatlán De Régules, Michoacán, México; Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México: Mexico City, Mexico, 2021; ISBN 9786073054171. [Google Scholar]
- Salgado Viveros, C. El Ocaso Laboral: Trabajo y Vejez En Los Cultivos de Berries Del Sur de Jalisco. Región y Soc. 2023, 35, e1765. [Google Scholar] [CrossRef]
- Simpson, D. The Economic Importance of Strawberry Crops; Springer International Publishing: Cham, Switzerland, 2018; ISBN 9783319760209. [Google Scholar]
- Stachniuk, A.; Szmagara, A.; Czeczko, R.; Fornal, E. LC-MS/MS Determination of Pesticide Residues in Fruits and Vegetables. J. Environ. Sci. Health-Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.E.; Singer, M.S. Differences in Aggressive Behaviors between Two Ant Species Determine the Ecological Consequences of a Facultative Food-for-Protection Mutualism. Insects 2018, 9, 123–145. [Google Scholar] [CrossRef]
- Feldmann, M.J.; Pincot, D.D.A.; Cole, G.S.; Knapp, S.J. Genetic Gains Underpinning a Little-Known Strawberry Green Revolution. Nat. Commun. 2024, 15, 2468. [Google Scholar] [CrossRef]
- Josephrajkumar, A.; Mani, M.; Anes, K.M.; Mohan, C. Ecological Engineering in Pest Management in Horticultural and Agricultural Crops. In Trends in Horticultural Entomology; Mani, M., Ed.; Springer: Singapore, 2022; pp. 123–155. [Google Scholar]
- Willden, S.A.; Pritts, M.P.; Loeb, G.M. The Effect of Plastic Low Tunnels on Natural Enemies and Pollinators in New York Strawberry. Crop Prot. 2022, 151, 105820. [Google Scholar] [CrossRef]
- Wilson, M.; Nitzsche, P.; Shearer, P.W. Entomopathogenic Nematodes to Control Black Vine Weevil (Coleoptera: Curculionidae) on Strawberry. J. Econ. Entomol. 1999, 92, 651–657. [Google Scholar] [CrossRef]
- Attia, S.; Grissa, K.L.; Lognay, G.; Bitume, E.; Hance, T.; Mailleux, A.C. A Review of the Major Biological Approaches to Control the Worldwide Pest Tetranychus urticae (Acari: Tetranychidae) with Special Reference to Natural Pesticides: Biological Approaches to Control Tetranychus urticae. J. Pest Sci. 2013, 86, 361–386. [Google Scholar] [CrossRef]
- González-Domínguez, S.G.; Santillán-Galicia, M.T.; González-Hernández, V.; Espinosa, J.S.; González-Hernández, H. Variability in Damage Caused by the Mite Tetranychus urticae (Trombidiformes: Tetranychidae) Koch on Three Varieties of Strawberry. J. Econ. Entomol. 2015, 108, 1371–1380. [Google Scholar] [CrossRef]
- Schöneberg, T.; Lewis, M.T.; Burrack, H.J.; Grieshop, M.; Isaacs, R.; Rendon, D.; Rogers, M.; Rothwell, N.; Sial, A.A.; Walton, V.M.; et al. Cultural Control of Drosophila suzukii in Small Fruit—Current and Pending Tactics in the U.S. Insects 2021, 12, 172. [Google Scholar] [CrossRef]
- Cruz-Esteban, S.; Brito-Bonifacio, I.; Estrada-Valencia, D.; Garay-Serrano, E. Mortality of Orius Insidiosus by Contact with Spinosad in the Laboratory as Well as in the Field and a Perspective of These as Controllers of Frankliniella occidentalis. J. Pestic. Sci. 2022, 47, 93–99. [Google Scholar] [CrossRef]
- Lahiri, S.; Smith, H.A.; Gireesh, M.; Kaur, G.; Montemayor, J.D. Arthropod Pest Management in Strawberry. Insects 2022, 13, 475. [Google Scholar] [CrossRef]
- Cortez-Madrigal, H.; Gutiérrez-Cárdenas, O.G. Enhancing Biological Control: Conservation of Alternative Hosts of Natural Enemies. Egypt. J. Biol. Pest Control 2023, 33, 25. [Google Scholar] [CrossRef]
- Galli, M.; Feldmann, F.; Vogler, U.K.; Kogel, K.H. Can Biocontrol Be the Game-Changer in Integrated Pest Management? A Review of Definitions, Methods and Strategies. J. Plant Dis. Prot. 2024, 131, 265–291. [Google Scholar] [CrossRef]
- Daraban, G.M.; Hlihor, R.M.; Suteu, D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. Toxics 2023, 11, 983. [Google Scholar] [CrossRef]
- Hemer, S.; Mateos-Fierro, Z.; Brough, B.; Deakin, G.; Moar, R.; Carvalho, J.P.; Randall, S.; Harris, A.; Klick, J.; Seagraves, M.P.; et al. Suppression of Spotted Wing Drosophila, Drosophila suzukii (Matsumura), in Raspberry Using the Sterile Insect Technique. Insects 2025, 16, 791. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Suroshe, S.S.; Sonam; Saini, G.K.; Singh, J. Efficacy of Genetically Transformed Metarhizium anisopliae against Spodoptera litura and Aphis craccivora. Saudi J. Biol. Sci. 2023, 30, 103493. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, N. The Entomopathogenic Fungus Beauveria bassiana Shows Its Toxic Side within Insects: Expression of Genes Encoding Secondary Metabolites during Pathogenesis. J. Fungi 2022, 8, 488. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Lovett, B.; Fang, W. Genetically Engineering Entomopathogenic fungi. Adv. Genet. 2016, 94, 137–163. [Google Scholar] [CrossRef]
- Lovett, B.; Bilgo, E.; Millogo, S.A.; Ouattarra, A.K.; Sare, I.; Gnambani, E.J.; Dabire, R.K.; Diabate, A.; St. Leger, R.J. Transgenic Metarhizium Rapidly Kills Mosquitoes in a Malaria-Endemic Region of Burkina Faso. Science 2019, 364, 894–897. [Google Scholar] [CrossRef]
- St. Leger, R.J.; Wang, J.B. Metarhizium: Jack of All Trades, Master of Many. Open Biol. 2020, 10, 200307. [Google Scholar] [CrossRef] [PubMed]
- Vidhate, R.P.; Dawkar, V.V.; Punekar, S.A.; Giri, A.P. Genomic Determinants of Entomopathogenic fungi and Their Involvement in Pathogenesis. Microb. Ecol. 2023, 85, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Kurmanbayeva, A.; Ospanov, M.; Tamang, P.; Shah, F.M.; Ali, A.; Ibrahim, Z.M.A.; Cantrell, C.L.; Dinara, S.; Datkhayev, U.; Khan, I.A.; et al. Regioselective Claisen–Schmidt Adduct of 2-Undecanone from Houttuynia cordata thunb as Insecticide/Repellent Against Solenopsis invicta and Repositioning Plant Fungicides against Colletotrichum fragariae. Molecules 2023, 28, 6100. [Google Scholar] [CrossRef]
- Kansman, J.T.; Jaramillo, J.L.; Ali, J.G.; Hermann, S.L. Chemical Ecology in Conservation Biocontrol: New Perspectives for Plant Protection. Trends Plant Sci. 2023, 28, 1166–1177. [Google Scholar] [CrossRef]
- Jonsson, M.; Buckley, H.L.; Case, B.S.; Wratten, S.D.; Hale, R.J.; Didham, R.K. Agricultural Intensification Drives Landscape-Context Effects on Host-Parasitoid Interactions in Agroecosystems. J. Appl. Ecol. 2012, 49, 706–714. [Google Scholar] [CrossRef]
- de Pedro, L.; Beitia, F.; Tormos, J. Two Better Than One? Potential Effects of Intraguild Predation on the Biological Control of Ceratitis capitata (Diptera: Tephritidae) by the Parasitoid Aganaspis daci (Hymenoptera: Figitidae) and the Predator Pseudoophonus rufipes (Coleoptera: Carabidae). Agronomy 2023, 13, 87. [Google Scholar] [CrossRef]
- Cuny, M.A.C.; Bourne, M.E.; Dicke, M.; Poelman, E.H. The Enemy of My Enemy Is Not Always My Friend: Negative Effects of Carnivorous Arthropods on Plants. Funct. Ecol. 2021, 35, 2365–2375. [Google Scholar] [CrossRef]
- Gomes-Garcia, A.; Wajnberg, E.; Parra, J.R.P. Optimizing the Releasing Strategy Used for the Biological Control of the Sugarcane Borer Diatraea saccharalis by Trichogramma galloi with Computer Modeling and Simulation. Sci. Rep. 2024, 14, 9535. [Google Scholar] [CrossRef]
- Hein, A.M.; James, F. Gillooly Predators, Prey, and Transient States in the Assembly of Spatially Structured Communities. Am. Nat. 2011, 92, 549–555. [Google Scholar]
- Wyckhuys, K.A.G.; Lu, Y.; Morales, H.; Vazquez, L.L.; Legaspi, J.C.; Eliopoulos, P.A.; Hernandez, L.M. Current Status and Potential of Conservation Biological Control for Agriculture in the Developing World. Biol. Control 2013, 65, 152–167. [Google Scholar] [CrossRef]
- Pell, J.K.; Hannam, J.J.; Steinkraus, D.C. Conservation Biological Control Using Fungal Entomopathogens. BioControl 2010, 55, 187–198. [Google Scholar] [CrossRef]
- Acheampong, M.A.; Coombes, C.A.; Moore, S.D.; Hill, M.P. Temperature Tolerance and Humidity Requirements of Select Entomopathogenic Fungal Isolates for Future Use in Citrus IPM Programmes. J. Invertebr. Pathol. 2020, 174, 107436. [Google Scholar] [CrossRef]
- Conti, E.; Avila, G.; Barratt, B.; Cingolani, F.; Colazza, S.; Guarino, S.; Hoelmer, K.; Laumann, R.A.; Maistrello, L.; Martel, G.; et al. Biological Control of Invasive Stink Bugs: Review of Global State and Future Prospects. Entomol. Exp. Appl. 2021, 169, 28–51. [Google Scholar] [CrossRef]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Björkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M.; et al. When Is It Biological Control? A Framework of Definitions, Mechanisms, and Classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Feliziani, G.; Bordoni, L.; Gabbianelli, R. Regenerative Organic Agriculture and Human Health: The Interconnection Between Soil, Food Quality, and Nutrition. Antioxidants 2025, 14, 530. [Google Scholar] [CrossRef]
- Cross, J.V.; Easterbrook, M.A.; Crook, A.M.; Crook, D.; Fitzgerald, J.D.; Innocenzi, P.J.; Jay, C.N.; Solomon, M.G. Review: Natural Enemies and Biocontrol of Pests of Strawberry in Northern and Central Europe. Biocontrol Sci. Technol. 2001, 11, 165–216. [Google Scholar] [CrossRef]
- León, L.L.; Guzmán, O.L.D.A.; Garcia, B.J.A.; Chávez, M.C.G.; Peña, C.J.J. Consideraciones Para Mejorar La Competitividad de La Región”El Bajío” En La Producción Nacional de Fresa. Revsista Mex. de Cienc. Agrícolas 2014, 5, 673–686. [Google Scholar] [CrossRef]
- Salazar Magañon, J.; Somoza, E.; Pérez, C.; Velásquez, B.; Torres, M.; Huerta, G.; Ortega, L. Uso y Manejo de Plaguicidas En Diferentes Sistemas de Producción de Fresa En México. Prod. Agropecu. y Desarro. Sosten. 2017, 6, 27–42. [Google Scholar] [CrossRef]
- Dara, S.K. Managing Strawberry Pests with Chemical Pesticides and Non-Chemical Alternatives. Int. J. Fruit Sci. 2016, 16, 129–141. [Google Scholar] [CrossRef]
- Iwanicki, N.S.A.; Castro, T.; Eilenberg, J.; Meyling, N.V.; de Andrade Moral, R.; Demétrio, C.G.B.; Delalibera, I., Jr. Community Composition of the Entomopathogenic Fungal Genus Metarhizium in Soils of Tropical and Temperate Conventional and Organic Strawberry Fields. J. Invertebr. Pathol. 2024, 204, 108079. [Google Scholar] [CrossRef] [PubMed]
- Deka, B.; Baruah, C.; Babu, A. Entomopathogenic Microorganisms: Their Role in Insect Pest Management. Egypt. J. Biol. Pest Control 2021, 31, 121. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, R.A. Plant Terpenes: Defense Responses, Phylogenetic Analysis, Regulation and Clinical Applications. 3 Biotech 2015, 5, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Islam, W.; Adnan, M.; Shabbir, A.; Naveed, H.; Abubakar, Y.S.; Qasim, M.; Tayyab, M.; Noman, A.; Nisar, M.S.; Khan, K.A.; et al. Insect-Fungal-Interactions: A Detailed Review on Entomopathogenic fungi Pathogenicity to Combat Insect Pests. Microb. Pathog. 2021, 159, 105122. [Google Scholar] [CrossRef]
- Gelaye, Y.; Negash, B. The Role of Baculoviruses in Controlling Insect Pests: A Review. Cogent Food Agric. 2023, 9. [Google Scholar] [CrossRef]
- Szewczyk, B.; Hoyos-Carvajal, L.; Paluszek, M.; Skrzecz, I.; Lobo De Souza, M. Baculoviruses—Re-Emerging Biopesticides. Biotechnol. Adv. 2006, 24, 143–160. [Google Scholar] [CrossRef]
- Williams, T.; López-Ferber, M.; Caballero, P. Nucleopolyhedrovirus Coocclusion Technology: A New Concept in the Development of Biological Insecticides. Front. Microbiol. 2022, 12, 810026. [Google Scholar] [CrossRef]
- Ordóñez-García, M.; Bustillos-Rodríguez, J.C.; de Jesús Ornelas-Paz, J.; Acosta-Muñiz, C.H.; Salas-Marina, M.Á.; Cambero-Campos, O.J.; Estrada-Virgen, M.O.; Morales-Ovando, M.A.; Rios-Velasco, C. Morphological, Biological, and Molecular Characterization of Type I Granuloviruses of Spodoptera frugiperda. Neotrop. Entomol. 2024, 53, 917–928. [Google Scholar] [CrossRef]
- Trudeau, D.; Washburn, J.O.; Volkman, L.E. Central Role of Hemocytes in Autographa californica M Nucleopolyhedrovirus Pathogenesis in Heliothis virescens and Helicoverpa zea. J. Virol. 2001, 75, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- van Oers, M.; Vlak, J. Baculovirus Genomics. Curr. Drug Targets 2007, 8, 1051–1068. [Google Scholar] [CrossRef]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals. PLoS ONE 2010, 5, e13102. [Google Scholar] [CrossRef]
- Gandarilla-Pacheco, F.L.; De Luna-Santillana, E.D.J.; Alemán-Huerta, M.E.; Pérez-Rodríguez, R.; Quintero-Zapata, I. Isolation of Native Strains of Entomopathogenic fungi from Agricultural soils of Northeastern Mexico and Their Virulence on Spodoptera exigua (Lepidoptera: Noctuidae). Fla. Entomol. 2021, 104, 245–252. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Lagogiannis, I.; Ntoukas, A.; Eliopoulos, P.A.; Kouretas, D.; Karpouzas, D.G.; Poulas, K. Trapping Entomopathogenic fungi from Vine Terroir Soil Samples with Insect Baits for Controlling Serious Pests. Appl. Sci. 2020, 10, 3539. [Google Scholar] [CrossRef]
- Canassa, F.; Esteca, F.C.N.; Moral, R.A.; Meyling, N.V.; Klingen, I.; Delalibera, I. Root Inoculation of Strawberry with the Entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana Reduces Incidence of the Twospotted Spider Mite and Selected Insect Pests and Plant Diseases in the Field. J. Pest Sci. 2020, 93, 261–274. [Google Scholar] [CrossRef]
- Zhang, J.; Hansen, L.G.; Gudich, O.; Viehrig, K.; Lassen, L.M.M.; Schrübbers, L.; Adhikari, K.B.; Rubaszka, P.; Carrasquer-alvarez, E.; Chen, L.; et al. A Microbial Supply Chain for Production of the Anti-Cancer Drug Vinblastine. Nature 2022, 609, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Falahzadah, M.H.; Karimi, J.; Gaugler, R. Biological Control Chance and Limitation within Integrated Pest Management Program in Afghanistan. Egypt. J. Biol. Pest Control 2020, 30, 86. [Google Scholar] [CrossRef]
- Fasuan, T.O.; Chukwu, C.T.; Olagunju, T.M.; Adiamo, O.Q.; Fawale, S.O. Biocontrol of Insect-Pests Bruchid in Postharvest Storage of Vigna unguiculata Grains: Process Modeling, Optimization, and Characterization. Crop Prot. 2021, 146, 105689. [Google Scholar] [CrossRef]
- Banerjee, N.; Hallem, E.A. The Role of Carbon Dioxide in Nematode Behaviour and Physiology. Parasitology 2020, 147, 841–854. [Google Scholar] [CrossRef] [PubMed]
- Karthik Raja, R.; Arun, A.; Touray, M.; Hazal Gulsen, S.; Cimen, H.; Gulcu, B.; Hazir, C.; Aiswarya, D.; Ulug, D.; Cakmak, I.; et al. Antagonists and Defense Mechanisms of Entomopathogenic Nematodes and Their Mutualistic Bacteria. Biol. Control 2021, 152, 104452. [Google Scholar] [CrossRef]
- Sáenz-Aponte, A.; Correa-Cuadros, J.P.; Rodríguez-Bocanegra, M.X. Foliar Application of Entomopathogenic Nematodes and Fungi for the Management of the Diamond Back Moth in Greenhouse and Field. Biol. Control 2020, 142, 104163. [Google Scholar] [CrossRef]
- Filgueiras, C.C.; Willett, D.S. Non-Lethal Effects of Entomopathogenic Nematode Infection. Sci. Rep. 2021, 11, 17090. [Google Scholar] [CrossRef]
- Bruck, D.J.; Edwards, D.L.; Donahue, K.M. Susceptibility of the Strawberry Crown Moth (Lepidoptera: Sesiidae) to Entomopathogenic Nematodes. J. Econ. Entomol. 2008, 101, 251–255. [Google Scholar] [CrossRef]
- Keklik, M.; Odabas, E.; Golge, O.; Kabak, B. Pesticide Residue Levels in Strawberries and Human Health Risk Assessment. J. Food Compos. Anal. 2025, 137, 106943. [Google Scholar] [CrossRef]
- du Preez, F.; Malan, A.P.; Addison, P. Potential of In Vivo- and In Vitro-Cultured Entomopathogenic Nematodes to Infect Lobesia vanillana (Lepidoptera: Tortricidae) under Laboratory Conditions. PLoS ONE 2021, 16, e0242645. [Google Scholar] [CrossRef]
- Kumari, V.; Shinde, S.; Singh, N.P.; Meena, S. Standardizing In-Vivo Mass Production Technique for Entomopathogenic Nematode Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae). Crop Prot. 2024, 176, 106487. [Google Scholar] [CrossRef]
- Booth, S.R.; Tanigoshi, L.K.; Shanks, C.H. Evaluation of Entomopathogenic Nematodes to Manage Root Weevil Larvae in Washington State Cranberry, Strawberry, and Red Raspberry. Environ. Entomol. 2002, 31, 895–902. [Google Scholar] [CrossRef]
- Eliceche, D.P.; Belaich, M.N.; Ghiringhelli, P.D.; Achinelly, M.F. Heterorhabditis bacteriophora Pampean-Strain VEli (Nematoda): Identification and Pathogenicity against the Strawberry Pest Lobiopa insularis (Coleoptera: Nitidulidae). Rev. Colomb. de Entomol. 2017, 43, 223–232. [Google Scholar] [CrossRef]
- Wakil, W.; Usman, M.; Piñero, J.C.; Wu, S.; Toews, M.D.; Shapiro-Ilan, D.I. Combined Application of Entomopathogenic Nematodes and Fungi against Fruit Flies, Bactrocera zonata and B. dorsalis (Diptera: Tephritidae): Laboratory Cups to Field Study. Pest Manag. Sci. 2022, 78, 2779–2791. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, S.; Razia, M. Entomopathogenic Nematodes and Their Symbiotic Bacteria: A Laboratory Manual; Humana Press: New York, NY, USA, 2021; ISBN 978-1-0716-1444-0. [Google Scholar]
- Maushe, D.; Ogi, V.; Divakaran, K.; Verdecia Mogena, A.M.; Himmighofen, P.A.; Machado, R.A.R.; Towbin, B.D.; Ehlers, R.U.; Molina, C.; Parisod, C.; et al. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J. Invertebr. Pathol. 2023, 199, 107953. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, S.; Li, X.; Wu, Z.; Zhao, Y.; Cui, J.; Liu, B.; Chen, F.; Zhang, X.; Qiao, Y.; et al. The features of high-risk human papillomavirus infection in different female genital sites and impacts on HPV-based cervical cancer screening. Virol. J. 2023, 20, 116. [Google Scholar] [CrossRef]
- Ghafoor, D.; Khan, Z.; Khan, A.; Ualiyeva, D.; Zaman, N. Excessive Use of Disinfectants against COVID-19 Posing a Potential Threat to Living Beings. Curr. Res. Toxicol. 2021, 2, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.d.C.; de Brida, A.L.; Jean-Baptiste, M.C.; Leite, L.G.; Ovruski, S.M.; Lee, J.C.; Garcia, F.R.M. Compatibility of Entomopathogenic Nematodes with Chemical Insecticides for the Control of Drosophila suzukii (Diptera: Drosophilidae). Plants 2024, 13, 632. [Google Scholar] [CrossRef]
- Baker, R.T.; Dick, H.B. Leafrollers (Lepidoptera: Tortricidae) in a Strawberry Crop in Horowhenua: Abundance and Control. J. Exp. Agric. 1981, 9, 377–381. [Google Scholar] [CrossRef]
- Easterbrook, M.A. A Field Assessment of the Effects of Insecticides on the Beneficial Fauna of Strawberry. Crop Prot. 1997, 16, 147–152. [Google Scholar] [CrossRef]
- Chen, X.; Xie, H.; Li, Z.; Cheng, G.; Leng, M.; Wang, F.L. Information fusion and artificial intelligence for smart healthcare: A bibliometric study. Inf. Process. Manag. 2023, 60, 103113. [Google Scholar] [CrossRef]
- Li, E.T.; Zhang, S.; Li, K.B.; Nyamwasaa, I.; Li, J.Q.; Li, X.F.; Qin, J.H.; Yin, J. Efficacy of Entomopathogenic Nematode and Bacillus Thuringiensis Combinations against Holotrichia parallela (Coleoptera: Scarabaeidae). Larvae. Biol. Control 2021, 152, 104469. [Google Scholar] [CrossRef]
- Curran, J. Influence of Application Method and Pest Population Size on the Field Efficacy of Entomopathogenic Nematodes. J. Nematol. 1992, 24, 631–636. [Google Scholar]
- Conner, J.M.; McSorley, R.; Stansly, P.A.; Pitts, D.J. Delivery of Steinernema riobravis through a Drip Irrigation System. Nematropica 1998, 28, 95–100. [Google Scholar]
- Yuan, B.Z.; Sun, J.; Nishiyama, S. Effect of Drip Irrigation on Strawberry Growth and Yield inside a Plastic Greenhouse. Biosyst. Eng. 2004, 87, 237–245. [Google Scholar] [CrossRef]
- Dubenok, N.N.; Gemonov, A.V.; Lebedev, A.V.; Ilchenko, K.Y. Scientific-Based Drip Irrigation Regime for Raspberry Plants Cultivated in the Central Part of the Non-Black Earth Region. Russ. Agric. Sci. 2023, 49, 229–232. [Google Scholar] [CrossRef]
- Lay-Walters, A.; Samtani, J.; Fernandez, G.; Havlin, J.; Coneva, E.; Stafne, E.; Bumgarner, N.; Lockwood, D.; Ames, Z.R.; Blaedow, K.; et al. Survey of Seasonal Variation of Leaf Tissue Nutrient Concentration of Southeastern Blackberry. HortScience 2025, 60, 1928–1937. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.I.; Gouge, D.H.; Piggott, S.J.; Fife, J.P. Application Technology and Environmental Considerations for Use of Entomopathogenic Nematodes in Biological Control. Biol. Control 2006, 38, 124–133. [Google Scholar] [CrossRef]
- Georgis, R.; Koppenhöfer, A.M.; Lacey, L.A.; Bélair, G.; Duncan, L.W.; Grewal, P.S.; Samish, M.; Tan, L.; Torr, P.; van Tol, R.W.H.M. Successes and Failures in the Use of Parasitic Nematodes for Pest Control. Biol. Control 2006, 38, 103–123. [Google Scholar] [CrossRef]
- Ulu, T.C.; Erdoğan, H. Field Application of Encapsulated Entomopathogenic Nematodes Using a Precision Planter. Biol. Control 2023, 182, 105240. [Google Scholar] [CrossRef]
- Erdoğan, H.; Ünal, H.; Susurluk, A.; Lewis, E.E. Precision Application of the Entomopathogenic Nematode Heterorhabditis bacteriophora as a Biological Control Agent through the Nemabot. Crop Prot. 2023, 174, 106429. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.I.; Lewis, E.E.; Son, Y.; Tedders, W.L. Superior Efficacy Observed in Entomopathogenic Nematodes Applied in Infected-Host Cadavers Compared with Application in Aqueous Suspension. J. Invertebr. Pathol. 2003, 83, 270–272. [Google Scholar] [CrossRef]
- Ansari, M.A.; Hussain, M.A.; Moens, M. Formulation and Application of Entomopathogenic Nematode-Infected Cadavers for Control of Hoplia philanthus in Turfgrass. Pest Manag. Sci. 2009, 65, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Creighton, C.S.; Fassuliotis, G. Heterorhabditis sp. (Nematoda: Heterorhabditidae): A Nematode Parasite Isolated from the Banded Cucumber Beetle Diabrotica balteata. J. Nematol. 1985, 17, 150–152. [Google Scholar]
- Bell, M.R.; Hardee, D.D. Early Season Application of a Baculovirus for Area-Wide Management of Heliothis/Helicoverpa (Lepidoptera, Noctuidae)—1992 Field Trial. J. Entomolical Sci. 1994, 29, 192–200. [Google Scholar] [CrossRef]
- Gulzar, S.; Wakil, W.; Shapiro-Ilan, D.I. Potential Use of Entomopathogenic Nematodes against the Soil Dwelling Stages of Onion Thrips, Thrips tabaci Lindeman: Laboratory, Greenhouse and Field Trials. Biol. Control 2021, 161, 104677. [Google Scholar] [CrossRef]
- Maniania, N.K.; Sithanantham, S.; Ekesi, S.; Ampong-Nyarko, K.; Baumgärtner, J.; Löhr, B.; Matoka, C.M. A Field Trial of the Entomogenous Fungus Metarhizium anisopliae for Control of Onion Thrips, Thrips tabaci. Crop Prot. 2003, 22, 553–559. [Google Scholar] [CrossRef]
- Ben Salah, H.; Aalbu, R. Field Use of Granulosis Virus to Reduce Initial Storage Infestation of the Potato Tuber Moth, Phthorimaea operculella (Zeller), in North Africa. Agric. Ecosyst. Environ. 1992, 38, 119–126. [Google Scholar] [CrossRef]
- Lozano-Tovar, M.D.; Ortiz-Urquiza, A.; Garrido-Jurado, I.; Trapero-Casas, A.; Quesada-Moraga, E. Assessment of Entomopathogenic fungi and Their Extracts against a Soil-Dwelling Pest and Soil-Borne Pathogens of Olive. Biol. Control 2013, 67, 409–420. [Google Scholar] [CrossRef]
- Mora-Aguilera, G.; Cortez-Madrigal, H.; Acevedo-Sánchez, G. Epidemiology of Entomopathogens: Basis for Rational Use of Microbial Control of Insects. Southwester Entomol. 2017, 42, 153–169. [Google Scholar] [CrossRef]
- Al-Mazra’Awi, M.S.; Kevan, P.G.; Shipp, L. Development of Beauveria bassiana Dry Formulation for Vectoring by Honey Bees Apis mellifera (Hymenoptera: Apidae) to the Flowers of Crops for Pest Control. Biocontrol Sci. Technol. 2007, 17, 733–741. [Google Scholar] [CrossRef]
- Li, T.; Zhang, W.; Hao, J.; Sun, M.; Lin, S.X. Cold-Active Extracellular Lipase: Expression in Sf9 Insect Cells, Purification, and Catalysis. Biotechnol. Rep. 2019, 21, e00295. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, C.; Miao, J.; Zhang, X.; Wei, B.; Dong, W.; Xiao, C. Chemical Compounds from Female and Male Rectal Pheromone Glands of the Guava Fruit Fly, Bactrocera correcta. Insects 2019, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Cárdenas, O.G.; Adán, Á.; Beperet, I.; Medina, P.; Caballero, P.; Garzón, A. The Role of Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae) as a Potential Dispersive Agent of Noctuid Baculoviruses. Insects 2020, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.; Chapple, A. The Spray Application of Mycopesticide Formulations. In Fungi as Biocontrol Agents Progress, Problems and Potential; CABI Pubishing: London, UK, 2001; pp. 289–309. [Google Scholar]
- Thimann, K.V. Pesticides and Ecosystems. BioScience 1983, 33, 76. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide Decline of the Entomofauna: A Review of Its Drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Quandahor, P.; Kim, L.; Kim, M.; Lee, K.; Kusi, F.; Jeong, I.H. Effects of Agricultural Pesticides on Decline in Insect Species and Individual Numbers. Environments 2024, 11, 182. [Google Scholar] [CrossRef]
- Jackson, M.A.; Dunlap, C.A.; Jaronski, S.T. Ecological Considerations in Producing and Formulating Fungal Entomopathogens for Use in Insect Biocontrol. Biol. Control 2010, 55, 129–145. [Google Scholar] [CrossRef]
- Moscardi, F. Assessment of the Application of Baculoviruses for Control of Lepidoptera. Annu. Rev. Entomol. 1999, 44, 257–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ge, Q.; Wen, J.; Zhang, H.; Guo, Y.; Li, Z.; Xu, Y.; Ji, D.; Chen, C.; Guo, L.; et al. Horizontal Gene Transfer and Symbiotic Microorganisms Regulate the Adaptive Evolution of Intertidal Algae, Porphyra Sense Lato. Commun. Biol. 2024, 7, 976. [Google Scholar] [CrossRef]
- Fernandes, É.K.K.; Rangel, D.E.N.; Braga, G.U.L.; Roberts, D.W. Tolerance of Entomopathogenic fungi to Ultraviolet Radiation: A Review on Screening of Strains and Their Formulation. Curr. Genet. 2015, 61, 427–440. [Google Scholar] [CrossRef]
- McLeod, P.J.; Yearian, W.C.; Young, S.Y. Inactivation of Baculovirus Heliothis by Ultraviolet Irradiation, Dew, and Temperature. J. Invertebr. Pathol. 1977, 30, 237–241. [Google Scholar] [CrossRef]
- Rodrigues, I.M.W.; Forim, M.R.; Silva, M.F.G.F.d.; Fernandes, J.B.; Filho, A.B. Effect of Ultraviolet Radiation on Fungi Beauveria bassiana and Metarhizium anisopliae, Pure and Encapsulated, and Bio-Insecticide Action on Diatraea saccharalis. Adv. Entomol. 2016, 4, 151–162. [Google Scholar] [CrossRef]
- Skinner, M.; Parker, B.L.; Kim, J.S. Role of Entomopathogenic fungi in Integrated Pest Management; Elsevier Inc.: Amsterdam, The Netherlands, 2014; ISBN 9780124017092. [Google Scholar]
- Boogaard, B.; van Oers, M.M.; van Lent, J.W.M. An Advanced View on Baculovirus per Os Infectivity Factors. Insects 2018, 9, 84. [Google Scholar] [CrossRef]
- Gutiérrez-Cárdenas, O.G.; Cortez-Madrigal, H.; Malo, E.A.; Gómez-Ruíz, J.; Nord, R. Physiological and Pathogenical Characterization of Beauveria bassiana and Metarhizium anisopliae Isolates for Management of Adult Spodoptera frugiperda. Southwest. Entomol. 2019, 44, 409–421. [Google Scholar] [CrossRef]
- Askary, T.H.; Abd-Elgawad, M.M.M. Opportunities and Challenges of Entomopathogenic Nematodes as Biocontrol Agents in Their Tripartite Interactions. Egypt. J. Biol. Pest Control 2021, 31, 42. [Google Scholar] [CrossRef]
- Sharghi, H.; Eivazian Kary, N.; Mohammadi, D. Enhancing the Shelf Life of Entomopathogenic Nematodes Formulation: The Impact of Super Absorbent Polymer and Infective Juveniles Concentration. Crop Prot. 2025, 190, 107091. [Google Scholar] [CrossRef]
- McMurtry, J.A.; De Moraes, G.J.; Sourassou, N.F. Revision of the Lifestyles of Phytoseiid Mites (Acari: Phytoseiidae) and Implications for Biological Control Strategies. Syst. Appl. Acarol. 2013, 18, 297–320. [Google Scholar] [CrossRef]
- Nyoike, T.W.; Liburd, O.E. Effect of Tetranychus urticae (Acari: Tetranychidae), on Marketable Yields of Field-Grown Strawberries in North-Central Florida. J. Econ. Entomol. 2013, 106, 1757–1766. [Google Scholar] [CrossRef]
- Sato, M.E.; Silva, M.Z.d.; Raga, A.; de Souza Filho, M.F. Abamectin Resistance in Tetranychus urticae Koch (Acari: Tetranychidae): Selection, Cross-Resistance and Stability of Resistance. Neotrop. Entomol. 2005, 34, 991–998. [Google Scholar] [CrossRef]
- Cerna, E.; Ochoa, Y.; Aguirre, L.; Badii, M.; Gallegos, G.; Landeros, J. Niveles de Resistencia En Poblaciones de Tetranychus urticae En El Cultivo de La Fresa. Rev. Colomb. Entomol. 2009, 35, 52–56. [Google Scholar] [CrossRef]
- Villegas-Elizalde, S.E.; Rodríguez-Maciel, J.C.; Anaya-Rosales, S.; Sánchez-Arroyo, H.; Hernández-Morales, J.; Bujanos-Muñiz, R. Resistance of Tetranychus urticae (Koch) to Acaricides Applied on Strawberries in Zamora, Michoacán, México. Agrociencia 2010, 44, 75–81. [Google Scholar]
- Aldhaeefi, M.; Aldardeer, N.F.; Alkhani, N.; Alqarni, S.M.; Alhammad, A.M.; Alshaya, A.I. Updates in the Management of Hyperglycemic Crisis. Front. Clin. Diabetes Health 2022, 2, 820728. [Google Scholar] [CrossRef] [PubMed]
- Svensson, G.P.; Hickman, M.O.; Bartram, S.; Boland, W.; Pellmyr, O.; Raguso, R.A. Chemistry and Geographic Variation of Floral Scent in Yucca filamentosa (Agavaceae). Am. J. Bot. 2005, 92, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Paspati, A.; Rambla, J.L.; López Gresa, M.P.; Arbona, V.; Gómez-Cadenas, A.; Granell, A.; González-Cabrera, J.; Urbaneja, A. Tomato Trichomes Are Deadly Hurdles Limiting the Establishment of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Biol. Control 2021, 157, 104572. [Google Scholar] [CrossRef]
- Gard, B.; Bardel, A.; Douin, M.; Perrin, B.; Tixier, M.-S. Laboratory and Field Studies to Assess the Efficacy of the Predatory Mite Typhlodromus (Anthoseius) recki (Acari: Phytoseiidae) Introduced via Banker Plants to Control the Mite Pest Aculops lycopersici (Acari: Eriophyidae) on Tomato. BioControl 2024, 69, 179–191. [Google Scholar] [CrossRef]
- Busuulwa, A.; Revynthi, A.M.; Liburd, O.E.; Lahiri, S. Banker Plant Efficacy to Boost Natural Predators for Management of Field Populations of Scirtothrips dorsalis Hood (Thysanoptera Thripidae) in Strawberries. Insects 2024, 15, 776. [Google Scholar] [CrossRef]
- Meyling, N.V.; Eilenberg, J. Ecology of the Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Temperate Agroecosystems: Potential for Conservation Biological Control. Biol. Control 2007, 43, 145–155. [Google Scholar] [CrossRef]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic Regulation of Glucose Homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef]
- Castillo-Ramírez, O.; Guzmán-Franco, A.W.; Santillán-Galicia, M.T.; Tamayo-Mejía, F. Interaction between Predatory Mites (Acari: Phytoseiidae) and Entomopathogenic fungi in Tetranychus urticae Populations. BioControl 2020, 65, 433–445. [Google Scholar] [CrossRef]
- Villalvazo-Valdovinos, R.; Guzmán-Franco, A.W.; Valdez-Carrasco, J.; Martínez-Núñez, M.; Soto-Rojas, L.; Vargas-Sandoval, M.; Santillán-Galicia, M.T. Berry Species and Crop Management Approaches Affect Species Diversity and Abundance of Predatory Mites (Acari: Phytoseiidae). Exp. Appl. Acarol. 2023, 89, 215–230. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Masiello, C.A.; Del Valle, I.; Gao, X.; Bennett, G.N.; Silberg, J.J. Ratiometric Gas Reporting: A Nondisruptive Approach to Monitor Gene Expression in Soils. ACS Synth. Biol. 2018, 7, 903–911. [Google Scholar] [CrossRef]
- van de Veire, M.; Tirry, L. Side Effects of Pesticides on Four Species of Beneficials Used in IPM in Glasshouse Vegetable Crops: “Worst Case” Laboratory Tests. Bull. OILB/SROP 2003, 26, 41–50. [Google Scholar]
- Rhodes, E.M.; Liburd, O.E.; Kelts, C.; Rondon, S.I.; Francis, R.R. Comparison of Single and Combination Treatments of Phytoseiulus persimilis, Neoseiulus californicus, and Acramite (Bifenazate) for Control of Twospotted Spider Mites in Strawberries. Exp. Appl. Acarol. 2006, 39, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, D.; Botton, M.; da Cunha, U.S.; Bernardi, O.; Malausa, T.; Garcia, M.S.; Nava, D.E. Effects of Azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and Its Compatibility with Predatory Mites (Acari: Phytoseiidae) on Strawberry. Pest Manag. Sci. 2013, 69, 75–80. [Google Scholar] [CrossRef]
- Duso, C.; Van Leeuwen, T.; Pozzebon, A. Improving the Compatibility of Pesticides and Predatory Mites: Recent Findings on Physiological and Ecological Selectivity. Curr. Opin. Insect Sci. 2020, 39, 63–68. [Google Scholar] [CrossRef]
- Mouratidis, A.; Marrero-Díaz, E.; Sánchez-Álvarez, B.; Hernández-Suárez, E.; Messelink, G.J. Preventive Releases of Phytoseiid and Anthocorid Predators Provided with Supplemental Food Successfully Control Scirtothrips in Strawberry. BioControl 2023, 68, 603–615. [Google Scholar] [CrossRef]
- Easterbrook, M.A.; Fitzgerald, J.D.; Solomon, M.G. Suppression of Aphids on Strawberry by Augmentative Releases of Larvae of the Lacewing Chrysoperla carnea (Stephens). Biocontrol Sci. Technol. 2006, 16, 893–900. [Google Scholar] [CrossRef]
- Pekas, A.; De Smedt, L.; Verachtert, N.; Boonen, S. The Brown Lacewing Micromus angulatus: A New Predator for the Augmentative Biological Control of Aphids. Biol. Control 2023, 186, 105342. [Google Scholar] [CrossRef]
- Tait, G.; Mermer, S.; Stockton, D.; Lee, J.; Avosani, S.; Abrieux, A.; Anfora, G.; Beers, E.; Biondi, A.; Burrack, H.; et al. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research towards a Sustainable Integrated Pest Management Program. J. Econ. Entomol. 2021, 114, 1950–1974. [Google Scholar] [CrossRef] [PubMed]
- Haye, T.; Girod, P.; Cuthbertson, A.G.S.; Wang, X.G.; Daane, K.M.; Hoelmer, K.A.; Baroffio, C.; Zhang, J.P.; Desneux, N. Current SWD IPM Tactics and Their Practical Implementation in Fruit Crops across Different Regions around the World. J. Pest Sci. 2016, 89, 643–651. [Google Scholar] [CrossRef]
- Gress, B.E.; Zalom, F.G. Identification and Risk Assessment of Spinosad Resistance in a California Population of Drosophila suzukii. Pest Manag. Sci. 2019, 75, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Stahl, J.M.; Wang, X.; Abram, P.K.; Biondi, A.; Buffington, M.L.; Hoelmer, K.A.; Kenis, M.; Lisi, F.; Rossi-Stacconi, M.V.; Seehausen, M.L.; et al. Ganaspis kimorum (Hymenoptera: Figitidae), a Promising Parasitoid for Biological Control of Drosophila suzukii (Diptera: Drosophilidae). J. Integr. Pest Manag. 2024, 15, 44. [Google Scholar] [CrossRef]
- Nomano, F.Y.; Kasuya, N.; Matsuura, A.; Suwito, A.; Mitsui, H.; Buffington, M.L.; Kimura, M.T. Genetic Differentiation of Ganaspis brasiliensis (Hymenoptera: Figitidae) from East and Southeast Asia. Appl. Entomol. Zool. 2017, 52, 429–437. [Google Scholar] [CrossRef]
- Girod, P.; Lierhmann, O.; Urvois, T.; Turlings, T.C.J.; Kenis, M.; Haye, T. Host specificity of Asian parasitoids for potential classical biological control of Drosophila suzukii. J. Pest Sci. 2018, 91, 1241–1250. [Google Scholar] [CrossRef]
- Hopper, K.R.; Wang, X.; Kenis, M.; Seehausen, M.L.; Abram, P.K.; Daane, K.M.; Buffington, M.L.; Hoelmer, K.A.; Kingham, B.F.; Shevchenko, O.; et al. Genome divergence and reproductive incompatibility among populations of Ganaspis near brasiliensis. G3 Genes Genomes Genet. 2024, 14, jkae090. [Google Scholar] [CrossRef]
- Baser, N.; Matar, C.; Rossini, L.; Ibn Amor, A.; Šunjka, D.; Bošković, D.; Gualano, S.; Santoro, F. Enhancing Biological Control of Drosophila suzukii: Efficacy of Trichopria drosophilae Releases and Interactions with a Native Parasitoid, Pachycrepoideus vindemiae. Insects 2025, 16, 715. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Cai, P.; Lin, J.; Liu, X.; Ao, G. Life History and Host Preference of Trichopria drosophilae from Southern China, One of the Effective Pupal Parasitoids on the Drosophila Species Chuandong. Insects 2020, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.; Arredondo-Bernal, H.C.; Rodŕiguez-Del-Bosque, L.A. Biological Pest Control in Mexico. Annu. Rev. Entomol. 2013, 58, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Zermeño, M.A.; Gallou, A.; Berlanga-Padilla, A.M.; Serna-Domínguez, M.G.; Arredondo-Bernal, H.C.; Montesinos-Matías, R. Characterisation of Entomopathogenic fungi Used in the Biological Control Programme of Diaphorina citri in Mexico. Biocontrol Sci. Technol. 2015, 25, 1192–1207. [Google Scholar] [CrossRef]
- Pérez-Consuegra, N.; Mirabal, L.; Jiménez, L.C. The Role of Biological Control in the Sustainability of the Cuban Agri-Food System. Elem. Sci. Anthr. 2018, 6, 79. [Google Scholar] [CrossRef]
- Márquez, M.E.; Vázquez, L.L.; Rodríguez, M.G.; Sifontes, J.L.A.; Fuentes, F.; Ramos, M.; Hidalgo, L.; Herrera, L. Biological Control in Cuba. In Biological Control Latin America Caribbean: Its Rich History and Bright Future; CABI Digital Library: Oxford, UK, 2020; pp. 176–193. [Google Scholar] [CrossRef]
- Elnahal, A.S.M.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. Correction: The Use of Microbial Inoculants for Biological Control, Plant Growth Promotion, and Sustainable Agriculture: A Review. Eur. J. Plant Pathol. 2022, 162, 759–792, Erratum in Eur. J. Plant Pathol. 2022, 162, 1007. https://doi.org/10.1007/s10658-022-02472-3. [Google Scholar] [CrossRef]
- Zelaya-Molina, L.X.; Chávez-Díaz, I.F.; De los Santos-Villalobos, S.; Cruz-Cárdenas, C.I.; Ruíz-Ramírez, S.; Rojas-Anaya, E. Control Biológico de Plagas En La Agricultura Mexicana. Rev. Mex. Cienc. Agrícolas 2022, 13, 69–79. [Google Scholar] [CrossRef]
- Jimenez, Z.I.; Ortega, G.P.; Coutiño Puchuli, A.E. Las Biofábricas y su Relación con el Desarrollo Sostenible en Michoacán, México. 2020. Available online: https://ru.iiec.unam.mx/5122/ (accessed on 13 October 2025).
- Goulet, F.; Poveda, D.G.; Odjo, S. Las Biofábricas, Nuevos Modelos de Producción y Acceso a Los Insumos Agrícolas En América Latina. Perspective 2024, 64, 1–14. [Google Scholar] [CrossRef]
- Day, R.; Haggblade, S.; Moephuli, S.; Mwang, A.; Nouala, S. Institutional and Policy Bottlenecks to IPM. Curr. Opin. Insect Sci. 2022, 52, 100946. [Google Scholar] [CrossRef]
- Walters, K.F.A.; Collier, R.; Parry, G.; Burnstone, J.; Grenz, K.; Bruce, T. Constraints and Solutions for Development and Uptake of Integrated Pest Management in the UK. Ann. Appl. Biol. 2024, 185, 146–152. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jackson, M.A.; Kobori, N.N.; Behle, R.W.; Delalibera Júnior, Í. Liquid Culture Fermentation for Rapid Production of Desiccation Tolerant Blastospores of Beauveria bassiana and Isaria fumosorosea Strains. J. Invertebr. Pathol. 2015, 127, 11–20. [Google Scholar] [CrossRef]
- Lara-Juache, H.R.; Ávila-Hernández, J.G.; Rodríguez-Durán, L.V.; Michel, M.R.; Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Veana, F.; Aguilar-Zárate, M.; Ascacio-Valdés, J.A.; Aguilar-Zárate, P. Characterization of a Biofilm Bioreactor Designed for the Single-Step Production of Aerial Conidia and Oosporein by Beauveria bassiana PQ2. J. Fungi 2021, 7, 582. [Google Scholar] [CrossRef] [PubMed]
- Ranesi, M.; Vitale, S.; Staropoli, A.; Di Lelio, I.; Izzo, L.G.; De Luca, M.G.; Becchimanzi, A.; Pennacchio, F.; Lorito, M.; Woo, S.L.; et al. Field Isolates of Beauveria bassiana Exhibit Biological Heterogeneity in Multitrophic Interactions of Agricultural Importance. Microbiol. Res. 2024, 286, 127819. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.R.; Enzmann, B.L.; Schmidt, Y.; Moore, D.; Jones, G.R.; Parker, J.; Berger, S.L.; Reinberg, D.; Zwiebel, L.J.; Breit, B.; et al. Cuticular Hydrocarbon Pheromones for Social Behavior and Their Coding in the Ant Antenna. Cell Rep. 2015, 12, 1261–1271. [Google Scholar] [CrossRef]
- Valero-Jiménez, C.A.; Wiegers, H.; Zwaan, B.J.; Koenraadt, C.J.M.; van Kan, J.A.L. Genes Involved in Virulence of the Entomopathogenic Fungus Beauveria bassiana. J. Invertebr. Pathol. 2016, 133, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Mascarin, G.M.; Shrestha, S.; de Carvalho Barros Cortes, M.V.; Ramirez, J.L.; Dunlap, C.A.; Coleman, J.J. CRISPR-Cas9-Mediated Enhancement of Beauveria bassiana Virulence with Overproduction of Oosporein. Fungal Biol. Biotechnol. 2024, 11, 21. [Google Scholar] [CrossRef]
- Davis, K.A.; Sampson, J.K.; Panaccione, D.G. Genetic Reprogramming of the Ergot Alkaloid Pathway of Metarhizium brunneum. Appl. Environ. Microbiol. 2020, 86, e01251-20. [Google Scholar] [CrossRef]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest Categorisation of Spodoptera litura. EFSA J. 2019, 17, e05765. [Google Scholar] [CrossRef]
- Maza, N.; Kirschbaum, D.S.; Mazzitelli, M.E.; Figueroa, P.M.; Villaverde, J.; Funes, C.F. Aphids Affecting Subtropical Argentina Strawberry Production: Species, Cultivar Preference, and Nation-Wide Distribution Update. Rev. Investig. Agropecu. 2024, 50, 58–70. [Google Scholar] [CrossRef]
- Gupta, R.; Keppanan, R.; Leibman-Markus, M.; Rav-David, D.; Elad, Y.; Ment, D.; Bar, M. The Entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana Promote Systemic Immunity and Confer Resistance to a Broad Range of Pests and Pathogens in Tomato. Phytopathology 2022, 112, 784–793. [Google Scholar] [CrossRef]
- Wang, H.; Peng, H.; Li, W.; Cheng, P.; Gong, M. The Toxins of Beauveria bassiana and the Strategies to Improve Their Virulence to Insects. Front. Microbiol. 2021, 12, 705343. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Moraga, E.; González-Mas, N.; Yousef-Yousef, M.; Garrido-Jurado, I.; Fernández-Bravo, M. Key Role of Environmental Competence in Successful Use of Entomopathogenic fungi in Microbial Pest Control. J. Pest Sci. 2024, 97, 1–15. [Google Scholar] [CrossRef]
- Kryukov, V.Y. Special Issue on “Entomopathogenic fungi: Ecology, Evolution, Adaptation”: An Editorial. Entomopathog. Fungi 2023, 11, 1494. [Google Scholar] [CrossRef]
- Mc Namara, L.; Dolan, S.K.; Walsh, J.M.D.; Stephens, J.C.; Glare, T.R.; Kavanagh, K.; Griffin, C.T. Oosporein, an Abundant Metabolite in Beauveria caledonica, with a Feedback Induction Mechanism and a Role in Insect Virulence. Fungal Biol. 2019, 123, 601–610. [Google Scholar] [CrossRef]
- Amobonye, A.; Bhagwat, P.; Pandey, A.; Singh, S.; Pillai, S. Biotechnological Potential of Beauveria bassiana as a Source of Novel Biocatalysts and Metabolites. Crit. Rev. Biotechnol. 2020, 40, 1019–1034. [Google Scholar] [CrossRef]
- Gressler, M.; Hortschansky, P.; Geib, E.; Brock, M. A New High-Performance Heterologous Fungal Expression System Based on Regulatory Elements from the Aspergillus terreus Terrein Gene Cluster. Front. Microbiol. 2015, 6, 184. [Google Scholar] [CrossRef]
- Oliveira, L.R.; Gonçalves, A.R.; Quintela, E.D.; Colognese, L.; Cortes, M.V.d.C.B.; de Filippi, M.C.C. Genetic Engineering of Filamentous Fungi: Prospects for Obtaining Fourth-Generation Biological Products. Appl. Microbiol. 2024, 4, 794–810. [Google Scholar] [CrossRef]
- Wołejko, E.; Łozowicka, B.; Kaczyński, P. Pesticide Residues in Berries Fruits and Juices and the Potential Risk for Consumers. Desalination Water Treat. 2014, 52, 3804–3818. [Google Scholar] [CrossRef]




| EPN Species | Crop | Target Pest | Reference 1 |
|---|---|---|---|
| H. marelatus Liu & Berry, 1996 | Strawberry | Otiorhynchus sulcatus (Fabricius, 1775) (Coleoptera: Curculionidae) | [11] |
| S. carpocapsae and S. glaseri (Steiner, 1929) | Blueberries, strawberries, and raspberries | O. sulcatus | [69] |
| S. carpocapsae and H. bacteriophora | Strawberry | Synanthedon bibionipennis (Boisduval, 1869) (Lepidoptera: Sesiidae) | [65] |
| H. bacteriophora | Strawberry | Lobiopa insularis (Laporte de Castelnau, 1840) (Coleoptera: Nitidulidae) | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gutiérrez-Cárdenas, O.G.; López-Macías, H.J.; Peña-Calzada, K.; Arias-Robledo, G.; Oyoque-Salcedo, G.; Zepeda-Jazo, I.; Loeza-Lara, P.D.; Heil, M.; Hernández-Zepeda, O.F. Advances in Micro- and Macrobiological Strategies for Pest Control in Berry Production Systems: A Critical Review. Plants 2026, 15, 144. https://doi.org/10.3390/plants15010144
Gutiérrez-Cárdenas OG, López-Macías HJ, Peña-Calzada K, Arias-Robledo G, Oyoque-Salcedo G, Zepeda-Jazo I, Loeza-Lara PD, Heil M, Hernández-Zepeda OF. Advances in Micro- and Macrobiological Strategies for Pest Control in Berry Production Systems: A Critical Review. Plants. 2026; 15(1):144. https://doi.org/10.3390/plants15010144
Chicago/Turabian StyleGutiérrez-Cárdenas, Oscar Giovanni, Humberto Javier López-Macías, Kolima Peña-Calzada, Gerardo Arias-Robledo, Guadalupe Oyoque-Salcedo, Isaac Zepeda-Jazo, Pedro Damián Loeza-Lara, Martin Heil, and Omar Fabián Hernández-Zepeda. 2026. "Advances in Micro- and Macrobiological Strategies for Pest Control in Berry Production Systems: A Critical Review" Plants 15, no. 1: 144. https://doi.org/10.3390/plants15010144
APA StyleGutiérrez-Cárdenas, O. G., López-Macías, H. J., Peña-Calzada, K., Arias-Robledo, G., Oyoque-Salcedo, G., Zepeda-Jazo, I., Loeza-Lara, P. D., Heil, M., & Hernández-Zepeda, O. F. (2026). Advances in Micro- and Macrobiological Strategies for Pest Control in Berry Production Systems: A Critical Review. Plants, 15(1), 144. https://doi.org/10.3390/plants15010144

