The Wheat Nucleoredoxin TaNRX1-2D Gene Ameliorates Salt Tolerance in Wheat (Triticum aestivum L.)
Abstract
1. Introduction
2. Results
2.1. Identification of Salt Tolerance in TaNRX1-2D Transgenic Wheat
2.2. Screening and Identification of Transcription Factor Regulating TaNRX1-2D
2.2.1. Screening of Transcription Factors Using Y1H Assay
2.2.2. Analysis of Regulatory Mechanisms Using D-LUC Assay
2.2.3. Detection of Transcriptional Activation and Subcellular Localization of TaERD15L-3B as Well as Expression Profile Analysis of TaERD15L-3B Following ABA Treatment
2.2.4. Silencing of TaERD15L-3B Mediated by BSMV-VIGS Reduced Salt Tolerance in Wheat
2.3. Analysis of the Interaction Between TaNRX1-2D and TaCAT2-B
2.4. Proteomic Analysis of TaNRX1-2D Transgenic Wheat Under Salt Stress
2.4.1. Quality Assessment of Proteomics
2.4.2. Differentially Expressed Protein (DEP) Analysis
3. Discussion
3.1. TaNRX1-2D Positively Regulates Salt Stress Tolerance in Transgenic Wheat (Triticum aestivum L.)
3.2. TaERD15L-3B Is an Upstream Regulatory Factor of TaNRX1-2D
3.3. TaCAT2-B Is the Target Protein of TaNRX1-2D
3.4. TaNRX1-2D Mediates Salt Stress Tolerance in Wheat by Regulating the Protein Abundance of Hexokinase (HXK) and Non-Specific Lipid-Transfer Protein (nsLTP)
4. Materials and Methods
4.1. Plant Materials and Stress Treatments
4.2. Physiological and Biochemical Index Analyses
4.3. Yeast One-Hybrid Assay
4.4. Dual-Luciferase Reporter Assay
4.5. RNA Extraction and Real-Time Quantitative PCR (RT-qPCR)
4.6. Transcriptional Activation Analysis of TaERD15L-3B Protein
4.7. Subcellular Localization Assay of TaERD15L-3B
4.8. Gene Silencing of TaERD15L-3B in Wheat
4.9. The Luciferase Complementation Assay (LCA)
4.10. The Bimolecular Fluorescence Complementation (BiFC) Assay
4.11. Data-Independent Acquisition (DIA) Proteomics
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Soil salinity: A global threat to sustainable development. Soil Use Manag. 2022, 38, 39–67. [Google Scholar] [CrossRef]
- Farooq, M.; Zahra, N.; Ullah, A.; Nadeem, F.; Rehman, A.; Kapoor, R.; Al-Hinani, M.S.; Siddique, K.H. Salt stress in wheat: Effects, tolerance mechanisms, and management. J. Soil Sci. Plant Nutr. 2024, 24, 8151–8173. [Google Scholar] [CrossRef]
- Mishra, A.; Tanna, B. Halophytes: Potential resources for salt stress tolerance genes and promoters. Front. Plant Sci. 2017, 8, 829. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Bioch. 2020, 156, 64–77. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Oxidant and antioxidant signalling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005, 28, 1056–1071. [Google Scholar] [CrossRef]
- Miller, G.; Suzuki, N.; Yilmaz, S.C.; Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010, 33, 453–467. [Google Scholar] [CrossRef]
- Ying, J.; Clavreul, N.; Sethuraman, M.; Adachi, T.; Cohen, R.A. Thiol oxidation in signaling and response to stress: Detection and quantification of physiological and pathophysiological thiol modifications. Free Radic. Biol. Med. 2007, 43, 1099–1108. [Google Scholar] [CrossRef]
- Santos, C.V.D.; Rey, P. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 2006, 11, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.M.; Spoel, S.H. Thioredoxin-mediated redox signalling in plant immunity. Plant Sci. 2019, 279, 27–33. [Google Scholar] [CrossRef]
- Kurooka, H.; Kato, K.; Minoguchi, S. Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin. Genomics 1997, 39, 331–339. [Google Scholar] [CrossRef]
- Li, Y.B.; Han, L.B.; Wang, H.Y. The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton. Plant Physiol. 2016, 170, 2392–2406. [Google Scholar] [CrossRef]
- Cha, J.Y.; Ahn, G.; Jeong, S.Y.; Shin, G.-I.; Ali, I.; Ji, M.G.; Alimzhan, A.; Lee, S.Y.; Kim, M.G.; Kim, W.-Y. Nucleoredoxin 1 positively regulates heat stress tolerance by enhancing the transcription of antioxidants and heat-shock proteins in tomato. Biochem. Biophys. Res. Commun. 2022, 635, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Kneeshaw, S.; Keyani, R.; Hinoux, V.D.; Imrie, L.; Loake, G.J.; Le Bihan, T.; Reichheld, J.-P.; Spoel, S.H. Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes. Proc. Natl. Acad. Sci. USA 2017, 114, 8414–8419. [Google Scholar] [CrossRef] [PubMed]
- Geigenberger, P.; Thormählen, I.; Daloso, D.M.; Fernie, A.R. The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci. 2017, 22, 249–262. [Google Scholar] [CrossRef]
- Motohashi, K.; Kondoh, A.; Stumpp, M.T.; Hisabori, T. Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc. Natl. Acad. Sci. USA 2001, 98, 11224–11229. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Zhou, J.F.; Wei, F.; Song, T.; Yu, Y.; Yu, M.; Fan, Q.; Yang, Y.; Xue, G.; Zhang, X. Nucleoredoxin gene TaNRX1 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Front. Plant Sci. 2021, 12, 756338. [Google Scholar] [CrossRef]
- Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Cheng, J.; Wei, F.; Zhang, M.F.; Li, N.; Song, T.; Wang, Y.; Chen, D.; Xiang, J.; Zhang, X. Identification of a 193 bp promoter region of TaNRX1-D gene from common wheat that contributes to osmotic or ABA stress inducibility in transgenic Arabidopsis. Genes Genom. 2021, 43, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.F.; Song, T.Q.; Zhou, H.W.; Zhang, M.; Li, N.; Xiang, J.; Zhang, X. Genome-wide identification, characterization, evolution, and expression pattern analyses of the typical thioredoxin gene family in wheat (Triticum aestivum L.). Front. Plant Sci. 2022, 13, 1020584. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.J.; Yun, L.; Ji, L.; Li, G.; Ji, M.; Shi, Y.; Zheng, X. Catalase (CAT) gene family in wheat (Triticum aestivum L.): Evolution, expression pattern and function analysis. Int. J. Mol. Sci. 2022, 23, 542. [Google Scholar] [CrossRef]
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef]
- Abogadallah, G.M. Insights into the significance of antioxidative defense under salt stress. Plant Signal. Behav. 2010, 5, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Hazra, S.; Chatterjee, A.; Bhattacharyya, S.; Sen, P. Nucleoredoxin Vis-à-Vis a Novel Thioredoxin in Regulating Oxidative Stress in Plants: A Review. Agric. Res. 2024, 13, 400–418. [Google Scholar] [CrossRef]
- Dvořák, P.; Krasylenko, Y.; Zeiner, A.; Šamaj, J.; Takáč, T. Signaling toward reactive oxygen species-scavenging enzymes in plants. Front. Plant Sci. 2021, 11, 618835. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.S.; Fontes, E.P.B.; Fietto, L.G. EARLY RESPONSIVE to DEHYDRATION 15, a new transcription factor that integrates stress signaling pathways. Plant Signal. Behav. 2011, 6, 1993–1996. [Google Scholar] [CrossRef]
- Aalto, M.K.; Helenius, E.; Kariola, T.; Pennanen, V.; Heino, P.; Hõrak, H.; Puzõrjova, I.; Kollist, H.; Palva, E.T. ERD15-An attenuator of plant ABA responses and stomatal aperture. Plant Sci. 2012, 182, 19–28. [Google Scholar] [CrossRef]
- Alves, M.S.; Reis, P.A.B.; Dadalto, S.P.; Faria, J.A.Q.A.; Fontes, E.P.B.; Fietto, L.G. A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. J. Biol. Chem. 2011, 286, 20020–20030. [Google Scholar] [CrossRef]
- Ziaf, K.; Loukehaich, R.; Gong, P.; Liu, H.; Han, Q.; Wang, T.; Li, H.; Ye, Z. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant Cell Physiol. 2011, 52, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.M.; Fu, Q.K.; Lv, H.; Gao, A.; Chen, X.; Yang, Q.; Wang, Y.; Li, W.; Fu, F.; Yu, H. Genome-wide characterization and function analysis of ZmERD15 Genes’ response to saline stress in Zea mays L. Int. J. Mol. Sci. 2022, 23, 15721. [Google Scholar] [CrossRef]
- Moore, B.; Zhou, L.; Rolland, F.; Hall, Q.; Cheng, W.-H.; Liu, Y.-X.; Hwang, I.; Jones, T.; Sheen, J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 2003, 300, 332–336. [Google Scholar] [CrossRef]
- Kelly, G.; Schwartz, R.D.; Sade, N.; Moshelion, M.; Levi, A.; Alchanatis, V.; Granot, D. The pitfalls of transgenic selection and new roles of AtHXK1: A high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar. Plant Physiol. 2012, 159, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; McCormack, M.; Li, L.; Hall, Q.; Xiang, C.; Sheen, J. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 2013, 496, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Shan, S.C.; Wang, R.; Xu, W.; Yan, N.; Niu, N.; Zhang, G.; Gao, X.; Min, D.; Song, Y. Active oxygen generation induced by the glucose sensor TaHXK7-1A decreased the drought resistance of transgenic Arabidopsis and wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2024, 207, 108410. [Google Scholar] [CrossRef] [PubMed]
- Sehar, Z.; Masood, A.; Khan, N.A. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ. Exp. Bot. 2019, 161, 277–289. [Google Scholar] [CrossRef]
- Missaoui, K.; Klein, Z.G.; Castro, D.P.; Hernandez-Ramirez, G.; Garrido-Arandia, M.; Brini, F.; Diaz-Perales, A.; Tome-Amat, J. Plant non-specific lipid transfer proteins: An overview. Plant Physiol. Biochem. 2022, 171, 115–127. [Google Scholar] [CrossRef]
- Song, H.; Yao, P.P.; Zhang, S.T.; Jia, H.; Yang, Y.; Liu, L. A non-specific lipid transfer protein, NtLTPI.38, positively mediates heat tolerance by regulating photosynthetic ability and antioxidant capacity in tobacco. Plant Physiol. Biochem. 2023, 200, 107791. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Li, J.N.; Li, M.M.; Cheng, Z.; Xu, Q.; Song, X.; Shang, X.; Guo, W. Overexpression of a cotton nonspecific lipid transfer protein gene, GhLTP4, enhances drought tolerance by remodeling lipid profiles, regulating abscisic acid homeostasis and improving tricarboxylic acid cycle in cotton. Environ. Exp. Bot. 2022, 201, 104991. [Google Scholar] [CrossRef]
- Zhang, P.G.; Hou, Z.H.; Chen, J.; Zhou, Y.-B.; Chen, M.; Fang, Z.-W.; Ma, Y.-Z.; Ma, D.-F.; Xu, Z.-S. The non-specific lipid transfer protein GmLtpI.3 is involved in drought and salt tolerance in soybean. Environ. Exp. Bot. 2022, 196, 104823. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Feldman, M.; Levy, A.A.; Fahima, T.; Korol, A. Genomic asymmetry in allopolyploid plants: Wheat as a model. J. Exp. Bot. 2012, 63, 5045–5059. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Li, C.; Yan, L.J. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS ONE 2011, 6, e26468. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Xu, K.; Kong, D.Y.; Wu, L.; Chen, Q.; Ma, X.; Ma, S.; Li, T.; Xie, Q.; Liu, H.; et al. Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1. Plant Biotechnol. J. 2022, 20, 1743–1755. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, T.; Wu, S.F.; Yang, C.; Bai, M.; Shu, K.; Li, K.; Zhang, G.; Jin, Z.; He, F.; et al. iProX: An integrated proteome resource. Nucleic Acids Res. 2019, 47, 1211–1217. [Google Scholar] [CrossRef]
- Chen, T.; Ma, J.; Liu, Y.; Chen, Z.; Xiao, N.; Lu, Y.; Fu, Y.; Yang, C.; Li, M.; Wu, S.; et al. iProX in 2021: Connecting proteomics data sharing with big data. Nucleic Acids Res. 2022, 50, 1522–1527. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhou, J.; Chang, X.; Bu, Y.; Song, T.; Kang, L.; Dong, Y.; Lei, X.; Wang, Y.; Wang, X.; Ren, J.; et al. The Wheat Nucleoredoxin TaNRX1-2D Gene Ameliorates Salt Tolerance in Wheat (Triticum aestivum L.). Plants 2026, 15, 146. https://doi.org/10.3390/plants15010146
Zhou J, Chang X, Bu Y, Song T, Kang L, Dong Y, Lei X, Wang Y, Wang X, Ren J, et al. The Wheat Nucleoredoxin TaNRX1-2D Gene Ameliorates Salt Tolerance in Wheat (Triticum aestivum L.). Plants. 2026; 15(1):146. https://doi.org/10.3390/plants15010146
Chicago/Turabian StyleZhou, Jianfei, Xiling Chang, Yaning Bu, Tianqi Song, Ling Kang, Yan Dong, Xinpeng Lei, Yuxin Wang, Xiaoxing Wang, Jiandong Ren, and et al. 2026. "The Wheat Nucleoredoxin TaNRX1-2D Gene Ameliorates Salt Tolerance in Wheat (Triticum aestivum L.)" Plants 15, no. 1: 146. https://doi.org/10.3390/plants15010146
APA StyleZhou, J., Chang, X., Bu, Y., Song, T., Kang, L., Dong, Y., Lei, X., Wang, Y., Wang, X., Ren, J., Xiang, J., Chen, D., & Zhang, X. (2026). The Wheat Nucleoredoxin TaNRX1-2D Gene Ameliorates Salt Tolerance in Wheat (Triticum aestivum L.). Plants, 15(1), 146. https://doi.org/10.3390/plants15010146

