Carvacrol and Streptomycin in Combination Weaken Streptomycin Resistance in Pectobacterium carotovorum subsp. carotovorum
Abstract
:1. Introduction
2. Results
2.1. MICs of Carvacrol, Streptomycin, and Their Combination Against SP
2.2. Impact of Carvacrol, Streptomycin, and Their Combination on Conductivity and Movement
2.3. Bacterial Morphology: SEM and CLSM Observations
2.4. Effects of Carvacrol, Streptomycin, and Their Combination on the Extracellular Hydrolase Activity of SP
2.5. Evaluating Disease Control Effects in Different Vegetables
Treatment | MDRx | Inhibition Rate (%) | 95%CI for | ||||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
CK | 5.333 | 37.667 | 0.953 | 0 | 0.88 | 1.026 | |
Carvacrol | 1/4 MIC | 3 | 24 | 0.603 | 37.92 c | 0.603 | 0.603 |
1/2 MIC | 1 | 7 | 0.167 | 71.75 b | 0.167 | 0.167 | |
MIC | 1 | 7 | 0.167 | 91.00 a | 0.167 | 0.167 | |
Streptomycin | 1/4 MIC | 3 | 24 | 0.603 | 27.88 c | 0.603 | 0.603 |
1/2 MIC | 2 | 16 | 0.397 | 58.74 b | 0.397 | 0.397 | |
MIC | 1 | 7 | 0.167 | 86.54 a | 0.167 | 0.167 | |
Combination | 1/4 MIC | 3 | 24 | 0.603 | 39.55 c | 0.603 | 0.603 |
1/2 MIC | 1.667 | 13 | 0.321 | 68.20 b | 0.01 | 0.65 | |
MIC | 1 | 7 | 0.167 | 90.85 a | 0.167 | 0.167 |
Treatment | MDRx | Inhibition Rate (%) | 95%CI for | ||||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
CK | CK | 9.333 | 38 | 0.962 | 0 | 0.917 | 1.003 |
Carvacrol | 1/4 MIC | 5 | 25.833 | 0.65 | 45.93 c | 0.212 | 1.081 |
1/2 MIC | 3.333 | 14.667 | 0.363 | 69.63 b | 0.134 | 0.593 | |
MIC | 1.333 | 4.667 | 0.107 | 90.37 a | −0.83 | 0.29 | |
Streptomycin | 1/4 MIC | 5.333 | 28.167 | 0.709 | 42.96 c | 0.463 | 0.951 |
1/2 MIC | 3.333 | 14.667 | 0.363 | 65.93 b | 0.134 | 0.593 | |
MIC | 2 | 8 | 0.192 | 83.70 a | 0.19 | 0.19 | |
Combination | 1/4 MIC | 4 | 19 | 0.474 | 58.52 c | 0.47 | 0.47 |
1/2 MIC | 3.333 | 15.333 | 0.38 | 67.41 b | −0.025 | 0.778 | |
MIC | 1 | 3 | 0.064 | 92.22 a | 0.06 | 0.06 |
Treatment | MDRx | Inhibition Rate (%) | 95%CI for | ||||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
CK | CK | 5.333 | 36.333 | 0.919 | 0 | 0.773 | 1.035 |
Carvacrol | 1/4 MIC | 3 | 23 | 0.577 | 49.19 a | 0.577 | 0.577 |
1/2 MIC | 1.667 | 12 | 0.295 | 76.55 b | −0.036 | 0.626 | |
MIC | 1 | 6 | 0.141 | 91.53 a | 0.141 | 0.141 | |
Streptomycin | 1/4 MIC | 3 | 23 | 0.577 | 47.56 c | 0.577 | 0.577 |
1/2 MIC | 2 | 15 | 0.372 | 71.66 b | 0.372 | 0.372 | |
MIC | 1 | 6 | 0.141 | 88.93 a | 0.141 | 0.141 | |
Combination | 1/4 MIC | 3 | 23 | 0.577 | 50.81 c | 0.577 | 0.577 |
1/2 MIC | 1.667 | 12 | 0.295 | 77.20 b | −0.363 | 0.626 | |
MIC | 1 | 6 | 0.141 | 92.18 a | 0.141 | 0.141 |
2.6. Transcriptomics Analysis
2.7. Real-Time Quantitative PCR
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Culture of Resistant Strains and MIC of Carvacrol, Streptomycin, and Their Combination Against Resistant Strains
4.3. Time–Kill Assay
4.4. Determination of Relative Conductivity
4.5. Motility Assay
4.6. Bacterial Morphology: SEM and CLSM Analyses
4.7. Effect of Carvacrol, Streptomycin, and Their Combination on the Extracellular Hydrolase Activity of SP
4.8. Evaluating Control Effects on Chinese Cabbages, Carrots, and Potatoes
4.9. Transcriptomic Analysis
4.10. Quantitative Real-Time PCR Validation
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, G.; Kim, J.H.; Kim, M. Potential of bacteriophage PCT27 to reduce the use of agrochemicals to control Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage (Brassica pekinensis). Food Control 2023, 154, 109985. [Google Scholar] [CrossRef]
- Marquez-Villavicencio, M.d.P.; Weber, B.; Witherell, R.A.; Willis, D.K.; Charkowski, A.O. The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS ONE 2011, 6, e22974. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Ji, C.; Liu, B.; Zou, L.; Chen, G.; Yang, B. Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat. Commun. 2016, 7, 13435. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.W.; Boraston, A.B. Structural biology of pectin degradation by Enterobacteriaceae. Microbiol. Mol. Biol. Rev. 2008, 72, 301–316. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Zakharova, O.V.; Graskova, I.A.; Krutovsky, K.V. Effect of Selenium, Copper and Manganese Nanocomposites in Arabinogalactan Matrix on Potato Colonization by Phytopathogens Clavibacter sepedonicus and Pectobacterium carotovorum. Plants 2024, 13, 3496. [Google Scholar] [CrossRef]
- Bhat, K.; Masood, S.; Bhat, N.; Bhat, M.A.; Razvi, S.; Mir, M.; Sabina Akhtar, S.A.; Wani, N.; Habib, M. Current status of post harvest soft rot in vegetables: A review. Asian J. Plant Sci. 2010, 9, 200–208. [Google Scholar] [CrossRef]
- Rastgou, M.; Rezaee Danesh, Y.; Ercisli, S.; Sayyed, R.Z.; El Enshasy, H.A.; Dailin, D.J.; Alfarraj, S.; Ansari, M.J. The Effect of Some Wild Grown Plant Extracts and Essential Oils on Pectobacterium betavasculorum: The Causative Agent of Bacterial Soft Rot and Vascular Wilt of Sugar Beet. Plants 2022, 11, 1155. [Google Scholar] [CrossRef]
- Toth, I.; Sullivan, L.; Brierley, J.; Avrova, A.; Hyman, L.; Holeva, M.; Broadfoot, L.; Pérombelon, M.; McNicol, J. Relationship between potato seed tuber contamination by Erwinia carotovora ssp. atroseptica, blackleg disease development and progeny tuber contamination. Plant Pathol. 2003, 52, 119–126. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, M.; Zhang, B.; Liu, Y.; Fan, J.; Wang, Z.; Song, L.; Mohamed Abdul, P.; Zhang, H. Effects of natural rheum tanguticum on the cell wall integrity of resistant phytopathogenic Pectobacterium carotovorum subsp. Carotovorum. Molecules 2022, 27, 5291. [Google Scholar] [CrossRef]
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Sang, M.K.; Dutta, S.; Park, K. Influence of commercial antibiotics on biocontrol of soft rot and plant growth promotion in Chinese cabbages by Bacillus vallismortis EXTN-1 and BS07M. Res. Plant Dis. 2015, 21, 255–260. [Google Scholar] [CrossRef]
- Yamanaka, K.; Oikawa, H.; Ogawa, H.-o.; Hosono, K.; Shinmachi, F.; Takano, H.; Sakuda, S.; Beppu, T.; Ueda, K. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 2005, 151, 2899–2905. [Google Scholar] [CrossRef]
- Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000, 407, 340–348. [Google Scholar] [CrossRef]
- Gill, H.K.; Garg, H. Pesticide: Environmental impacts and management strategies. Pestic. Toxic Asp. 2014, 8, 10–5772. [Google Scholar]
- El-Zaemey, S.; Heyworth, J.; Fritschi, L. Noticing pesticide spray drift from agricultural pesticide application areas and breast cancer: A case-control study. Aust. N. Z. J. Public Health 2013, 37, 547–555. [Google Scholar] [CrossRef]
- Rangasamy, K.; Athiappan, M.; Devarajan, N.; Samykannu, G.; Parray, J.A.; Aruljothi, K.; Shameem, N.; Alqarawi, A.A.; Hashem, A.; Abd_Allah, E.F. Pesticide degrading natural multidrug resistance bacterial flora. Microb. Pathog. 2018, 114, 304–310. [Google Scholar] [CrossRef]
- da Silva, G.C.; Gonçalves, O.S.; Rosa, J.N.; França, K.C.; Bossé, J.T.; Santana, M.F.; Langford, P.R.; Bazzolli, D.M.S. Mobile genetic elements drive antimicrobial resistance gene spread in Pasteurellaceae species. Front. Microbiol. 2022, 12, 773284. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Norelli, J.; Ehret, G. Detection of streptomycin-resistant Pseudomonas syringae pv. papulans in Michigan apple orchards. Plant Dis. 1991, 75, 529–531. [Google Scholar] [CrossRef]
- Sundin, G.; Bender, C. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 1993, 59, 1018–1024. [Google Scholar] [CrossRef]
- Kim, D.; Kim, N.; Kim, C.; Jeong, M.; Oh, K.; Kim, B.; Ryu, J.; Jung, J.; Jee, S.; Ryu, K. Investigation of antimicrobial minimum inhibitory concentration of Pectobacterium spp. isolated from agricultural produce. Korean J. Pestic. Sci. 2021, 25, 333–342. [Google Scholar] [CrossRef]
- Myo, H.; Liana, D.; Phanumartwiwath, A. Unlocking Therapeutic Potential: Comprehensive Extraction, Profiling, and Pharmacological Evaluation of Bioactive Compounds from Eclipta alba (L.) Hassk. for Dermatological Applications. Plants 2023, 13, 33. [Google Scholar] [CrossRef]
- Yang, Y.; Ashworth, A.J.; Willett, C.; Cook, K.; Upadhyay, A.; Owens, P.R.; Ricke, S.C.; DeBruyn, J.M.; Moore, P.A., Jr. Review of antibiotic resistance, ecology, dissemination, and mitigation in US broiler poultry systems. Front. Microbiol. 2019, 10, 2639. [Google Scholar] [CrossRef]
- Dramé, O.; Leclair, D.; Parmley, E.J.; Deckert, A.; Ouattara, B.; Daignault, D.; Ravel, A. Antimicrobial resistance of Campylobacter in broiler chicken along the food chain in Canada. Foodborne Pathog. Dis. 2020, 17, 512–520. [Google Scholar] [CrossRef]
- Naeim, H.; El-Hawiet, A.; Abdel Rahman, R.A.; Hussein, A.; El Demellawy, M.A.; Embaby, A.M. Antibacterial activity of Centaurea pumilio L. root and aerial part extracts against some multidrug resistant bacteria. BMC Complement. Med. Ther. 2020, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef]
- González Barrios, A.F.; Zuo, R.; Hashimoto, Y.; Yang, L.; Bentley, W.E.; Wood, T.K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 2006, 188, 305–316. [Google Scholar] [CrossRef]
- Song, S.; Wood, T.K. The primary physiological roles of autoinducer 2 in Escherichia coli are chemotaxis and biofilm formation. Microorganisms 2021, 9, 386. [Google Scholar] [CrossRef] [PubMed]
- Schorr, R.R.; Ballesteros Garcia, M.J.; Petermann, D.; Moreira, R.R.; Sales Maia, B.; Marques, F.A.; May-De Mio, L.L. Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple. Plants 2024, 13, 3196. [Google Scholar] [CrossRef]
- Imran, M.; Aslam, M.; Alsagaby, S.A.; Saeed, F.; Ahmad, I.; Afzaal, M.; Arshad, M.U.; Abdelgawad, M.A.; El-Ghorab, A.H.; Khames, A. Therapeutic application of carvacrol: A comprehensive review. Food Sci. Nutr. 2022, 10, 3544–3561. [Google Scholar] [CrossRef]
- Retnosari, R.; Ali, A.H.; Zainalabidin, S.; Ugusman, A.; Oka, N.; Latip, J. The recent discovery of a promising pharmacological scaffold derived from carvacrol: A review. Bioorg. Med. Chem. Lett. 2024, 109, 129826. [Google Scholar] [CrossRef] [PubMed]
- Mączka, W.; Twardawska, M.; Grabarczyk, M.; Wińska, K. Carvacrol—A natural phenolic compound with antimicrobial properties. Antibiotics 2023, 12, 824. [Google Scholar] [CrossRef] [PubMed]
- Ait-Ouazzou, A.; Espina, L.; Gelaw, T.; de Lamo-Castellví, S.; Pagán, R.; García-Gonzalo, D. New insights in mechanisms of bacterial inactivation by carvacrol. J. Appl. Microbiol. 2013, 114, 173–185. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Zinno, P.; Guantario, B.; Lombardi, G.; Ranaldi, G.; Finamore, A.; Allegra, S.; Mammano, M.M.; Fascella, G.; Raffo, A.; Roselli, M. Chemical Composition and Biological Activities of Essential Oils from Origanum vulgare Genotypes Belonging to the Carvacrol and Thymol Chemotypes. Plants 2023, 12, 1344. [Google Scholar] [CrossRef]
- Nostro, A.; Papalia, T. Antimicrobial activity of carvacrol: Current progress and future prospectives. Recent Pat. Anti-Infect. Drug Discov. 2012, 7, 28–35. [Google Scholar] [CrossRef]
- Lorca, G.; Ballestero, D.; Langa, E.; Pino-Otín, M.R. Enhancing Antibiotic Efficacy with Natural Compounds: Synergistic Activity of Tannic Acid and Nerol with Commercial Antibiotics against Pathogenic Bacteria. Plants 2024, 13, 2717. [Google Scholar] [CrossRef] [PubMed]
- Owen, L.; Laird, K. Synchronous application of antibiotics and essential oils: Dual mechanisms of action as a potential solution to antibiotic resistance. Crit. Rev. Microbiol. 2018, 44, 414–435. [Google Scholar] [CrossRef]
- Miladinović, D.L.; Ilić, B.S.; Kocić, B.D.; Marković, M.S.; Miladinović, L.C. In vitro trials of Dittrichia graveolens essential oil combined with antibiotics. Nat. Prod. Commun. 2016, 11, 1934578X1601100642. [Google Scholar] [CrossRef]
- Köse, E.O. In vitro activity of carvacrol in combination with meropenem against carbapenem-resistant Klebsiella pneumoniae. Folia Microbiol. 2022, 67, 143–156. [Google Scholar] [CrossRef]
- Asadi, S.; Nayeri-Fasaei, B.; Zahraei-Salehi, T.; Yahya-Rayat, R.; Shams, N.; Sharifi, A. Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli. BMC Microbiol. 2023, 23, 55. [Google Scholar] [CrossRef] [PubMed]
- Chusri, S.; Villanueva, I.; Voravuthikunchai, S.P.; Davies, J. Enhancing antibiotic activity: A strategy to control Acinetobacter infections. J. Antimicrob. Chemother. 2009, 64, 1203–1211. [Google Scholar] [CrossRef]
- Babinska, W.; Motyka-Pomagruk, A.; Sledz, W.; Kowalczyk, A.; Kaczynski, Z.; Lojkowska, E. The first polish isolate of a novel species Pectobacterium aquaticum originates from a pomeranian lake. Int. J. Environ. Res. Public Health 2021, 18, 5041. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.J.; Mukherjee, I.; Shakil, N.A.; Rana, V.S.; Kaushik, P.; Debnath, S. Antibiotics in agriculture: Use and impact. Ind. J. Ethnophytopharm. 2018, 4, 4–19. [Google Scholar]
- Taylor, P.; Reeder, R. Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric. Biosci. 2020, 1, 1. [Google Scholar] [CrossRef]
- Andreasen, C.B.; Spickler, A.R.; Jones, B.E. Swedish antimicrobial regulations and their impact on food animal production. J. Am. Vet. Med. Assoc. 2005, 227, 41–45. [Google Scholar] [CrossRef]
- Lima, M.d.C.; De Sousa, C.P.; Fernandez-Prada, C.; Harel, J.; Dubreuil, J.; De Souza, E. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 2019, 130, 259–270. [Google Scholar] [CrossRef]
- Cirino, I.C.S.; Menezes-Silva, S.M.P.; Silva, H.T.D.; de Souza, E.L.; Siqueira-Júnior, J.P. The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy 2015, 60, 290–293. [Google Scholar] [CrossRef]
- Ravishankar, S.; Zhu, L.; Reyna-Granados, J.; Law, B.; Joens, L.; Friedman, M. Carvacrol and cinnamaldehyde inactivate antibiotic-resistant Salmonella enterica in buffer and on celery and oysters. J. Food. Prot. 2010, 73, 234–240. [Google Scholar] [CrossRef]
- Wijesundara, N.M.; Lee, S.F.; Cheng, Z.; Davidson, R.; Rupasinghe, H.V. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci. Rep. 2021, 11, 1487. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT 2020, 122, 109057. [Google Scholar] [CrossRef]
- La Storia, A.; Ercolini, D.; Marinello, F.; Di Pasqua, R.; Villani, F.; Mauriello, G. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res. Microbiol. 2011, 162, 164–172. [Google Scholar] [CrossRef]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef]
- Lambert, R.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, C.; Ye, Y.; Cui, H.; Lin, L. Inhibition mechanism of cyclo (L-Phe-L-Pro) on early stage Staphylococcus aureus biofilm and its application on food contact surface. Food Biosci. 2022, 49, 101968. [Google Scholar] [CrossRef]
- Huang, M.; Luo, J.; Shen, J.-Y. Synergistic antibacterial effect and mechanisms of dihydroartemisinin and cefuroxime incombination. China J. Chin. Mater. Medica 2020, 45, 2975–2981. [Google Scholar]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef]
- Wang, C.; Ye, F.; Kumar, V.; Gao, Y.-G.; Zhang, L.-H. BswR controls bacterial motility and biofilm formation in Pseudomonas aeruginosa through modulation of the small RNA rsmZ. Nucleic Acids Res. 2014, 42, 4563–4576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, Y.; Wang, J.; Ma, J.; Liu, L.; Islam, R.; Qi, Y.; Li, J.; Shen, T. Inhibitory effect and possible mechanism of oregano and clove essential oils against Pectobacterium carotovorum subsp. carotovorum as onion soft rot in storage. Postharvest. Biol. Technol. 2023, 196, 112164. [Google Scholar] [CrossRef]
- Paulander, W.; Maisnier-Patin, S.; Andersson, D.I. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σS). Genetics 2009, 183, 539–546. [Google Scholar] [CrossRef]
- Howarth, R.E.; Pattillo, C.M.; Griffitts, J.S.; Calvopina-Chavez, D.G. Three genes controlling streptomycin susceptibility in Agrobacterium fabrum. J. Bacteriol. 2023, 205, e00165-00123. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Bai, K.; Kan, Y.; Jiang, N.; Thapa, S.P.; Coaker, G.; Li, J.; Luo, L. Variation in streptomycin resistance mechanisms in Clavibacter michiganensis. Phytopathology 2019, 109, 1849–1858. [Google Scholar] [CrossRef]
- Joly, N.; Engl, C.; Jovanovic, G.; Huvet, M.; Toni, T.; Sheng, X.; Stumpf, M.P.; Buck, M. Managing membrane stress: The phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev. 2010, 34, 797–827. [Google Scholar] [CrossRef]
- Toni, T.; Jovanovic, G.; Huvet, M.; Buck, M.; Stumpf, M.P. From qualitative data to quantitative models: Analysis of the phage shock protein stress response in Escherichia coli. BMC Syst. Biol. 2011, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.H.; Bolken, T.C.; Jones, K.F.; Zeller, G.O.; Hruby, D.E. Conserved DegP protease in gram-positive bacteria is essential for thermal and oxidative tolerance and full virulence in Streptococcus pyogenes. Infect. Immun. 2001, 69, 5538–5545. [Google Scholar] [CrossRef] [PubMed]
- Leiser, O.P.; Charlson, E.S.; Gerken, H.; Misra, R. Reversal of the ΔdegP phenotypes by a novel rpoE allele of Escherichia coli. PLoS ONE 2012, 7, e33979. [Google Scholar] [CrossRef]
- Marinoni, I.; Nonnis, S.; Monteferrante, C.; Heathcote, P.; Härtig, E.; Böttger, L.H.; Trautwein, A.X.; Negri, A.; Albertini, A.M.; Tedeschi, G. Characterization of L-aspartate oxidase and quinolinate synthase from Bacillus subtilis. FEBS J. 2008, 275, 5090–5107. [Google Scholar] [CrossRef]
- Nakamura, S.; Minamino, T. Flagella-driven motility of bacteria. Biomolecules 2019, 9, 279. [Google Scholar] [CrossRef]
- Yang, F.; Yang, L.; Chang, Z.; Chang, L.; Yang, B. Regulation of virulence and motility by acetate in enteropathogenic Escherichia coli. Int. J. Med. Microbiol. 2018, 308, 840–847. [Google Scholar] [CrossRef]
- Jia, T.; Liu, B.; Mu, H.; Qian, C.; Wang, L.; Li, L.; Lu, G.; Zhu, W.; Guo, X.; Yang, B. A novel small RNA promotes motility and virulence of enterohemorrhagic Escherichia coli O157:H7 in response to ammonium. MBio 2021, 12, e03605-20. [Google Scholar] [CrossRef]
- Jiang, R.; Xiang, M.; Chen, W.; Zhang, P.; Wu, X.; Zhu, G.; Tu, T.; Jiang, D.; Yao, X.; Luo, Y. Biofilm characteristics and transcriptomic analysis of Haemophilus parasuis. Vet. Microbiol. 2021, 258, 109073. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.; Nguyen, V.S.; Zoued, A.; Logger, L.; Pehau-Arnaudet, G.; Aschtgen, M.-S.; Spinelli, S.; Desmyter, A.; Bardiaux, B.; Dujeancourt, A. Biogenesis and structure of a type VI secretion membrane core complex. Nature 2015, 523, 555–560. [Google Scholar] [CrossRef]
- Raffa, R.G.; Raivio, T.L. A third envelope stress signal transduction pathway in Escherichia coli. Mol. Microbiol. 2002, 45, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Dal Molin, M.; Gut, M.; Rominski, A.; Haldimann, K.; Becker, K.; Sander, P. Molecular mechanisms of intrinsic streptomycin resistance in Mycobacterium abscessus. Antimicrob. Agents Chemother. 2018, 62, 10-1128. [Google Scholar] [CrossRef]
- Tong, C.; Liang, Y.; Zhang, Z.; Wang, S.; Zheng, X.; Liu, Q.; Song, B. Review of knockout technology approaches in bacterial drug resistance research. PeerJ 2023, 11, e15790. [Google Scholar] [CrossRef]
- Yang, Z.; Lan, T.; Luo, H.; Li, P.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhao, X.; Yang, Q. Emergence and mobilization of a novel lincosamide resistance gene lnu (I): From environmental reservoirs to pathogenic bacteria. Sci. Total Environ. 2024, 906, 167400. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Bening, S.C.; Collins, J.J. Antibiotic efficacy—Context matters. Curr. Opin. Microbiol. 2017, 39, 73–80. [Google Scholar] [CrossRef]
- Kumar, P.; Lokesh, V.; Doddaraju, P.; Kumari, A.; Singh, P.; Meti, B.S.; Sharma, J.; Gupta, K.J.; Manjunatha, G. Greenhouse and field experiments revealed that clove oil can effectively reduce bacterial blight and increase yield in pomegranate. Food Energy Secur. 2021, 10, e305. [Google Scholar] [CrossRef]
- Zhou, Q.; Tian, J.; Wang, X.; Lan, Q.; Mu, R.; Wang, J.; Islam, R.; Tian, Y. Revitalizing copper’s efficacy: Using carvacrol to overcome copper tolerance in Pectobacterium carotovorum subsp. carotovorum for enhanced prevention of soft rot disease during crop storage. Sci. Hortic. 2024, 338, 113559. [Google Scholar] [CrossRef]
- Ning, Y.; Hou, L.; Ma, M.; Li, M.; Zhao, Z.; Zhang, D.; Wang, Z.; Jia, Y. Synergistic antibacterial mechanism of sucrose laurate combined with nisin against Staphylococcus aureus and its application in milk beverage. LWT 2022, 158, 113145. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, R.; Singh, R.K. Design, synthesis, and antibacterial activities of novel heterocyclic arylsulphonamide derivatives. Interdiscip. Sci. Comput. Life Sci. 2018, 10, 748–761. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Xu, Q.; Liu, Y.; Wang, K.; Li, P.; Zheng, X. Rosmarinic Acid Restores the Ceftiofur Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus by Inhibiting Sortase A. J. Agric. Food Chem. 2024, 72, 27215–27224. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Zhang, R.; Yao, W. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation. Food Chem. 2020, 310, 125974. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Wang, R.; Agyekumwaa, A.K.; Yu, Y.; Xiao, X. Antibacterial effect of phenyllactic acid against Vibrio parahaemolyticus and its application on raw salmon fillets. LWT 2022, 154, 112586. [Google Scholar] [CrossRef]
- Song, X.; Liu, T.; Wang, L.; Liu, L.; Li, X.; Wu, X. Antibacterial effects and mechanism of mandarin (Citrus reticulata L.) essential oil against Staphylococcus aureus. Molecules 2020, 25, 4956. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Chen, T.; Ma, D.; Liu, J.; Xu, Y.; Tian, S. Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms. Postharvest Biol. Technol. 2018, 142, 46–54. [Google Scholar] [CrossRef]
- He, R.; Zhong, Q.; Chen, W.; Zhang, M.; Pei, J.; Chen, H.; Chen, W. Transcriptomic and proteomic investigation of metabolic disruption in Listeria monocytogenes triggered by linalool and its application in chicken breast preservation. LWT 2023, 176, 114492. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Wang, C.; Ye, B.; Hua, Z. Molecular cloning of the alpha subunit of complement component C8 (CpC8α) of whitespotted bamboo shark (Chiloscyllium plagiosum). Fish Shellfish Immunol. 2013, 35, 1993–2000. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Li, Y.; Wang, L.; Wu, C.; Su, X.; Tian, Y. Carvacrol and Streptomycin in Combination Weaken Streptomycin Resistance in Pectobacterium carotovorum subsp. carotovorum. Plants 2025, 14, 908. https://doi.org/10.3390/plants14060908
Shen Y, Li Y, Wang L, Wu C, Su X, Tian Y. Carvacrol and Streptomycin in Combination Weaken Streptomycin Resistance in Pectobacterium carotovorum subsp. carotovorum. Plants. 2025; 14(6):908. https://doi.org/10.3390/plants14060908
Chicago/Turabian StyleShen, Yue, Yiying Li, Litao Wang, Chenying Wu, Xu Su, and Yongqiang Tian. 2025. "Carvacrol and Streptomycin in Combination Weaken Streptomycin Resistance in Pectobacterium carotovorum subsp. carotovorum" Plants 14, no. 6: 908. https://doi.org/10.3390/plants14060908
APA StyleShen, Y., Li, Y., Wang, L., Wu, C., Su, X., & Tian, Y. (2025). Carvacrol and Streptomycin in Combination Weaken Streptomycin Resistance in Pectobacterium carotovorum subsp. carotovorum. Plants, 14(6), 908. https://doi.org/10.3390/plants14060908