Investigation of Growth and Ginsenoside Content of Wild-Simulated Ginseng Cultivated in Different Vegetation Environments for Establishing a Plant Growth Model
Abstract
:1. Introduction
2. Results
2.1. Forest Physiognomy and Meteorological Conditions of Wild-Simulated Ginseng Cultivation Sites with Coniferous and Mixed Forests
2.2. Soil Chemical Properties of Wild-Simulated Ginseng Cultivation Sites
2.3. Growth Characteristics of Wild-Simulated Ginseng
2.4. Ginsenoside Content of Wild-Simulated Ginseng
2.5. Correlation Between Soil Chemical Properties, Growth Characteristics, and Ginsenoside Content of Wild-Simulated Ginseng
3. Discussion
3.1. Differences in Topography, Forest Physiognomy, and Soil Chemical Properties of Wild-Simulated Ginseng Experimental Sites Composed of Coniferous and Mixed Forests
3.2. Comparison of Growth Characteristics and Ginsenoside Content of Wild-Simulated Ginseng in Different Forest Vegetation Environments
3.3. Effects of Soil Chemical Properties, Growth Characteristics, and Ginsenoside Content of Wild-Simulated Ginseng
4. Materials and Methods
4.1. Measurement of Forest Physiognomy and Topography, and Collection of Meteorological Data
4.2. Collection of Wild-Simulated Ginseng and Rhizospheric Soil Samples
4.3. Soil Chemical Properties of Wild-Simulated Ginseng Experimental Sites
4.4. Investigation of Growth Characteristics of Wild-Simulated Ginseng
4.5. Extraction of Wild-Simulated Ginseng and Reagents
4.6. Ginsenoside Content Analysis of Wild-Simulated Ginseng Samples
4.7. Statistical Analysis and Correlation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korea Forest Service (KFS). 2021 Statistical Yearbook of Forest; Korea Forest Service: Daejeon, Republic of Korea, 2021; p. 414. [Google Scholar]
- Jeon, S.W.; Kim, J.U.; Jung, H.C. A study on the forest classification for ecosystem services valuation. J. Korean Soc. Environ. Restor. Technol. 2013, 16, 31–39. [Google Scholar] [CrossRef]
- Alban, D.B. Effects of nutrient accumulation by aspen, spruce, and pine on soil properties. Soil Sci. Soc. Am. J. 1982, 46, 853–861. [Google Scholar] [CrossRef]
- Ni, Z.J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Mehalain, S.; Chenchouni, H. Quantifying how climatic factors influence essential oil yield in wild-growing plants. Arab. J. Geosci. 2021, 14, 1257. [Google Scholar] [CrossRef]
- Chen, Z.S.; Hsieh, C.F.; Jiang, F.Y.; Hsieh, T.S.; Sun, I.F. Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecol. 1997, 132, 229–241. [Google Scholar] [CrossRef]
- Chung, J.M.; Moon, H.S. Soil characteristics by the site types around Nari Basin in Ulleung island. J. Agric. Life Sci. 2010, 44, 45–50. [Google Scholar]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Gaiero, J.R.; McCall, C.A.; Thompson, K.A.; Day, N.J.; Best, A.S.; Dunfield, K.E. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. Am. J. Bot. 2013, 100, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef]
- Ma, Y.; Prasad, M.N.V.; Rajkumar, M.; Freitas, H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 2011, 29, 248–258. [Google Scholar] [CrossRef]
- Martinez-Viveros, O.; Jorquera, M.A.; Crowley, D.E.; Gajardo, G.; Mora, M.L. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 2010, 10, 293–319. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014, 32, 429–448. [Google Scholar] [CrossRef]
- Vacheron, J.; Desbrosses, G.; Bouffaud, M.L.; Touraine, B.; Moenne-Loccoz, Y.; Muller, D.; Legendre, L.; Wisniewski-Dye, F.; Prigent-Combaret, C. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 2013, 4, 356. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene role in plant growth, development and senescence: Interaction witih other phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017, 8, 53717. [Google Scholar] [CrossRef]
- Rivas-San Vicente, M.; Plasencia, J. Salicylic acid beyond defense: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef]
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- de Wit, M.; Galvao, V.C.; Fankhauser, C. Light-mediated hormonal regulation of plant growth and development. An. Rev. Plant Biol. 2016, 67, 513–537. [Google Scholar] [CrossRef]
- Korea Forestry Promotion Institute (KOFPI). The Cultivation of Wild-Simulated Ginseng: In Wild-Simulated Ginseng and Cultural Environments; Korea Forestry Promotion Institute: Seoul, Republic of Korea, 2013; pp. 14–34. [Google Scholar]
- NIFOS (National Institute of Forest Science). Wild-Simulated Ginseng Eco-Friendly Cultivation Manual; National Institute of Forest Science: Seoul, Republic of Korea, 2021; pp. 15–16. [Google Scholar]
- NIFOS (National Institute of Forest Science). 2023 Production of Forest Products; National Institute of Forest Science: Seoul, Republic of Korea, 2024; pp. 22–24. [Google Scholar]
- Choi, S.I.; Jeong, D.Y.; Kang, H.M.; Oh, H.J.; Cho, S.J.; Kim, H.; Kim, W.O.; Lee, K.M. Political alternatives to revitalizing the cultivation and management of mountain ginseng. Korean J. For. Econ. 2016, 23, 19–30. [Google Scholar]
- Kang, K.M.; Lee, J.Y.; Kim, M.U.; Lee, S.H. Effects of quality characteristics and antioxidant activity of Korean cultivated wild ginseng extract. J. Korean Soc. Food Sci. Nutr. 2016, 45, 1740–1746. [Google Scholar] [CrossRef]
- Nam, K.Y. Clinical applications and efficacy of Korean ginseng (Panax ginseng C.A. Meyer). J. Ginseng Res. 2002, 26, 111–131. [Google Scholar]
- Ko, S.; Leem, K. Discussion of ginseng properties through a historical research of Korean ginseng. Korea J. Herbol. 2009, 24, 169–172. [Google Scholar]
- Park, C.K.; Jeon, B.S.; Yang, J.W. The chemical components of Korean ginseng. Food Ind. Nutr. 2003, 8, 10–23. [Google Scholar]
- Kwon, H.J.; Cho, Y.J.; Kim, M.D. Enhancement of ginsenoside Rg1 and Rg5 contents in and extract of wood-cultivated ginseng by Lactobacillus plantarum. Microbiol. Biotechnol. Lett. 2017, 45, 305–310. [Google Scholar] [CrossRef]
- Kim, N.E.; Lee, M.O.; Jang, M.H.; Chung, B.H. Angiogenic effects of wood-cultivated ginseng extract and ginsenoside Rg5 in human umbilical vein endothelial cells. Korea J. Food Sci. Technol. 2018, 50, 349–355. [Google Scholar]
- Jung, J.I.; Kim, J.M.; Kim, H.S.; Kim, H.S.; Kim, E.J. Immunostimulatory effect of wild-cultivated ginseng extract via the increase in phagocytosis and cytokine secretions in RAW264.7 macrophages. J. Korean Soc. Food Sci. Nutr. 2019, 48, 686–691. [Google Scholar] [CrossRef]
- Kim, S.C.; Hwang, C.E.; Kim, B.O.L.; Lee, K.H.; Lee, J.H.; Cho, K.M.; Joo, O.S. Comparison of ginsenoside (Rg1, Rb1) content and radical-scavenging activities of wild-simulated ginseng extract with respect to the solvent. Korea J. Food Preserv. 2021, 28, 261–269. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jung, J.G.; Kim, S.C.; Cho, D.Y.; Kim, M.J.; Lee, A.R.; Son, K.H.; Lee, J.H.; Lee, D.H.; Cho, K.M. Comprehensive comparison of nutritional constituents and antioxidant activity of cultivated ginseng, mountain-cultivated ginseng, and whole plant parts of mountain-cultivated ginseng. J. Appl. Biol. Chem. 2021, 64, 453–463. [Google Scholar] [CrossRef]
- Yun, Y.B.; Kwon, H.Y.; Um, Y. Changes in growth characteristics and ginsenoside contents of wild-simulated ginseng with different harvest times in South Korea. Appl. Biol. Chem. 2024, 67, 66. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, H.J.; Um, Y.R.; Jeon, K.S. Effect of soil properties and soil bacterial community on early growth characteristics of wild-simulated ginseng (Panax ginseng C.A. Meyer) in coniferous and mixed forest. Korean J. Med. Crop Sci. 2020, 28, 183–194. [Google Scholar] [CrossRef]
- Lee, D.S. Weather characteristics and growth of a forest ginseng cultivation site. J. Korean Soc. For. Sci. 2010, 99, 863–870. [Google Scholar]
- Kim, K.Y.; Um, Y.R.; Jeong, D.H.; Kim, H.J.; Kim, M.J.; Jeon, K.S. The correlation between growth characteristics and location environment of wild-simulated ginseng (Panax ginseng C.A. Meyer). Korean J. Plant Res. 2019, 32, 463–470. [Google Scholar]
- Um, T.W.; Lee, D.K. Distribution of major deciduous tree species in relation to the characteristics of topography in Mt. Joongwang, Gangwon Province (I). J. Korean Soc. For. Sci. 2006, 95, 91–101. [Google Scholar]
- Kim, E.S.; Jeong, B.H.; Bae, J.S.; Lim, J.H. Future prospects of forest type change determined from national forest inventory time-series data. J. Korean Soc. For. Sci. 2022, 111, 461–472. [Google Scholar]
- Woo, S.Y.; Lee, D.S.; Min, J.K. A study on the growth and Panax ginseng in the different forest strands (II). J. Korean Soc. For. Sci. 2002, 91, 304–312. [Google Scholar]
- Woo, S.Y.; Lee, D.S. A study on the growth and environment of Panax ginseng in the different forest strands (I). Korean J. Agric. For. Meteorol. 2002, 4, 65–71. [Google Scholar]
- Kim, J.H.; Oh, D.K.; Yoon, Y.H. Anion concentrations of urban regeneration stream through multiple regression analysis: Targeting cheonggyecheon in Seoul. Seoul Stud. 2012, 13, 37–46. [Google Scholar]
- Wang, R.; Zhang, H.; Sun, L.; Qi, G.; Chen, S.; Shao, X. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 2017, 7, 343. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Bell, C.W.; Asao, S.; Calderon, F.; Wolk, B.; Wallenstein, M.D. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol. Biochem. 2015, 85, 170–182. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Faoro, H.; Alves, A.C.; Souza, E.M.; Rigo, L.U.; Cruz, L.M.; Al-Janabi, S.M.; Monteiro, R.A.; Baura, V.A.; Pedrosa, F.O. Influence of soil characteristics on the diversity of bacteria in the southern Brazilian Atlantic forest. Appl. Environ. Microbiol. 2010, 76, 4744–4749. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Di, P.; Yang, X.; Wan, M.; Han, M.; Zhang, Y.; Yang, L. Integrative metabolomic and transcriptomic reveals potential mechanism for promotion of ginsenoside synthesis in Panax ginseng leaves under different light intensities. Front. Bioeng. Biotechnol. 2023, 11, 1298501. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.B.; Yu, J.; Kwon, K.B.; Suh, S.J. Effect of controlled light environment on the growth and ginsenoside content of Panax ginseng C.A. Meyer. Korean J. Med. Crop Sci. 2016, 24, 277–283. [Google Scholar] [CrossRef]
- Lee, B.; Pham, M.D.; Cui, M.; Lee, H.; Hwang, H.; Jang, I.; Chun, C. Growth and physiological responses of Panax ginseng seedlings as affected by light intensity and photoperiod. Hortic. Environ. Biotechnol. 2022, 63, 835–846. [Google Scholar] [CrossRef]
- Song, J.; Yang, J.; Jeong, B.R. Growth and photosynthetic responses to increased LED light intensity in Korean Ginseng (Panax ginseng C.A. Meyer) sprouts. Agronomy 2023, 13, 2375. [Google Scholar] [CrossRef]
- Takahashi, S.; Badger, M.R. Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011, 16, 53–60. [Google Scholar] [CrossRef]
- Vialet-Chabrand, S.; Matthews, J.S.A.; Simkin, A.J.; Raines, C.A.; Lawson, T. Importance of fluctuation in light on plant photosystem acclimation. Plant Physiol. 2017, 173, 2163–2179. [Google Scholar] [CrossRef]
- Yu, X.F.; Ming, X.Y.; Xiong, M.; Zhang, C.; Yue, L.J.; Yang, L.; Fan, C.Y. Partial shade improved the photosynthetic capacity and polysaccharide accumulation of the medicinal plant Bletilla ochracea Schltr. Photosynthetica 2022, 60, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Jauhari, N.; Bharadvaja, N. Medicinal plants as a potential source of chemopreventive agents. In Anticancer Plants: Natural Products and Biotechnological Implements; Springer: Singapore, 2018; pp. 109–139. [Google Scholar]
- Luthra, R.; Roy, A.; Pandit, S.; Prasad, R. Biotechnological methods for the production of ginsenosides. S. Afr. J. Bot. 2021, 141, 25–36. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Lu, W.; Wei, L. Phytochemistry, pharmacology, and clinical use of Panax notoginseng flowers buds. Phytother. Res. 2018, 32, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Xie, W.; He, S.; Sun, Y.; Meng, X.; Sun, G.; Sun, X. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019, 8, 204. [Google Scholar] [CrossRef]
- Mazid, M.; Khan, T.A.; Mohammad, F. Role of secondary metabolites in defense mechanisms of plant. Biol. Med. 2011, 3, 232–249. [Google Scholar]
- Kim, J.W.; Yun, Y.B.; Huh, J.H.; Um, Y.; Shim, D. Comparative transcriptome analysis on wild-simulated ginseng of different age revealed possible mechanism of ginsenoside accumulation. Plant Physiol. Biochem. 2023, 201, 107870. [Google Scholar] [CrossRef]
- Liu, H.; Gu, H.; Ye, C.; Guo, C.; Zhu, Y.; Huang, H.; Liu, Y.; He, X.; Yang, M.; Zhu, S. Planting density affects Panax notoginseng growth and ginsenoside accumulation by balancing primary and secondary metabolism. Front. Plant Sci. 2021, 12, 628294. [Google Scholar] [CrossRef]
- Kil, Y.J.; Eo, J.K.; Eon, A.H. Diversities of arbuscular mycorrhizal fungi in cultivated field soils of Korean ginseng. Korean J. Mycol. 2012, 40, 1–6. [Google Scholar] [CrossRef]
- Kim, K.Y.; Um, Y.; Jeong, D.H.; Kim, H.J.; Kim, M.J.; Jeon, K.S. Study on the correlation between the soil bacterial community and growth characteristics of wild-simulated ginseng (Panax ginseng C.A. Meyer). Korean J. Environ. Biol. 2019, 37, 380–388. [Google Scholar] [CrossRef]
- King, A.E.; Ali, G.A.; Gillespie, A.W.; Wagner-Riddle, C. Soil organic matter as catalyst of crop resource capture. Front. Environ. Sci. 2020, 8, 50. [Google Scholar] [CrossRef]
- Pettersson, S. Effects of nitrate on influx, efflux and translocation of potassium in young sunflower plants. Physiol. Plant. 1984, 61, 6663–6669. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, J.; Zhang, W.; Chen, X.; Li, C.; Yuan, L.; Xie, J. Patassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil 2010, 335, 21–34. [Google Scholar] [CrossRef]
- Lee, K.K.; Mok, I.K.; Yoon, M.H.; Kim, H.J.; Chung, D.Y. Mechanisms of phosphate solubilization by PSB (phosphate-solubilizing bacteria) in soil. Korean J. Soil Sci. Fert. 2012, 45, 169–176. [Google Scholar] [CrossRef]
- Lee, S.B.; Lee, C.H.; Kim, G.Y.; Lee, J.S.; So, K.H.; Kim, S.Y.; Kim, P.J. Evaluation of bioavailability of phosphorus accumulated in arable soils. Korean J. Environ. Agric. 2012, 31, 293–299. [Google Scholar] [CrossRef]
- Dybzinski, R.; Fargione, J.E.; Zak, D.R.; Fornara, D.; Tilman, D. Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 2008, 158, 85–93. [Google Scholar] [CrossRef]
- Kim, K.Y.; Um, Y.; Jeong, D.H.; Eo, H.J.; Jeon, K.S.; Kim, H.J. Effect of location environments on early growth of wild-simulated ginseng (Panax ginseng C.A. Meyer) seedlings in Larix kaempferi and mixed forest. J. Korean Soc. For. Sci. 2020, 109, 313–324. [Google Scholar]
- Woo, I.; Zedler, J.B. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca? Wetlands 2002, 22, 509–521. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, L.; Liu, L.; Liang, Y.; Sun, Y.; Wu, J. Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep. 2014, 33, 393–400. [Google Scholar] [CrossRef]
- Henry, L.K.; Gutensohn, M.; Thomas, S.T.; Noel, J.P.; Dudareva, N. Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants. Proc. Natl. Acad. Sci. USA 2015, 112, 10050–10055. [Google Scholar] [CrossRef]
- Jiang, D.; Rong, Q.; Chen, Y.; Yuan, Q.; Shen, Y.; Guo, J.; Yang, Y.; Zha, L.; Wu, H.; Huang, L.; et al. Molecular cloning and functional analysis of squalene synthase (SS) in Panax notoginseng. Int. J. Biol. Macromol. 2017, 95, 658–666. [Google Scholar] [CrossRef]
- Hou, M.; Wang, R.; Zhao, S.; Wang, Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 2021, 11, 1813–1834. [Google Scholar] [CrossRef]
- Yun, Y.B.; Huh, J.H.; Jeong, D.H.; Kim, J.; Um, Y. Correlation analysis between growth characteristics and ginsenoside contents of 4-year-old wild-simulated ginseng (Panax ginseng C. A. Meyer) with different cultivation sites. J. Appl. Biol. Chem. 2022, 65, 253–259. [Google Scholar] [CrossRef]
- Gantait, S.; Mitra, M.; Chen, J.T. Biotechnological interventions for ginsenosides production. Biomolecules 2020, 10, 538. [Google Scholar] [CrossRef]
- Paola, A.D.; Valentini, R.; Santini, M. An overview of available crop growth and yield models for studies and assessment in agriculture. J. Sci. Food Agric. 2016, 96, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; van Bussel, L.G.J.; Leffelaar, P.A.; van Keulen, H.; Ewert, F. Effects of modelling detail on simulated potential crop yields under a wide range of climate conditions. Ecol. Model. 2011, 222, 131–143. [Google Scholar] [CrossRef]
- Lecerf, R.; Ceglar, A.; Lopez-Lozano, R.; van der Velde, M.; Baruth, B. Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe. Agric. Syst. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield response to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Dunbabin, V.M.; Postma, J.A.; Schnepf, A.; Pages, L.; Javaux, M.; Wu, L.; Leitner, D.; Chen, Y.L.; Rengel, Z.; Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function. Plant Soil 2013, 372, 93–124. [Google Scholar] [CrossRef]
- Dupuy, L.; Gregory, P.J.; Bengough, A.G. Root growth models: Towards a new generation of continuous approaches. J. Exp. Bot. 2010, 61, 2131–2143. [Google Scholar] [CrossRef]
- Wang, E.; Smith, C.J. Modelling the growth and water uptake function of plant root systems: A review. Aust. J. Agric. Res. 2004, 55, 510–523. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.; Chen, H. Root growth model: A novel approach to numerical function optimization and simulation of plant root system. Soft Comput. 2014, 18, 521–537. [Google Scholar] [CrossRef]
- Schluter, S.; Blaser, S.R.G.A.; Weber, M.; Schmidt, V.; Vetterlein, D. Quantification of root growth patterns from the soil perspective via root distance models. Front. Plant Sci. 2018, 9, 1084. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.M.; Hanson, P.J.; Iversen, C.M.; Kumar, J.; Walker, A.P.; Wullschleger, S.D. Root structural and functional dynamics in terrestrial biosphere models—Evaluation and recommendations. New Phytol. 2015, 205, 59–78. [Google Scholar] [CrossRef]
- Feller, C.; Favre, P.; Janka, A.; Zeeman, S.C.; Gabriel, J.P.; Reinhardt, D. Mathematical modelling of the dynamics of shoot-root interactions and resource partitioning in plant growth. PLoS ONE 2015, 10, e0127905. [Google Scholar] [CrossRef]
- Rural Development Administration (RDA). Analysis Manual of Comprehensive Examination Laboratory (Soil, Plant, Water and Liquid Manure); Rural Development Administration: Suwon, Republic of Korea, 2013; pp. 31–53. [Google Scholar]
- Korea Seed and Variety Service (KSVS). Know-How of Characteristics Investigation of The Crops: Ginseng (Panax ginseng Meyer); Korea Seed and Variety Service: Gimcheon, Republic of Korea, 2014. [Google Scholar]
Experimental Site | Topography | Forest Physiognomy | ||||||
---|---|---|---|---|---|---|---|---|
Slope | Altitude | Species of Tree | TH z | DBH y | Percentage | |||
Degree | Direction | m | m | cm | % | |||
Mixed (35°54′16.9″ N, 127°50′40.0″ E) | 15 | East north | 735 | Broad-leaved | Cornus controversa Hemsl. ex Prain | 6 | 7.5 | 14.3 |
Morus bombycis Koidz. | 12 | 19 | 14.3 | |||||
Fraxinus rhynchophylla (Hance) A.E. Murray | 13 | 20 | 14.3 | |||||
Populus × tomentiglandulosa T. B. Lee | 13 | 24 | 14.3 | |||||
Coniferous | Larix kaempferi (Lamb.) Carriere | 15 | 37 | 42.8 | ||||
Coniferous (35°54′13.2″ N, 127°50′32.2″ E) | 15 | East north | 719 | Broad-leaved | ND x | ND | ND | ND |
Coniferous | Pinus koraienesis Siebold & Zucc. | 14 | 40 | 10 | ||||
Larix kaempferi (Lamb.) Carriere | 15.1 | 27.3 | 90 |
pH | EC z | OM y | TN x | Avail. P2O5 w | Ex. K+ v | Ex. Ca2+ u | Ex. Mg2+ t | Ex. Na+ s | CEC r | |
---|---|---|---|---|---|---|---|---|---|---|
[1:5] | (dS/m) | (%) | (mg/kg) | cmol+/kg | ||||||
Mixed | 4.7 ± 0.1 | 0.4 ± 0.0 | 14.2 ± 1.4 | 0.5 ± 0.0 | 220.3 ± 13.9 | 0.2 ± 0.0 | 2.9 ± 0.6 | 0.7 ± 0.1 | 0.05 ± 0.0 | 28.3 ± 1.6 |
Coniferous | 4.8 ± 0.1 | 0.3 ± 0.0 | 10.2 ± 0.3 | 0.4 ± 0.0 | 221.9 ± 28.5 | 0.1 ± 0.0 | 2.0 ± 0.5 | 0.4 ± 0.0 | 0.1 ± 0.0 | 25.4 ± 1.3 |
p value | 0.1784 | 0.0234 * | 0.0144 * | 0.0322 * | 0.5384 | 0.0421 * | 0.2712 | 0.0419 * | 0.0371 * | 0.2513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, Y.-B.; Park, M.; Lee, Y.; Um, Y. Investigation of Growth and Ginsenoside Content of Wild-Simulated Ginseng Cultivated in Different Vegetation Environments for Establishing a Plant Growth Model. Plants 2025, 14, 906. https://doi.org/10.3390/plants14060906
Yun Y-B, Park M, Lee Y, Um Y. Investigation of Growth and Ginsenoside Content of Wild-Simulated Ginseng Cultivated in Different Vegetation Environments for Establishing a Plant Growth Model. Plants. 2025; 14(6):906. https://doi.org/10.3390/plants14060906
Chicago/Turabian StyleYun, Yeong-Bae, Myeongbin Park, Yi Lee, and Yurry Um. 2025. "Investigation of Growth and Ginsenoside Content of Wild-Simulated Ginseng Cultivated in Different Vegetation Environments for Establishing a Plant Growth Model" Plants 14, no. 6: 906. https://doi.org/10.3390/plants14060906
APA StyleYun, Y.-B., Park, M., Lee, Y., & Um, Y. (2025). Investigation of Growth and Ginsenoside Content of Wild-Simulated Ginseng Cultivated in Different Vegetation Environments for Establishing a Plant Growth Model. Plants, 14(6), 906. https://doi.org/10.3390/plants14060906