From Light Harvesting to Grain Filling: Chlorophyll Fluorescence, Pigment Composition, and Oxidative Status as Discrete Yield Determinants in Rye
Abstract
1. Introduction
2. Results
2.1. Trait Variation Across Rye Genotypes
2.2. Correlations Among Physiological, Molecular, and Yield Traits
2.3. Multivariate Modelling of Yield Prediction
3. Discussion
3.1. Photosynthetic Markers That Track Yield Performance
3.2. Oxidative Balance, Reproductive Success, and Environmental Dependence
3.3. Utility for Early Phenotyping and Predictive Breeding
3.4. Limitations and Outlook
4. Materials and Methods
4.1. The Plant Material, Growth, and Yield Analysis
4.2. Chlorophyll a Fluorescence Measurement
4.3. Photosynthetic Pigment Analysis Using HPLC
4.4. Analysis of H2O2 and SA Content
4.5. Gene Expression Analysis
4.6. Data Structure and Preprocessing
4.7. Nonparametric Factorial Tests (ART), LASSO, and Random Forest Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamini, V.; Singh, K.; Antar, M.; El Sabagh, A. Sustainable Cereal Production through Integrated Crop Management: A Global Review of Current Practices and Future Prospects. Front. Sustain. Food Syst. 2025, 9, 1428687. [Google Scholar] [CrossRef]
- Wakeel, A.; Labuschagne, M.T. Editorial: Crop Biofortification for Food Security in Developing Countries. Front. Sustain. Food Syst. 2021, 5, 756296. [Google Scholar] [CrossRef]
- Hackauf, B.; Siekmann, D.; Fromme, F.J. Improving Yield and Yield Stability in Winter Rye by Hybrid Breeding. Plants 2022, 11, 2666. [Google Scholar] [CrossRef]
- Vendelbo, N.M.; Sarup, P.; Orabi, J.; Kristensen, P.S.; Jahoor, A. Genetic Structure of a Germplasm for Hybrid Breeding in Rye (Secale cereale L.). PLoS ONE 2020, 15, e0239541. [Google Scholar] [CrossRef]
- Herbstritt, S.; Richard, T.L.; Lence, S.H.; Wu, H.; O’Brien, P.L.; Emmett, B.D.; Kaspar, T.C.; Karlen, D.L.; Kohler, K.; Malone, R.W. Rye as an Energy Cover Crop: Management, Forage Quality, and Revenue Opportunities for Feed and Bioenergy. Agriculture 2022, 12, 1691. [Google Scholar] [CrossRef]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and Processes in Crop Domestication: An Historical Review and Quantitative Analysis of 203 Global Food Crops. New Phytol. 2012, 196, 29–48. [Google Scholar] [CrossRef]
- Labroo, M.R.; Studer, A.J.; Rutkoski, J.E. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front. Genet. 2021, 12, 643761. [Google Scholar] [CrossRef]
- Lander, E.S.; Botstein, D. Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genetics 1989, 121, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.; Fu, J.; Wang, H.; Wang, J.; Huang, C.; Prasanna, B.M.; Olsen, M.S.; Wang, G.; Zhang, A. Enhancing Genetic Gain through Genomic Selection: From Livestock to Plants. Plant Comm. 2020, 1, 100005. [Google Scholar] [CrossRef] [PubMed]
- Zaborowicz, M.; Frankowski, J. Big Data Analytics and Machine Learning for Smart Agriculture. Agriculture 2025, 15, 757. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Wang, X.; Wei, G.; Yang, H.; Yang, X.; Shen, T.; Qu, H.; Fang, S.; Wu, Z. Integrated Physiological, Biochemical, and Transcriptomics Analyses Reveal the Underlying Mechanisms of High Nitrogen Use Efficiency of Black Sesame. Plant Physiol. Biochem. 2024, 206, 108205. [Google Scholar] [CrossRef]
- Riedelsheimer, C.; Czedik-Eysenberg, A.; Grieder, C.; Lisec, J.; Technow, F.; Sulpice, R.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genomic and Metabolic Prediction of Complex Heterotic Traits in Hybrid Maize. Nat. Genet. 2012, 44, 217–220. [Google Scholar] [CrossRef]
- Azodi, C.B.; Pardo, J.; VanBuren, R.; de Los Campos, G.; Shiu, S.-H. Transcriptome-Based Prediction of Complex Traits in Maize. Plant Cell 2020, 32, 139–151. [Google Scholar] [CrossRef]
- Jackson, R.; Buntjer, J.B.; Bentley, A.R.; Lage, J.; Byrne, E.; Burt, C.; Jack, P.; Berry, S.; Flatman, E.; Poupard, B.; et al. Phenomic and Genomic Prediction of Yield on Multiple Locations in Winter Wheat. Front. Genet. 2023, 14, 1164935. [Google Scholar] [CrossRef]
- Siekmann, D.; Jansen, G.; Zaar, A.; Kilian, A.; Fromme, F.J.; Hackauf, B. A Genome-Wide Association Study Pinpoints Quantitative Trait Genes for Plant Height, Heading Date, Grain Quality, and Yield in Rye (Secale cereale L.). Front. Plant Sci. 2021, 12, 718081. [Google Scholar] [CrossRef]
- Mecha, B.; Alamerew, S.; Assefa, A.; Assefa, E.; Dutamo, D. Correlation and Path Coefficient Studies of Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes. Adv. Plants Agric. Res. 2017, 6, 128–136. [Google Scholar] [CrossRef]
- Sandhu, N.; Sethi, M.; Kumar, A.; Dang, D.; Singh, J.; Chhuneja, P. Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. Front. Plant Sci. 2021, 12, 657629. [Google Scholar] [CrossRef] [PubMed]
- Lephuthing, M.C.; Tolmay, V.L.; Baloyi, T.A.; Hlongoane, T.; Oliphant, T.A.; Tsilo, T.J. Relationship of Grain Micronutrient Concentrations and Grain Yield Components in a Doubled Haploid Bread Wheat (Triticum aestivum) Population. Crop. Pasture. Sci. 2021, 73, 116–126. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat Tolerance in Plants: An Overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Ghaffar, A.; Hussain, N.; Ajaj, R.; Shahin, S.M.; Bano, H.; Javed, M.; Khalid, A.; Yasmin, M.; Shah, K.H.; Zaheer, M.; et al. Photosynthetic Activity and Metabolic Profiling of Bread Wheat Cultivars Contrasting in Drought Tolerance. Front. Plant Sci. 2023, 14, 1123080. [Google Scholar] [CrossRef]
- Baidyussen, A.; Khassanova, G.; Utebayev, M.; Jatayev, S.; Kushanova, R.; Khalbayeva, S.; Amangeldiyeva, A.; Yerzhebayeva, R.; Bulatova, K.; Schramm, C.; et al. Assessment of Molecular Markers and Marker-Assisted Selection for Drought Tolerance in Barley (Hordeum vulgare L.). J. Integr. Agric. 2024, 23, 20–38. [Google Scholar] [CrossRef]
- Xu, Y.; Crouch, J.H. Marker-Assisted Selection in Plant Breeding: From Publications to Practice. Crop Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef]
- Araus, J.L.; Amaro, T.; Voltas, J.; Nakkoul, H.; Nachit, M.M. Chlorophyll Fluorescence as a Selection Criterion for Grain Yield in Durum Wheat under Mediterranean Conditions. Field Crops Res. 1998, 55, 209–223. [Google Scholar] [CrossRef]
- Naseer, M.A.; Hussain, S.; Mukhtar, A.; Rui, Q.; Ru, G.; Ahmad, H.; Zhang, Z.Q.; Shi, L.B.; Asad, M.S.; Chen, X.; et al. Chlorophyll Fluorescence, Physiology, and Yield of Winter Wheat under Different Irrigation and Shade Durations during the Grain-Filling Stage. Front. Plant Sci. 2024, 15, 1396929. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, Y.; Lu, J.; Warner, T.A.; Xu, X.; Lyu, M.; Wang, X.; Guo, C.; Cheng, T.; Zhu, Y.; et al. The Relationship between Wheat Yield and Sun-Induced Chlorophyll Fluorescence from Continuous Measurements over the Growing Season. Remote Sens. Environ. 2023, 298, 113791. [Google Scholar] [CrossRef]
- Noga, A.; Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Dziurka, K.; Warzecha, T.; Skrzypek, E. Chlorophyll a Fluorescence Parameters in the Evaluation of Oat DH Lines Yield Components. Cereal Res. Commun. 2017, 45, 665–674. [Google Scholar] [CrossRef]
- Cammalleri, C.; McCormick, N.; Toreti, A. Analysis of the Relationship between Yield in Cereals and Remotely Sensed fAPAR in the Framework of Monitoring Drought Impacts in Europe. Nat. Hazards Earth Syst. Sci. 2022, 22, 3737–3750. [Google Scholar] [CrossRef]
- Wituszynska, W.; Slesak, I.; Vanderauwera, S.; Szechynska-Hebda, M.; Kornas, A.; Van Der Kelen, K.; Mühlenbock, P.; Karpinska, B.; Mackowski, S.; Van Breusegem, F.; et al. Lesion Simulating Disease1, Enhanced Disease Susceptibility1, and Phytoalexin Deficient4 Conditionally Regulate Cellular Signaling Homeostasis, Photosynthesis, Water Use Efficiency, and Seed Yield in Arabidopsis. Plant Physiol. 2013, 161, 1795–1805. [Google Scholar] [CrossRef]
- Kamran, M.; Burdiak, P.; Karpiński, S. Crosstalk Between Abiotic and Biotic Stresses Responses and the Role of Chloroplast Retrograde Signaling in the Cross-Tolerance Phenomena in Plants. Cells 2025, 14, 176. [Google Scholar] [CrossRef]
- Thomas, H.; Ougham, H. The Stay-Green Trait. J. Exp. Bot. 2014, 65, 3889–3900. [Google Scholar] [CrossRef]
- Christopher, J.T.; Christopher, M.J.; Borrell, A.K.; Fletcher, S.; Chenu, K. Stay-Green Traits to Improve Wheat Adaptation in Well-Watered and Water-Limited Environments. J. Exp. Bot. 2016, 67, 5159–5172. [Google Scholar] [CrossRef]
- Walsh, O.S.; Torrion, J.A.; Liang, X.; Shafian, S.; Yang, R.; Belmont, K.M.; McClintick-Chess, J.R. Grain Yield, Quality, and Spectral Characteristics of Wheat Grown under Varied Nitrogen and Irrigation. Agrosystems Geosci. Environ. 2020, 3, e20104. [Google Scholar] [CrossRef]
- Xia, Q.; Tang, H.; Fu, L.; Tan, J.; Govindjee, G.; Guo, Y. Determination of Fv/Fm from Chlorophyll a Fluorescence without Dark Adaptation by an LSSVM Model. Plant Phenomics 2023, 5, 0034. [Google Scholar] [CrossRef] [PubMed]
- Björkman, O.; Demmig, B. Photon Yield of O2 Evolution and Chlorophyll Fluorescence Characteristics at 77 K among Vascular Plants of Diverse Origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Lawson, T. Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Sommer, S.G.; Han, E.; Li, X.; Rosenqvist, E.; Liu, F. The Chlorophyll Fluorescence Parameter Fv/Fm Correlates with Loss of Grain Yield after Severe Drought in Three Wheat Genotypes Grown at Two CO2 Concentrations. Plants 2023, 12, 436. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Mittler, R. ROS Are Good. Trends in Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef]
- Borrell, A.K.; Mullet, J.E.; George-Jaeggli, B.; van Oosterom, E.J.; Hammer, G.L.; Klein, P.E.; Jordan, D.R. Drought Adaptation of Stay-Green Sorghum Is Associated with Canopy Development, Leaf Anatomy, Root Growth, and Water Uptake. J. Exp. Bot. 2014, 65, 6251–6263. [Google Scholar] [CrossRef]
- Borrell, A.K.; van Oosterom, E.J.; Mullet, J.E.; George-Jaeggli, B.; Jordan, D.R.; Klein, P.E.; Hammer, G.L. Stay-Green Alleles Individually Enhance Grain Yield in Sorghum under Drought by Modifying Canopy Development and Water Uptake Patterns. New Phytol. 2014, 203, 817–830. [Google Scholar] [CrossRef]
- Furbank, R.T.; Sharwood, R.; Estavillo, G.M.; Silva-Perez, V.; Condon, A.G. Photons to Food: Genetic Improvement of Cereal Crop Photosynthesis. J. Exp. Bot. 2020, 71, 2226–2238. [Google Scholar] [CrossRef]
- Yoldi-Achalandabaso, A.; Agirresarobe, A.; Katamadze, A.; Burini, G.; Vergara-Díaz, O.; Mota, M.; Oliveira, C.; Pérez-López, U.; Vicente, R. Tritordeum, Barley Landraces and Ear Photosynthesis Are Key Players in Cereal Resilience under Future Extreme Drought Conditions. Plant Stress 2025, 15, 100765. [Google Scholar] [CrossRef]
- Murchie, E.H.; Reynolds, M.; Slafer, G.A.; Foulkes, M.J.; Acevedo-Siaca, L.; McAusland, L.; Sharwood, R.; Griffiths, S.; Flavell, R.B.; Gwyn, J.; et al. A ‘Wiring Diagram’ for Source Strength Traits Impacting Wheat Yield Potential. J. Exp. Bot. 2022, 74, 72–90. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, A.; Yáñez, A.; Matus, I.A.; Tapia, G.; Castillo, D.; Sanchez-Jardón, L.; Araus, J.L. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment. Front. Plant Sci. 2016, 7, 987. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Zhen, X.; Sadok, W. Photosynthesis-Driven Yield Gains in Global Wheat Breeding Trials. Crop Sci. 2025, 65, e70005. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Y.; Ren, Y.; Zhang, Z.; Geng, H. Prediction of Chlorophyll Content in Multi-Temporal Winter Wheat Based on Multispectral and Machine Learning. Front. Plant Sci. 2022, 13, 896408. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, A.M.; Hazlett, T.L.; Debrunner, P.G.; Govindjee. Photosystem II Chlorophyll a Fluorescence Lifetimes and Intensity Are Independent of the Antenna Size Differences between Barley Wild-Type and Chlorina Mutants: Photochemical Quenching and Xanthophyll Cycle-Dependent Nonphotochemical Quenching of Fluorescence. Photosynth. Res. 1996, 48, 171–187. [Google Scholar] [CrossRef]
- Howell, T.; Moriconi, J.I.; Zhao, X.; Hegarty, J.; Fahima, T.; Santa-Maria, G.E.; Dubcovsky, J. A Wheat/Rye Polymorphism Affects Seminal Root Length and Yield across Different Irrigation Regimes. J. Exp. Bot. 2019, 70, 4027–4037. [Google Scholar] [CrossRef]
- Kononenko, N.V.; Lazareva, E.M.; Fedoreyeva, L.I. Mechanisms of Antioxidant Resistance in Different Wheat Genotypes under Salt Stress and Hypoxia. Int. J. Mol. Sci. 2023, 24, 16878. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Rusaczonek, A.; Czarnocka, W.; Kacprzak, S.; Witoń, D.; Ślesak, I.; Szechyńska-Hebda, M.; Gawroński, P.; Karpiński, S. Role of Phytochromes A and B in the Regulation of Cell Death and Acclimatory Responses to UV Stress in Arabidopsis Thaliana. J. Exp. Bot. 2015, 66, 6679–6695. [Google Scholar] [CrossRef]
- Rusaczonek, A.; Czarnocka, W.; Willems, P.; Sujkowska-Rybkowska, M.; Van Breusegem, F.; Karpiński, S. Phototropin 1 and 2 Influence Photosynthesis, UV-C Induced Photooxidative Stress Responses, and Cell Death. Cells 2021, 10, 200. [Google Scholar] [CrossRef]
- Rusaczonek, A.; Sankiewicz, P.; Duszyn, M.; Górecka, M.; Chwedorzewska, K.; Muszyńska, E. Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs. Agriculture 2025, 15, 1586. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants: Protective Role of Exogenous Polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Meuwly, P.; Metraux, J.P. Ortho-Anisic Acid as Internal Standard for the Simultaneous Quantitation of Salicylic Acid and Its Putative Biosynthetic Precursors in Cucumber Leaves. Anal. Biochem. 1993, 214, 500–505. [Google Scholar] [CrossRef]
- Azad, R.; Krępski, T.; Olechowski, M.; Biernacik, B.; Święcicka, M.; Matuszkiewicz, M.; Dmochowska-Boguta, M.; Rakoczy-Trojanowska, M. Genotype-Specific Expression of Selected Candidate Genes Conferring Resistance to Leaf Rust of Rye (Secale cereale L.). Genes 2024, 15, 275. [Google Scholar] [CrossRef] [PubMed]
- Szewińska, J.; Matuszkiewicz, M.; Rakoczy-Trojanowska, M.; Święcicka, M.; Krysińska, M.; Wakuliński, W. Searching for Genes Determining the APR Phenotype in Rye. BMC Plant Biol. 2025, 25, 935. [Google Scholar] [CrossRef] [PubMed]
- Kay, M.; Elkin, L.; Higgins, J.J.; Wobbrock, J.O. Mjskay/ARTool: ARTool 0.11.2, 2025.
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]



| Unique Name | Role | Object Name | Component |
|---|---|---|---|
| PB21 | FH | TURF1 | - |
| PB22 | RF | SR13 | TURF1 |
| PB23 | SC | 463P × 399N | TURF1 |
| PB24 | CL | 399N | TURF1 |
| PB25 | MS | 463P | TURF1 and StachF1 |
| PB26 | FH | StachF1 | - |
| PB27 | RF | 5R | StachF1 |
| PB28 | SC | 463P × 2130N | StachF1 |
| PB29 | CL | 2130N | StachF1 |
| PB31 | FH | TD525F1 | - |
| PB32 | RF | 41R | TD525F1 |
| PB33 | SC | 6460P × 8639N | TD525F1 |
| PB34 | CL | 8639N | TD525F1 |
| PB35 | MS | 6460P | TD525F1 |
| Trait | PB21 | PB22 | PB23 | PB24 | PB25 | PB26 | PB27 | PB28 | PB29 | PB31 | PB32 | PB33 | PB34 | PB35 | RFC |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F0 | 100 | 103 | 126 | 175 | 113 | 104 | 118 | 92 | 101 | 97 | 98 | 103 | 113 | 127 | 1.91 |
| Fm | 497 | 486 | 535 | 578 | 434 | 522 | 513 | 497 | 474 | 487 | 439 | 460 | 487 | 467 | 1.33 |
| Fv/Fm | 0.80 | 0.79 | 0.78 | 0.62 | 0.75 | 0.80 | 0.77 | 0.82 | 0.79 | 0.81 | 0.78 | 0.78 | 0.77 | 0.73 | 1.31 |
| NPQ | 0.98 | 0.81 | 1.07 | 0.86 | 0.68 | 1.14 | 1.00 | 1.05 | 0.77 | 1.03 | 0.72 | 1.08 | 0.87 | 0.90 | 1.69 |
| qP | 0.68 | 0.70 | 0.67 | 0.63 | 0.66 | 0.65 | 0.66 | 0.70 | 0.75 | 0.66 | 0.70 | 0.68 | 0.70 | 0.66 | 1.19 |
| Rfd | 1.61 | 1.49 | 1.70 | 0.97 | 1.21 | 1.83 | 1.47 | 2.03 | 1.43 | 1.54 | 1.31 | 1.55 | 1.55 | 1.12 | 2.09 |
| Violaxanthin content (peak area µg−1 FW) | 724 | 820 | 818 | 852 | 672 | 704 | 817 | 612 | 572 | 614 | 470 | 718 | 739 | 728 | 1.81 |
| Antheraxanthin content (peak area µg−1 FW) | 89 | 94 | 102 | 106 | 112 | 99 | 110 | 108 | 111 | 90 | 85 | 99 | 115 | 102 | 1.36 |
| Lutein content (peak area µg−1 FW) | 1811 | 1979 | 1926 | 2100 | 1625 | 1994 | 2116 | 1748 | 1731 | 1796 | 1806 | 1939 | 1763 | 1695 | 1.30 |
| Zeaxanthin content (peak area µg−1 FW) | 67 | 65 | 66 | 79 | 84 | 70 | 69 | 86 | 87 | 71 | 73 | 84 | 81 | 61 | 1.42 |
| Chlorophyll b content (peak area µg−1 FW) | 1388 | 1466 | 1490 | 1531 | 1164 | 1617 | 1613 | 1287 | 1181 | 1404 | 1392 | 1478 | 1353 | 1290 | 1.39 |
| Chlorophyll a content (peak area µg−1 FW) | 4103 | 4334 | 4618 | 4119 | 3676 | 5061 | 5004 | 4122 | 3802 | 4147 | 4164 | 4529 | 4076 | 3859 | 1.38 |
| β-carotene content (peak area µg−1 FW) | 1066 | 1251 | 1139 | 939 | 976 | 1126 | 1111 | 1007 | 1152 | 1119 | 1093 | 1215 | 1170 | 1004 | 1.33 |
| Chlorophyll a/b ratio | 2.96 | 3.00 | 3.11 | 2.73 | 3.14 | 3.16 | 3.08 | 3.23 | 3.25 | 3.00 | 3.00 | 3.07 | 3.02 | 3.01 | 1.19 |
| Total chlorophyll content (peak area µg−1 FW) | 5490 | 5800 | 6108 | 5650 | 4840 | 6678 | 6617 | 5410 | 4983 | 5551 | 5556 | 6007 | 5429 | 5149 | 1.38 |
| De-epoxidation state | 0.13 | 0.12 | 0.12 | 0.13 | 0.17 | 0.15 | 0.14 | 0.18 | 0.20 | 0.15 | 0.20 | 0.17 | 0.16 | 0.13 | 1.62 |
| H2O2 content (µmol 100 mg−1 FW) | 8.3 | 8.6 | 8.8 | 11.2 | 7.1 | 6.8 | 8.0 | 6.8 | 8.2 | 9.1 | 9.4 | 7.5 | 7.0 | 7.9 | 1.65 |
| SA content (µg g−1 FW) | 0.75 | 1.00 | 0.89 | 0.80 | 0.88 | 1.01 | 0.84 | 1.06 | 0.98 | 1.00 | 0.98 | 1.01 | 0.86 | 0.84 | 1.40 |
| Relative expression of ScLSD1 | 1.01 | 0.87 | 0.80 | 0.91 | 0.75 | 0.74 | 0.61 | 0.70 | 0.81 | 0.63 | 0.66 | 0.79 | 0.69 | 0.85 | 1.65 |
| Relative expression of ScAPX1 | 1.02 | 1.13 | 0.68 | 0.70 | 0.73 | 1.38 | 1.67 | 1.68 | 1.92 | 1.66 | 1.61 | 1.63 | 1.43 | 2.63 | 3.87 |
| Relative expression of ScEDS1 | 1.01 | 0.69 | 0.92 | 1.03 | 0.77 | 0.81 | 0.81 | 1.12 | 1.22 | 0.78 | 0.77 | 0.86 | 0.65 | 0.98 | 1.87 |
| Total kernel mass (g) | 18.3 | 16.9 | 13.6 | 1.8 | 1.8 | 18.0 | 13.4 | 14.3 | 4.2 | 21.9 | 13.8 | 10.8 | 8.6 | 1.4 | 15.35 |
| Number of spikes | 7.9 | 8.6 | 10.3 | 2.7 | 7.3 | 8.9 | 8.0 | 9.0 | 4.7 | 7.8 | 7.7 | 8.9 | 6.1 | 4.9 | 3.86 |
| Number of kernels | 456 | 529 | 295 | 58 | 49 | 468 | 462 | 396 | 167 | 596 | 460 | 285 | 301 | 45 | 13.10 |
| Thousand-kernel weight (g) | 41.8 | 31.4 | 45.2 | 29.8 | 31.7 | 38.7 | 29.4 | 40.9 | 23.0 | 38.1 | 30.3 | 38.5 | 26.8 | 22.6 | 2.00 |
| Marker | Year | Object | Year × Object |
|---|---|---|---|
| F0 | 184.95 *** | 6.99 *** | 4.43 *** |
| Fm | 9.85 *** | 5.56 *** | 2.27 *** |
| Fv/Fm | 519.45 *** | 19.68 *** | 11.86 *** |
| NPQ | 23.85 *** | 15.45 *** | 7.17 *** |
| qP | 7.01** | 18.61 *** | 4.29 *** |
| Rfd | 1.39 | 21.42 *** | 8.53 *** |
| Viol | 136.92 *** | 8.42 *** | 3.6 *** |
| Anth | 43.23 *** | 3.05 *** | 3.15 *** |
| Lut | 31.11 *** | 8.19 *** | 2.36 *** |
| Zea | 68.19 *** | 3.81 *** | 4.64 *** |
| Chl b | 89.27 *** | 9.97 *** | 3.43 *** |
| Chl a | 30.89 *** | 8.1 *** | 4.26 *** |
| β-crt | 47.96 *** | 4.46 *** | 5.42 *** |
| Chl a/b | 156.39 *** | 10.94 *** | 3.19 *** |
| Chl tot. | 45.04 *** | 8.39 *** | 4.1 *** |
| VAZ | 64.14 *** | 6.87 *** | 3.8 *** |
| H2O2 | 16.69 *** | 10.77 *** | 6.05 *** |
| SA | 48.22 *** | 6.31 *** | 5.98 *** |
| ScLSD1 | 7.12 * | 5.38 *** | 3.76 *** |
| ScAPX1 | 57.56 *** | 22.62 *** | 2.86 ** |
| ScEDS1 | 5.34 * | 7.27 *** | 3.27 *** |
| Mass | 15.05 *** | 68.16 *** | 2.79 *** |
| No. spikes | 14.75 *** | 16.78 *** | 2.19 *** |
| No. kernels | 20.53 *** | 59.68 *** | 1.52 |
| TKW | 43.85 *** | 58.3 *** | 11.19 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duszyn, M.; Burdiak, P.; Dąbrowska-Bronk, J.; Rusaczonek, A.; Kamran, M.; Zarrin Ghalami, R.; Majnert, A.; Bojarczuk, J.; Gawroński, P.; Karpiński, S. From Light Harvesting to Grain Filling: Chlorophyll Fluorescence, Pigment Composition, and Oxidative Status as Discrete Yield Determinants in Rye. Plants 2025, 14, 3746. https://doi.org/10.3390/plants14243746
Duszyn M, Burdiak P, Dąbrowska-Bronk J, Rusaczonek A, Kamran M, Zarrin Ghalami R, Majnert A, Bojarczuk J, Gawroński P, Karpiński S. From Light Harvesting to Grain Filling: Chlorophyll Fluorescence, Pigment Composition, and Oxidative Status as Discrete Yield Determinants in Rye. Plants. 2025; 14(24):3746. https://doi.org/10.3390/plants14243746
Chicago/Turabian StyleDuszyn, Maria, Paweł Burdiak, Joanna Dąbrowska-Bronk, Anna Rusaczonek, Muhammad Kamran, Roshanak Zarrin Ghalami, Alina Majnert, Jarosław Bojarczuk, Piotr Gawroński, and Stanisław Karpiński. 2025. "From Light Harvesting to Grain Filling: Chlorophyll Fluorescence, Pigment Composition, and Oxidative Status as Discrete Yield Determinants in Rye" Plants 14, no. 24: 3746. https://doi.org/10.3390/plants14243746
APA StyleDuszyn, M., Burdiak, P., Dąbrowska-Bronk, J., Rusaczonek, A., Kamran, M., Zarrin Ghalami, R., Majnert, A., Bojarczuk, J., Gawroński, P., & Karpiński, S. (2025). From Light Harvesting to Grain Filling: Chlorophyll Fluorescence, Pigment Composition, and Oxidative Status as Discrete Yield Determinants in Rye. Plants, 14(24), 3746. https://doi.org/10.3390/plants14243746

