Synergistic Effects of Selenium and Silicon Nanoparticles on Peach Quality Enhancement and Se Biofortification Through Foliar Application
Abstract
1. Introduction
2. Results
2.1. Se and Si Nanoparticles Characterization
2.2. Fruit Yield and Si Accumulation
2.3. Se Concentration and Speciation
2.4. Antioxidant Enzyme Activities and Total Antioxidant Capacity
2.5. Phenolic Compound Profiles and Secondary Metabolite Enhancement
2.6. Flavonoid Biosynthesis and Quality Marker Enhancement
2.7. Physical Quality and Sugar Metabolism Enhancement
2.8. Stress Indicators and Protein Metabolism
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Plant Material
4.2. Nanoparticle Synthesis and Characterization
4.3. Experimental Design and Treatment Application
4.4. Sample Collection and Preparation
4.5. Analytical Procedures
4.5.1. Si Contents Analysis
4.5.2. Se Content and Speciation Analysis
4.5.3. Antioxidant Enzyme Activity Assays
4.5.4. Phenolic Compound Analysis
4.5.5. Flavonoid and Quality Component Analysis
4.5.6. Physical Quality Parameters
4.5.7. Stress-Related Metabolites
4.6. Statistical Analysis
5. Conclusions
Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, B.; Lin, Q.; Hamid, Y. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci. Total Environ. 2020, 712, 136497. [Google Scholar] [CrossRef] [PubMed]
- Beshah, Y.B.; Pescatore, A.; Guerrini, L.; Vivoli, R.; Napoli, M. Enhancing nutritional value of common wheat: Impact of foliar selenium application on grain yield and quality under rainfed conditions. Field Crops Res. 2025, 330, 109969. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Yin, X.; Lin, Q.; Hamid, Y.; Usman, M.; Hashmi, M.L.R.; Lu, M.; Taqi, M.I.; He, Z.; Yang, X. Mitigating cadmium exposure risk in rice with foliar nano-selenium: Investigations through Caco-2 human cell line in-vivo bioavailability assay. Environ. Pollut. 2024, 356, 124356. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yao, H.; Wu, Y.; Sun, G.; Yang, W.; Li, Z.; Shang, L. Status and risks of selenium deficiency in a traditional selenium-deficient area in Northeast China. Sci. Total Environ. 2021, 762, 144103. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Gong, P.; Yao, W.; Ba, Q.; Wang, H. Review on the health-promoting effect of adequate selenium status. Fron. Nutr. 2023, 10, 1136458. [Google Scholar] [CrossRef]
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef]
- Yoshiro, S. Selenium Transport Mechanism via Selenoprotein P—Its Physiological Role and Related Diseases. Front. Nutr. 2021, 8, 685517. [Google Scholar] [CrossRef]
- Naik, B.; Kumar, V.; Rizwanuddin, S.; Mishra, S.; Kumar, V.; Saris, P.E.J.; Khanduri, N.; Kumar, A.; Pandey, P.; Gupta, A.K.; et al. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024, 10, 30595. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization Statistical Yearbook 2023: World Food and Agriculture; FAO: Rome, Italy, 2023.
- Romero-Martínez, M.; Andrade-Pizarro, R.; Paula, C.D. Functional compounds in tropical fruit processing by-products and intrinsic factors affecting their composition: A review. Curr. Res. Food Sci. 2025, 10, 101028. [Google Scholar] [CrossRef]
- Zhou, B.; Cao, H.; Wu, Q.; Mao, K.; Yang, X.; Su, J.; Zhang, H. Agronomic and Genetic Strategies to Enhance Selenium Accumulation in Crops and Their Influence on Quality. Foods 2023, 12, 4442. [Google Scholar] [CrossRef]
- Baccichet, I.; Patuelli, F.; Pozzetto, B.; Tagliabue, A.G.; Linge, C.D.S.; Biffi, G.; Calastri, E.; Chiozzotto, R.; Bassi, D.; Sgarbi, P.; et al. Peach fruit quality on the fresh market: A long-term evaluation series from Northern Italy is pushing the overturn of commercial standards within the mass-supply chain. Postharvest Biol. Technol. 2025, 224, 113460. [Google Scholar] [CrossRef]
- Akter, T.; Bhattacharya, T.; Kim, J.K.; Kim, M.S.; Baek, I.; Chan, D.E.; Cho, B.K. A comprehensive review of external quality measurements of fruits and vegetables using nondestructive sensing technologies. J. Agric. Food Res. 2024, 15, 101068. [Google Scholar] [CrossRef]
- Liu, W.; Cui, X.; Zhong, Y.; Ma, R.; Liu, B.; Xia, Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharm. Res. 2023, 193, 106812. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hussain, B.; Xin, X.; Zou, T.; Huang, X.; Cheng, L.; Wu, Z.; Yang, Y.; Li, Y.Y.; He, Z.; et al. Fate and Physiological Effects of Foliar Selenium Nanoparticles in Wheat. ACS Nano 2025, 19, 21792–21806. [Google Scholar] [CrossRef]
- Demeke, E.D.; Benti, N.E.; Terefe, M.G.; Anbessa, T.T.; Mengistu, W.M.; Mekonnen, Y.S. A comprehensive review on nano-fertilizers: Preparation, development, utilization, and prospects for sustainable agriculture in Ethiopia. Nanoscale Adv. 2025, 7, 2131–2144. [Google Scholar] [CrossRef]
- El-Badri, A.M.; Hashem, A.M.; Batool, M.; Sherif, A.; Nishawy, E.; Ayaad, M.; Hassan, H.M.; Elrewainy, I.M.; Wang, J.; Kuai, J.; et al. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. J. Nanobiotechnol. 2022, 20, 163. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, J.; Günther, K. Ubiquitous. Occurrence of Nano Selenium in Food Plants. Foods 2023, 12, 3203. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, G.; Duraisamy, S.; Subramanium, S.; Rangasamy, A.; Alagarsamy, S.; James, P.; Selvamani, P.; Perumal, D.; Veerappan, M.; Arunan, Y.E.; et al. Silicon-driven approaches to salinity stress tolerance: Mechanisms, uptake dynamics, and microbial transformations. Plant Stress 2025, 16, 100825. [Google Scholar] [CrossRef]
- Mir, R.A.; Bhat, B.A.; Yousuf, H.; Islam, S.T.; Raza, A.; Rizvi, M.A.; Charagh, S.; Albaqami, M.; Sofi, P.A.; Zargar, S.M. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. Front. Plant Sci. 2022, 13, 819658. [Google Scholar] [CrossRef]
- Taha, R.S.; Seleiman, M.F.; Shami, A.; Alhammad, B.A.; Mahdi, A.H.A. Integrated Application of Selenium and Silicon Enhances Growth and Anatomical Structure, Antioxidant Defense System and Yield of Wheat Grown in Salt-Stressed Soil. Plants 2021, 21, 1040. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.-S.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; dos Reis, A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.M.; Moharrami, F.; Sarikhani, S.; Padervand, M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 2020, 10, 17672. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.J.; Sun, X.D.; Zhang, M.; Duan, J.L.; Xiao, F.; Lin, Y.; Zhu, F.P.; Kong, X.P.; Ding, Z.; et al. Incorporation of Selenium Derived from Nanoparticles into Plant Proteins in Vivo. ACS Nano 2023, 17, 15847–15856. [Google Scholar] [CrossRef]
- Xing, R.X.; Sun, X.D.; Wang, Y.; Xie, X.M.; Tan, M.M.; Xu, M.M.; Liu, X.Y.; Jiang, Y.Q.; Liu, M.Y.; Duan, J.L.; et al. Seed Priming with Dynamically Transformed Selenium Nanoparticles to Enhance Salt Tolerance in Rice. Environ. Sci. Technol. 2024, 58, 19725–19735. [Google Scholar] [CrossRef]
- Thakur, K.; Verma, P.; Bodh, S.; Sharma, A. Unveiling the role of nano-selenium in modulating growth and stress resilience of fruit crops under drought conditions. J. Plant Nut. 2025, 48, 3117–3133. [Google Scholar] [CrossRef]
- Yan, G.; Huang, Q.; Zhao, S.; Xu, Y.; He, Y.; Nikolic, M.; Nikolic, N.; Liang, Y.; Zhu, Z. Silicon nanoparticles in sustainable agriculture: Synthesis, absorption, and plant stress alleviation. Front. Plant Sci. 2024, 15, 1393458. [Google Scholar] [CrossRef]
- Chen, J.; Yang, D.; Xu, M.; Long, L.; Li, Q.; Jin, J.; Chen, C.; Wu, J.; Yang, G. Foliar application of silicon and selenium reduce the toxicity of cadmium to soybeans. Chemosphere 2024, 366, 143390. [Google Scholar] [CrossRef]
- Yao, L.; Tian, H.; Bao, Z.; Xie, S.; Feng, T.; Sun, M.; Ma, H.; Yao, L.; Lang, Q. Biofortification of Pleurotus geesteranus via exogenous selenium species: Selenium distribution, speciation and its effect on mineral elements accumulation. LWT 2025, 230, 118240. [Google Scholar] [CrossRef]
- Nasim, M.J.; Zuraikm, M.M.; Abdinm, A.Y.; Neym, Y.; Jacob, C. Selenomethionine: A Pink Trojan Redox Horse with Implications in Aging and Various Age-Related Diseases. Antioxidants 2021, 10, 882. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Sayra, N.; Sandoval, S. The importance of selenium in food enrichment processes. A comprehensive review. J. Trace Elem. Med. Biol. 2023, 79, 127260. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef]
- Freire, B.M.; Lange, C.N.; Augusto, C.C.; Onwuatu, F.R.; Rodrigues, G.D.P.; Pieretti, J.C.; Seabra, A.B.; Batista, B.L. Foliar Application of SeNPs for Rice Biofortification: A Comparative Study with Selenite and Speciation Assessment. ACS Agric. Sci. Technol. 2025, 5, 94–107. [Google Scholar] [CrossRef]
- Gomathi, A.; Sriharini, R.; Pravin, A.; Kaushik, R.; Kumar, R.; Anbu, S.A.; Srivignesh, S. Impact of green synthesized selenium nanoparticles on the growth and development of amaranth microgreens. Front. Nanotechnol. 2025, 7, 1621024. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Liu, D.; Yang, M.; Chen, G.; Dai, J. Hyperspectral-based assessment of internal quality indicators of peach and quantitative transfer learning model analysis. Postharvest Biol. Technol. 2025, 230, 113824. [Google Scholar] [CrossRef]
- Seyed, H.; Esmaili, S.; Zahedi, S.M.; Fakhrghazi, H.; Kaya, O. Silicon dioxide and selenium nanoparticles enhance vase life and physiological quality in black magic roses. Sci. Rep. 2024, 14, 22848. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Zhang, H.; Li, M.; Sun, C. Silicon nanoparticles enhance selenium biofortification in tomato through modulation of root architecture and transporter expression. Plant Soil 2024, 487, 245–262. [Google Scholar]
- Kordrostami, M.; Ghasemi-Soloklui, A.K.; Hossain, M.A.; Mostofa, M.G. Breaking Barriers: Selenium and Silicon-Mediated Strategies for Mitigating Abiotic Stress in Plants. Phyton-Int. J. Exp. Bot. 2023, 92, 2713–2736. [Google Scholar] [CrossRef]
- Qin, C.; Lian, H.; Zhang, B.; He, Z.; Alsahli, A.A.; Ahanger, M.A. Synergistic influence of selenium and silicon supplementation prevents the oxidative effects of arsenic stress in wheat. J. Hazard. Mater. 2024, 465, 133304. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 2018, 147, 881–896. [Google Scholar] [CrossRef]
- Polić-Pasković, M.; Herak-Ćustić, M.; Lukić, I.; Marcelić, Š.; Žurga, P.; Vidović, N.; Major, N.; Goreta-Ban, S.; Pecina, M.; Ražov, J.; et al. Foliar Nutrition Strategies for Enhancing Phenolic and Amino Acid Content in Olive Leaves. Plants 2024, 16, 3514. [Google Scholar] [CrossRef]
- Sysak, S.; Czarczynska-Goslinska, B.; Szyk, P.; Koczorowski, T.; Mlynarczyk, D.T.; Szczolko, W.; Lesyk, R.; Goslinski, T. Metal Nanoparticle-Flavonoid Connections: Synthesis, Physicochemical and Biological Properties, as Well as Potential Applications in Medicine. Nanomaterials 2023, 13, 1531. [Google Scholar] [CrossRef]
- Syahputra, R.A.; Dalimunthe, A.; Utari, Z.D.; Halim, P.; Sukarno, M.A.; Zainalabidin, S.; Salim, E.; Gunawan, M.; Nurkolis, F.; Park, M.N.; et al. Nanotechnology and flavonoids: Current research and future perspectives on cardiovascular health. J. Func. Foods 2024, 120, 106355. [Google Scholar] [CrossRef]
- Souza, L.M.S.; Dibo, M.; Sarmiento, J.J.P.; Seabra, A.B.; Medeiros, L.P.; Lourenço, L.M.; Kobayashi, R.K.T.; Nakazato, G. Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Curr. Res. Green Sustain. Chem. 2022, 5, 100303. [Google Scholar] [CrossRef]
- Lin, Y.; Cao, S.; Wang, X.; Liu, Y.; Sun, Z.; Zhang, Y.; Li, M.; Wang, Y.; He, W.; Zhang, Y.; et al. Foliar application of sodium selenite affects the growth, antioxidant system, and fruit quality of strawberry. Front. Plant Sci. 2024, 12, 1449157. [Google Scholar] [CrossRef]
- Golubkina, N.; Moldovan, A.; Fedotov, M.; Kekina, H.; Kharchenko, V.; Folmanis, G.; Alpatov, A.; Caruso, G. Iodine and Selenium Biofortification of Chervil Plants Treated with Silicon Nanoparticles. Plants 2021, 10, 2528. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, W.; Jin, L.; Jin, N.; Wang, S.; Xie, Y.; Huang, S.; Lyu, J.; Yu, J. Effect of exogenous silicon treatments on cell wall metabolism and textural properties of tomato fruits. Scientia Horti. 2024, 336, 113407. [Google Scholar] [CrossRef]
- Hu, W.; Su, Y.; Zhou, J.; Zhu, H.; Guo, J.; Huo, H.; Gong, H. Foliar application of silicon and selenium improves the growth, yield and quality characteristics of cucumber in field conditions. Sci. Hortic. 2022, 294, 110776. [Google Scholar] [CrossRef]
- Yan, X.; Muneer, M.A.; Qin, M.; Ou, J.; Chen, X.; He, Z.; Liu, Y.; Cheng, Z.; Su, D.; Liu, R.; et al. Establishing quality evaluation standards for pomelo fruit: The role of harvesting time and appearance characteristic. Postharvest Biol. Technol. 2024, 212, 112863. [Google Scholar] [CrossRef]
- Rezagholi, M.; Fard, J.R.; Darvishzadeh, R. Selenium nanoparticles mitigates drought stress in E. purpurea by enhancing morpho-physiological characteristics and gene expression related to the phenylpropanoid pathway. Ind. Crops Prod. 2025, 227, 120833. [Google Scholar] [CrossRef]
- Solomakou, N.; Drosaki, A.M.; Christaki, S.; Kaderides, K.; Mourtzinos, I.; Goula, A.M. Valorization of peach (Prunus persica L.) peels and seeds using ultrasound and enzymatic methods. Chem. Eng. Process. Process Intensif. 2024, 206, 110072. [Google Scholar] [CrossRef]
- Stojanova, M.; Demiri, S.; Stojanova, M.T.; Djukic, D.A.; Kaya, Y. From cultivation to Consumption: Evaluating the effects of nano fertilizers on food quality and safety. Adv. Agrochem. 2025, 4, 217–234. [Google Scholar] [CrossRef]
- Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium nanoparticles as a nutritional supplement. Nutrition 2017, 33, 83–90. [Google Scholar] [CrossRef]
- Doerge, D.R.; Divi, R.L.; Churchwell, M.I. Identification of the colored guaiacol oxidation product produced by peroxidases. Anal. Biochem. 1997, 250, 10–17. [Google Scholar] [CrossRef]
- Li, D.; Zhou, C.; Zou, N.; Wu, Y.; Zhang, J.; An, Q.; Li, J.-Q.; Pan, C. Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways. Environ. Pollut. 2021, 273, 116503. [Google Scholar] [CrossRef]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; Elsohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid.-Based Complement. Altern. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef]
- Oveisi, Z.; Minaei, S.; Rafiee, S.; Eyvani, A.; Borghei, A. Application of vibration response technique for the firmness evaluation of pear fruit during storage. J. Food Sci. Technol. 2014, 51, 3261–3268. [Google Scholar] [CrossRef]
- Moselhy, H.F.; Reid, R.G.; Yousef, S.; Boyle, S.P. A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC. J. Lipid Res. 2013, 54, 852–858. [Google Scholar] [CrossRef]







| Parameters | CK | SeNPs-5 | SeNPs-10 | SiNPs-10 | Se5Si10 | Se10Si10 |
|---|---|---|---|---|---|---|
| Fruit yield (kg/tree) | 52.4 ± 3.8 a | 53.6 ± 4.1 a | 54.2 ± 3.9 a | 55.8 ± 4.3 a | 55.1 ± 4.5 a | 54.7 ± 4.0 a |
| No. of fruits/tree | 312 ± 25 a | 318 ± 28 a | 324 ± 26 a | 335 ± 29 a | 328 ± 27 a | 326 ± 24 a |
| Average fruit weight (g) | 168 ± 12 a | 169 ± 11 a | 167 ± 13 a | 167 ± 11 a | 168 ± 12 a | 168 ± 13 a |
| Si in shoots (mg g−1 DW) | 0.82 ± 0.06 c | 0.85 ± 0.05 c | 0.84 ± 0.07 c | 1.46 ± 0.09 a | 1.38 ± 0.08 ab | 1.32 ± 0.07 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Hussain, B.; Wang, X.; Hamid, Y.; Zhang, J.; Khan, M.B.; He, Z.; Yang, X. Synergistic Effects of Selenium and Silicon Nanoparticles on Peach Quality Enhancement and Se Biofortification Through Foliar Application. Plants 2025, 14, 3669. https://doi.org/10.3390/plants14233669
Wang Z, Hussain B, Wang X, Hamid Y, Zhang J, Khan MB, He Z, Yang X. Synergistic Effects of Selenium and Silicon Nanoparticles on Peach Quality Enhancement and Se Biofortification Through Foliar Application. Plants. 2025; 14(23):3669. https://doi.org/10.3390/plants14233669
Chicago/Turabian StyleWang, Ziyang, Bilal Hussain, Xin Wang, Yasir Hamid, Jiali Zhang, Muhammad Bilal Khan, Zhenli He, and Xiaoe Yang. 2025. "Synergistic Effects of Selenium and Silicon Nanoparticles on Peach Quality Enhancement and Se Biofortification Through Foliar Application" Plants 14, no. 23: 3669. https://doi.org/10.3390/plants14233669
APA StyleWang, Z., Hussain, B., Wang, X., Hamid, Y., Zhang, J., Khan, M. B., He, Z., & Yang, X. (2025). Synergistic Effects of Selenium and Silicon Nanoparticles on Peach Quality Enhancement and Se Biofortification Through Foliar Application. Plants, 14(23), 3669. https://doi.org/10.3390/plants14233669

