Miocene Tropical Forests in South China Shaped by Combined Asian Monsoons
Abstract
1. Introduction
2. Results
2.1. Paleoclimate Estimation
2.2. Integrated Plant Record (IPR) Vegetation Analysis
3. Discussion
3.1. Comparison of Paleoclimate Reconstruction Methods
3.2. A Humid Monsoonal Climate with Warm Winters and Evergreen Dominance During the Miocene in Guiping
3.3. Persistence and Northward Expansion of Miocene Tropical Elements in Guiping
4. Conclusions
5. Materials and Methods
5.1. Geological Setting
5.2. Research Methods
5.2.1. LMA
5.2.2. LAA
5.2.3. CLAMP
5.2.4. Integrated Plant Record Vegetation Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EBLFs | Evergreen broad-leaved forests |
| CCA | Canonical correspondence analysis |
| MMCO | Mid-Miocene Climatic Optimum |
| MT | Morphotypes |
| LMA | Leaf margin analysis |
| MAT | Mean annual temperature |
| LAA | Leaf area analysis |
| MAP | Mean annual precipitation |
| CLAMP | Climate-Leaf Analysis Multivariate Program |
| WMMT | Warm month mean temperature |
| CMMT | Cold month mean temperature |
| LGS | Length of the Growing Season |
| GSP | Growing season precipitation |
| 3-WET | Three wettest months’ precipitation |
| 3-DRY | Three driest months’ precipitation |
| SH_ann | Specific humidity |
| ENTH | Enthalpy |
| VPD_ann | Mean annual vapor pressure deficit |
| VPD_sum | Mean vapor pressure deficit during the three summer months |
| VPD_win | Mean vapor pressure deficit during the three winter months |
| VPD_spr | Mean vapor pressure deficit during the three spring months |
| VPD_aut | Mean vapor pressure deficit during the three autumn months |
| PET_ann | Mean annual potential evapotranspiration |
| PET_wrm | Mean potential evapotranspiration during the warmest month |
| PET_cld | Mean potential evapotranspiration during the coldest month |
| MinT_W | Mean minimum temperature during the warmest month |
| MaxT_C | Mean maximum temperature during the coldest month |
| MSI | Monsoon Index |
| IPR | Integrated Plant Record |
| LAR | Lineage accumulation rate |
References
- Favre, A.; Päckert, M.; Pauls, S.U.; Jähnig, S.C.; Uhl, D.; Michalak, I.; Muellner-Riehl, A.N. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 2015, 90, 236–253. [Google Scholar] [CrossRef]
- Herbert, T.D.; Lawrence, K.T.; Tzanova, A.; Peterson, L.C.; Caballero-Gill, R.; Kelly, C.S. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 2016, 9, 843–847. [Google Scholar] [CrossRef]
- Potter, P.E.; Szatmari, P. Global Miocene tectonics and the modern world. Earth-Sci. Rev. 2009, 96, 279–295. [Google Scholar] [CrossRef]
- Steinthorsdottir, M.; Coxall, H.K.; de Boer, A.M.; Huber, M.; Barbolini, N.; Bradshaw, C.D.; Burls, N.J.; Feakins, S.J.; Gasson, E.; Henderiks, J.; et al. The Miocene: The future of the past. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004037. [Google Scholar] [CrossRef]
- Willis, K.J.; McElwain, J.C. The Evolution of Plants; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Lu, L.; Mao, L.; Yang, T.; Ye, J.; Liu, B.; Li, H.; Sun, M.; Miller, J.T.; Mathews, S.; Hu, H.; et al. Evolutionary history of the angiosperm flora of China. Nature 2018, 554, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Spicer, R.A.; Su, T.; Zhou, Z.; Deng, C. An updated chronostratigraphic framework for the Cenozoic sediments of southeast margin of the Tibetan Plateau: Implications for regional tectonics. Glob. Planet. Change 2024, 236, 104436. [Google Scholar] [CrossRef]
- Zhu, H.; Tan, Y. The origin of Evergreen Broad-Leaved Forests in East Asia from the evidence of floristic elements. Plants 2024, 13, 1106. [Google Scholar] [CrossRef]
- Qin, S.; Zuo, Z.; Guo, C.; Du, X.; Liu, S.; Yu, X.; Xiang, X.; Rong, J.; Liu, B.; Liu, Z.; et al. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol. Ecol. 2023, 32, 2850–2868. [Google Scholar] [CrossRef]
- Farnsworth, A.; Lunt, D.J.; Robinson, S.A.; Valdes, P.J.; Roberts, W.H.G.; Clift, P.D.; Markwick, P.; Su, T.; Wrobel, N.; Bragg, F.; et al. Past East Asian Monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 2019, 5, eaax1697. [Google Scholar] [CrossRef]
- Wu, F.; Fang, X.; Yang, Y.; Dupont-Nivet, G.; Nie, J.; Fluteau, F.; Zhang, T.; Han, W. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nat. Rev. Earth Envion. 2022, 3, 684–700. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S.; Huang, J.; Ding, W.; Wu, M.; Su, T.; Farnsworth, A.; Valdes, P.J.; Chen, L.; Xing, Y.; et al. Heterogeneous occurrence of evergreen broad-leaved forests in East Asia: Evidence from plant fossils. Plant Divers. 2025, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jacques, F.M.B.; Su, T.; Spicer, R.A.; Xing, Y.; Huang, Y.; Zhou, Z. Late Miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 411, 208–215. [Google Scholar] [CrossRef]
- Jacques, F.M.B.; Shi, G.; Su, T.; Zhou, Z. A tropical forest of the Middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Rev. Palaeobot. Palynol. 2015, 216, 76–91. [Google Scholar] [CrossRef]
- Shi, G.; Li, H. A fossil fruit wing of Dipterocarpus from the Middle Miocene of Fujian, China and its palaeoclimatic significance. Rev. Palaeobot. Palynol. 2010, 162, 599–606. [Google Scholar] [CrossRef]
- Wang, B.; Shi, G.; Xu, C.; Spicer, R.A.; Perrichot, V.; Schmidt, A.R.; Feldberg, K.; Heinrichs, J.; Chény, C.; Pang, H.; et al. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. Sci. Adv. 2021, 7, eabg0625. [Google Scholar] [CrossRef]
- Ma, H.; Wang, H.; Zhang, F. Temporal and spatial variations of vegetation phenology in the three provinces (regions) of South China from 2001 to 2020. J. Trop. Subtrop. Bot. 2024, 32, 330–338. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Huang, L.; Wu, X.; Spicer, R.A.; Quan, C.; Jin, J. The first megafossil of Cibotium within its modern distribution. J. Palaeogeogr. 2023, 12, 96–106. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Kodrul, T.; Quan, C.; Jin, J. Dacrycarpus pattern shedding new light on the early floristic exchange between Asia and Australia. Natl. Sci. Rev. 2019, 6, 1086–1090. [Google Scholar] [CrossRef]
- Wu, X.; Zavialova, N.E.; Kodrul, T.M.; Liu, X.; Gordenko, N.V.; Maslova, N.P.; Quan, C.; Jin, J. Northern Hemisphere megafossil of Dacrycarpus (Podocarpaceae) from the Miocene of South China and its evolutionary and paleoecological implications. J. Syst. Evol. 2021, 59, 352–374. [Google Scholar] [CrossRef]
- Han, M.; Manchester, S.R.; Wu, Y.; Jin, J.; Quan, C. Fossil fruits of Canarium (Burseraceae) from Eastern Asia and their implications for phytogeographical history. J. Syst. Palaeontol. 2018, 16, 841–852. [Google Scholar] [CrossRef]
- Xu, S.; Song, H.; Xiang, H.; Liu, W.; Quan, C.; Jin, J. Fossil fruits of Ceratophyllum from the upper Eocene and Miocene of South China. Biology 2022, 11, 1614. [Google Scholar] [CrossRef]
- Liu, X.; Manchester, S.R.; Rozefelds, A.C.; Quan, C.; Jin, J. First fossil fruits of Elaeocarpus (Elaeocarpaceae) in East Asia: Implications for phytogeography and paleoecology. J. Syst. Evol. 2022, 60, 456–471. [Google Scholar] [CrossRef]
- Song, H.; Huang, L.; Xiang, H.; Quan, C.; Jin, J. First reliable Miocene fossil winged fruits record of Engelhardia in Asia through anatomical investigation. Iscience 2023, 26, 106867. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jin, J.; Quan, C.; Oskolski, A.A. New occurrences of Altingiaceae fossil woods from the Miocene and upper Pleistocene of South China with phytogeographic implications. J. Palaeogeogr. 2021, 10, 482–493. [Google Scholar] [CrossRef]
- Kovach, W.L.; Spicer, R.A. Canonical Correspondence Analysis of leaf physiognomy: A contribution to the development of a new palaeoclimatological tool. Paleoclimates 1996, 2, 125–138. [Google Scholar]
- Wolfe, J.A. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. United States Geol. Surv. Prof. Pap. 1979, 1106, 1–37. [Google Scholar] [CrossRef]
- Wolfe, J.A. A method of obtaining climatic parameters from leaf assemblages. United States Geol. Surv. Bull. 1993, 2040, 1–71. [Google Scholar] [CrossRef]
- Wolfe, J.A.; Spicer, R.A. Fossil leaf character states: Multivariate analysis. In Fossil Plants and Spores: Modern Techniques; Jones, T.P., Rowe, N.P., Eds.; Geological Society: London, UK, 1999; pp. 233–239. [Google Scholar]
- Yang, J.; Spicer, R.A.; Spicer, T.E.V.; Arens, N.C.; Jacques, F.M.B.; Su, T.; Kennedy, E.M.; Herman, A.B.; Steart, D.C.; Srivastava, G.; et al. Leaf form-climate relationships on the global stage: An ensemble of characters. Glob. Ecol. Biogeogr. 2015, 24, 1113–1125. [Google Scholar] [CrossRef]
- Yang, J.; Spicer, R.A.; Spicer, T.E.V.; Li, C. ‘CLAMP Online’: A new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodivers. Palaeoenviron. 2011, 91, 163–183. [Google Scholar] [CrossRef]
- Bhatia, H.; Srivastava, G.; Spicer, R.A.; Farnsworth, A.; Spicer, T.E.V.; Mehrotra, R.C.; Paudayal, K.N.; Valdes, P.J. Leaf physiognomy records the Miocene intensification of the South Asia Monsoon. Glob. Planet. Change 2021, 196, 103365. [Google Scholar] [CrossRef]
- Bloom, A.J.; Chapin, F.S.; Mooney, H.A. Resource limitation in plants—An economic analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Givnish, T.J. Leaf and canopy adaptations in tropical forests. In Physiological Ecology of Plants of the Wet Tropics; Medina, E., Mooney, H.A., Vázquez-Yánes, C., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 51–84. ISBN 978-94-009-7299-5. [Google Scholar]
- Spicer, R.A.; Yang, J.; Herman, A.B.; Kodrul, T.; Maslova, N.; Spicer, T.E.V.; Aleksandrova, G.; Jin, J. Asian Eocene monsoons as revealed by leaf architectural signatures. Earth Planet. Sci. Lett. 2016, 449, 61–68. [Google Scholar] [CrossRef]
- Spicer, R.A.; Yang, J.; Herman, A.; Kodrul, T.; Aleksandrova, G.; Maslova, N.; Spicer, T.; Ding, L.; Xu, Q.; Shukla, A.; et al. Paleogene monsoons across India and South China: Drivers of biotic change. Gondwana Res. 2017, 49, 350–363. [Google Scholar] [CrossRef]
- Steart, D.C.; Spicer, R.A.; Bamford, M.K. Is southern Africa different? An investigation of the relationship between leaf physiognomy and climate in southern African mesic vegetation. Rev. Palaeobot. Palynol. 2010, 162, 607–620. [Google Scholar] [CrossRef]
- Uhl, D.; Mosbrugger, V.; Bruch, A.A.; Utescher, T. Reconstructing palaeotemperatures using leaf floras—Case studies for a comparison of Leaf Margin Analysis and the Coexistence Approach. Rev. Palaeobot. Palynol. 2003, 126, 49–64. [Google Scholar] [CrossRef]
- Spicer, R.A.; Yang, J.; Spicer, T.E.V.; Farnsworth, A. Woody dicot leaf traits as a palaeoclimate proxy: 100 years of development and application. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 562, 110138. [Google Scholar] [CrossRef]
- Jacques, F.M.B.; Guo, S.; Su, T.; Xing, Y.; Huang, Y.; Liu, Y.C.; Ferguson, D.K.; Zhou, Z. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 318–327. [Google Scholar] [CrossRef]
- Kennedy, E.M.; Arens, N.C.; Reichgelt, T.; Spicer, R.A.; Spicer, T.E.V.; Stranks, L.; Yang, J. Deriving temperature estimates from Southern Hemisphere leaves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 412, 80–90. [Google Scholar] [CrossRef]
- Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; et al. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol. 2011, 190, 724–739. [Google Scholar] [CrossRef]
- Li, X.; Guo, Z.; He, W.; Xiao, L.; Dai, J.; Sun, N.; Wang, N.; Li, R.; Lü, J. Quantitative paleoclimate reconstruction of the Early Miocene megaflora of Jinggu, Yunnan. Acta Palaeontologica Sinica 2017, 56, 549–561. [Google Scholar] [CrossRef]
- Xia, K.; Su, T.; Liu, Y.C.; Xing, Y.; Jacques, F.M.B.; Zhou, Z. Quantitative climate reconstructions of the Late Miocene Xiaolongtan megaflora from Yunnan, Southwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 276, 80–86. [Google Scholar] [CrossRef]
- Xing, Y.; Utescher, T.; Jacques, F.M.B.; Su, T.; Liu, Y.C.; Huang, Y.; Zhou, Z. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene: Evidence from plant macrofossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 358–360, 19–26. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, F.; Fang, X. Middle Eocene East Asian monsoon prevalence over southern China: Evidence from palynological records. Glob. Planet. Change 2019, 175, 13–26. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, F.; Fang, X. A major environmental shift by the middle Eocene in southern China: Evidence from palynological records. Rev. Palaeobot. Palynol. 2020, 278, 104226. [Google Scholar] [CrossRef]
- Aleksandrova, G.N.; Kodrul, T.M.; Jin, J. Palynological and paleobotanical investigations of Paleogene sections in the Maoming Basin, South China. Stratigr. Geol. Correl. 2015, 23, 300–325. [Google Scholar] [CrossRef]
- Averianov, A.; Obraztsova, E.; Danilov, I.; Jin, J. Anthracotheriid artiodactyl Anthracokeryx and an upper Eocene age for the Youganwo Formation of southern China. Hist. Biol. 2017, 31, 1115–1122. [Google Scholar] [CrossRef]
- Herman, A.B.; Spicer, R.A.; Aleksandrova, G.N.; Yang, J.; Kodrul, T.M.; Maslova, N.P.; Spicer, T.E.V.; Chen, G.; Jin, J. Eocene–early Oligocene climate and vegetation change in southern China: Evidence from the Maoming Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 479, 126–137. [Google Scholar] [CrossRef]
- Spicer, R.A.; Herman, A.B.; Liao, W.; Spicer, T.E.V.; Kodrul, T.M.; Yang, J.; Jin, J. Cool tropics in the middle Eocene: Evidence from the Changchang Flora, Hainan Island, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 412, 1–16. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y.; Liu, B.; Lu, L.; Sauquet, H.; Li, D.; Chen, Z. Meta-analysis provides insights into the origin and evolution of East Asian evergreen broad-leaved forests. New Phytol. 2024, 242, 2369–2379. [Google Scholar] [CrossRef]
- He, S.; Ding, L.; Xiong, Z.; Spicer, R.A.; Farnsworth, A.; Valdes, P.J.; Wang, C.; Cai, F.; Wang, H.; Sun, Y.; et al. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet. Sci. Bull. 2022, 67, 2245–2258. [Google Scholar] [CrossRef]
- Fang, X.; Yan, M.; Zhang, W.; Nie, J.; Han, W.; Wu, F.; Song, C.; Zhang, T.; Zan, J.; Yang, Y. Paleogeography control of Indian monsoon intensification and expansion at 41 Ma. Sci. Bull. 2021, 66, 2320–2328. [Google Scholar] [CrossRef]
- Whittaker, R.H. Classification of natural communities. Bot. Rev. 1962, 28, 1–239. [Google Scholar] [CrossRef]
- Whittaker, R.H. Communities and Ecosystems; Macmillan: New York, NY, USA, 1970. [Google Scholar]
- Whittaker, R.H. Communities and Ecosystems, 2nd ed.; Macmillan: New York, NY, USA, 1975; ISBN 0024273902/9780024273901. [Google Scholar]
- Ștefan, V.; Levin, S. Plotbiomes: R Package for Plotting Whittaker Biomes with ggplot2, Version v1.0.0; Zenodo: Geneva, Switzerland, 2018. [Google Scholar] [CrossRef]
- Huang, Y.; Jia, L.; Wang, Q.; Mosbrugger, V.; Utescher, T.; Su, T.; Zhou, Z. Cenozoic plant diversity of Yunnan: A review. Plant Divers. 2016, 38, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z. Stratigraphy of the Miocene in Guiping, Guangxi (in Chinese). Geol. Guangxi 1988, 39–43. [Google Scholar]
- Xu, S.; Kodrul, T.; Romanov, M.S.; Bobrov, A.V.F.C.; Maslova, N.; Li, S.; Fu, Q.; Huang, W.; Quan, C.; Jin, J.; et al. Diversity of Symplocos (Symplocaceae, Ericales) at low latitudes in Asia during late Oligocene and Miocene. Plant Divers. 2024, 46, 812–816. [Google Scholar] [CrossRef]
- Su, T.; Xing, Y.; Liu, Y.C.; Jacques, F.M.B.; Chen, W.; Huang, Y.; Zhou, Z.; Zhou, Z. Leaf Margin Analysis: A new equation from humid to mesic forests in China. Palaios 2010, 25, 234–238. [Google Scholar] [CrossRef]
- Chen, W.; Su, T.; Adams, J.M.; Jacques, F.M.B.; Ferguson, D.K.; Zhou, Z. Large-scale dataset from China gives new insights into leaf margin-temperature relationships. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 402, 73–80. [Google Scholar] [CrossRef]
- Miller, I.M.; Brandon, M.T.; Hickey, L.J. Using leaf margin analysis to estimate the mid-Cretaceous (Albian) paleolatitude of the Baja BC block. Earth Planet. Sci. Lett. 2006, 245, 95–114. [Google Scholar] [CrossRef]
- Bailey, I.W.; Sinnott, E.W. The climatic distribution of certain types of angiosperm leaves. Am. J. Bot. 1916, 3, 24–39. [Google Scholar] [CrossRef]
- Bailey, I.W.; Sinnott, E.W. A botanical index of Cretaceous and Tertiary climates. Science 1915, 41, 831–834. [Google Scholar] [CrossRef]
- Wilf, P.; Wing, S.L.; Greenwood, D.R.; Greenwood, C.L. Using fossil leaves as paleoprecipitation indicators: An Eocene example. Geology 1998, 26, 203–206. [Google Scholar] [CrossRef]
- Gregory-Wodzicki, K.M. Relationships between leaf morphology and climate, Bolivia: Implications for estimating paleoclimate from fossil floras. Paleobiology 2000, 26, 668–688. [Google Scholar] [CrossRef]
- Jacobs, B.F. Estimation of low-latitude paleoclimates using fossil angiosperm leaves: Examples from the Miocene Tugen Hills, Kenya. Paleobiology 2002, 28, 399–421. [Google Scholar] [CrossRef]
- Jacobs, B.F. Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 145, 231–250. [Google Scholar] [CrossRef]
- Peppe, D.J.; Baumgartner, A.; Flynn, A.; Blonder, B. Reconstructing paleoclimate and paleoecology using fossil leaves. In Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities; Croft, D.A., Su, D.F., Simpson, S.W., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 289–317. ISBN 978-3-319-94265-0. [Google Scholar]
- Spicer, R.A.; Valdes, P.J.; Spicer, T.E.V.; Craggs, H.J.; Srivastava, G.P.; Mehrotra, R.C.; Yang, J. New developments in CLAMP: Calibration using global gridded meteorological data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 283, 91–98. [Google Scholar] [CrossRef]
- Tosal, A.; Verduzco, O.; Martín-Closas, C. CLAMP-based palaeoclimatic analysis of the Late Miocene (Tortonian) flora from La Cerdanya Basin of Catalonia, Spain, and an estimation of the palaeoaltitude of the eastern Pyrenees. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 564, 110186. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Spicer, R.A.; Mosbrugger, V.; Li, C.; Sun, Q. Climatic reconstruction at the Miocene Shanwang Basin, China, using Leaf Margin Analysis, CLAMP, Coexistence Approach, and Overlapping Distribution Analysis. Am. J. Bot. 2007, 94, 599–608. [Google Scholar] [CrossRef]
- Currie, B.S.; Rowley, D.B.; Tabor, N.J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology 2005, 33, 181–184. [Google Scholar] [CrossRef]
- Khan, M.A.; Spicer, R.A.; Bera, S.; Ghosh, R.; Yang, J.; Spicer, T.E.V.; Guo, S.; Su, T.; Jacques, F.; Grote, P.J. Miocene to Pleistocene floras and climate of the eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling-Oiyug Basin, Tibet. Glob. Planet. Change 2014, 113, 1–10. [Google Scholar] [CrossRef]
- Polissar, P.J.; Freeman, K.H.; Rowley, D.B.; Mcinerney, F.A.; Currie, B.S. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet. Sci. Lett. 2009, 287, 64–76. [Google Scholar] [CrossRef]
- Spicer, R.A.; Harris, N.B.W.; Widdowson, M.; Herman, A.B.; Guo, S.; Valdes, P.J.; Wolfe, J.A.; Kelley, S.P. Constant elevation of southern Tibet over the past 15 million years. Nature 2003, 421, 622–624. [Google Scholar] [CrossRef]
- Srivastava, G.; Spicer, R.A.; Spicer, T.E.V.; Yang, J.; Kumar, M.; Mehrotra, R.; Mehrotra, N. Megaflora and palaeoclimate of a late Oligocene tropical delta, Makum coalfield, Assam: Evidence for the early development of the South Asia Monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 342–343, 130–142. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Khan, M.A.; Bera, M.; Spicer, R.A.; Spicer, T.E.V.; Bera, S. Palaeoclimatic estimates for a latest Miocene-Pliocene flora from the Siwalik Group of Bhutan: Evidence for the development of the South Asian Monsoon in the eastern Himalaya. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 514, 326–335. [Google Scholar] [CrossRef]
- Kovar-Eder, J.; Kvaček, Z.; Jechorek, H.; Mai, D.; Paraschiv, V.; Stuchlik, L.; Walther, H. The Intergrated Plant Record (IPR) to reconstruct Neogene vegetation: The IRP-vegetation analysis. Acta Palaeobotanica 2007, 47, 391–418. [Google Scholar]
- Kovar-Eder, J.; Jechorek, H.; Kvaček, Z.; Parashiv, V. The Integrated Plant Record: An essential tool for reconstructing Neogene zonal vegetation in Europe. Palaios 2008, 23, 97–111. [Google Scholar] [CrossRef]
- Teodoridis, V.; Kovar-Eder, J.; Mazouch, P. Integrated Plant Record (IPR) vegetation analysis applied to modern vegatation in South China and Japan. Palaios 2011, 26, 623–638. [Google Scholar] [CrossRef]
- Teodoridis, V.; Mazouch, P.; Kovar-Eder, J. On-line application of Drudge 1 and 2—Simple and quick determination of the modern vegetation most closely resembling fossil plant assemblages. Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen 2021, 299, 71–75. [Google Scholar] [CrossRef]
- Kovar-Eder, J.; Teodoridis, V. The Middle Miocene Central European plant record revisited; Widespread subhumid sclerophyllous forests indicated. Foss. Impr. 2018, 74, 115–134. [Google Scholar] [CrossRef]
- Teodoridis, V.; Mazouch, P.; Kovar-Eder, J. The Integrated Plant Record (IPR) analysis: Methodological advances and new insights into the evolution of European Palaeogene/Neogene vegetation. Palaeontol. Electron. 2020, 23, a16. [Google Scholar] [CrossRef]





| Variables | Units | Guiping (Modern) | Guiping (Fossil) | ||
|---|---|---|---|---|---|
| LMA | LAA | CLAMP | |||
| MAT | °C | 22.1 | 26.1 ± 1.25 | 22.3 ± 2.27 | |
| MAP | mm | 1687.4 | 1108.1 | ||
| WMMT | °C | 29.3 | 27 ± 2.3 | ||
| CMMT | °C | 13 | 17 ± 3.35 | ||
| LGS | Months | 12 | 11.7 ± 1.04 | ||
| GSP | mm | 1687.4 | 1991 ± 481 | ||
| 3-WET | mm | 742.7 | 974 ± 237.2 | ||
| 3-DRY | mm | 154.3 | 180 ± 57.5 | ||
| SH_ann | g/kg | 13.67 | 13.5 ± 1.63 | ||
| ENTH | kJ/kg | 34.81 | 34.8 ± 0.79 | ||
| VPD_ann | hPa | 5.96 | 6.4 ± 2.02 | ||
| VPD_sum | hPa | 7.63 | 5 ± 3.09 | ||
| VPD_win | hPa | 3.9 | 5.8 ± 1.3 | ||
| VPD_spr | hPa | 4.78 | 8.5 ± 2.74 | ||
| VPD_aut | hPa | 7.53 | 5.7 ± 1.79 | ||
| PET_ann_div10 | mm | 137.3 ± 14.95 | |||
| PET_wrm | mm | 134.9 ± 18.55 | |||
| PET_cld | mm | 83.7 ± 13.13 | |||
| MinT_W | °C | 22.9 ± 2.47 | |||
| MaxT_C | °C | 22.3 ± 3.39 | |||
| MSI | % | 34.87 | 39.88 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Spicer, R.A.; Quan, C.; Huang, L.; Jin, J. Miocene Tropical Forests in South China Shaped by Combined Asian Monsoons. Plants 2025, 14, 3599. https://doi.org/10.3390/plants14233599
Zhang H, Spicer RA, Quan C, Huang L, Jin J. Miocene Tropical Forests in South China Shaped by Combined Asian Monsoons. Plants. 2025; 14(23):3599. https://doi.org/10.3390/plants14233599
Chicago/Turabian StyleZhang, Hao, Robert A. Spicer, Cheng Quan, Luliang Huang, and Jianhua Jin. 2025. "Miocene Tropical Forests in South China Shaped by Combined Asian Monsoons" Plants 14, no. 23: 3599. https://doi.org/10.3390/plants14233599
APA StyleZhang, H., Spicer, R. A., Quan, C., Huang, L., & Jin, J. (2025). Miocene Tropical Forests in South China Shaped by Combined Asian Monsoons. Plants, 14(23), 3599. https://doi.org/10.3390/plants14233599

