Molecular Mechanisms Underlying Flower Bud Differentiation in Osmanthus fragrans Lour.
Abstract
1. Introduction
2. Phenology and Flower Bud Differentiation Characteristics of O. fragrans
3. Molecular Regulatory Mechanisms of Flower Bud Differentiation and Flowering in O. fragrans
3.1. Regulation of Flower Bud Differentiation and Flowering by Environmental Factors
3.1.1. Impact of Low Temperature on Flower Bud Differentiation
Negative Regulation of Flowering Repressors by Low Temperature Signals
Positive Regulation of Flowering Promoters by Low Temperature Signals
The Effect of Low Temperature on the Petal Formation
3.1.2. High Temperature Signals Inhibit Flowering in O. fragrans
3.1.3. Impact of Drought on Flowering
3.2. Regulatory Mechanisms of Multi-Season Flowering
3.3. Molecular Regulation of Flower Senescence in O. fragrans
3.4. Regulatory Mechanisms Influencing Floral Organ Size
4. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, C.C.; Xu, F.Y.; Qian, Y.C.; Koo, H.L.; Duan, Y.F.; Weng, G.M.; Fan, T.P.; Chen, M.X.; Zhu, F.Y. Secondary metabolites of Osmanthus fragrans: Metabolism and medicinal value. Front. Pharmacol. 2022, 13, 922204. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.L.; Gao, X.Z.; Su, Z.L.; Xiao, S.G.; Zhang, Z.W. Overview of the Application and Medicinal Value of Osmanthus fragrans. J. Hubei Univ. Sci. Technol. 2022, 36, 444–448. [Google Scholar]
- Zhao, H.B.; Hao, R.M.; Hu, S.Q. Geographic distribution and population characteristics of Osmanthus fragrans. Acta Hortic. Sin. 2015, 42, 1760–1770. [Google Scholar]
- Wang, Y.; Zhang, C.; Fu, J.; Zhao, H.B. Progresses on flower bud differentiation and flower opening in Osmanthus fragrans. J. Zhejiang A F Univ. 2016, 33, 340–347. [Google Scholar]
- Zang, D.K.; Xiang, Q.B.; Liu, Y.L. Notes on Cultivar Classification in Osmanthus. Sci. Silvae Sin. 2006, 42, 17–21. [Google Scholar]
- Xiang, Q.B.; Liu, Y.L. An Illustrated Monograph of the Sweet Osmanthus Cultivars in China; Zhejiang Science and Technology Press: Hangzhou, China, 2008; pp. 79–260. [Google Scholar]
- Yang, K.M. China Osmanthus Anthology; Shanghai Scientific and Technical Press: Shanghai, China, 2005; pp. 33–54. [Google Scholar]
- Dong, L.G.; Wang, X.R.; Ding, Y.L. Study on the Osmanthus fragrans blooming season phenology. J. Nanjing Forest. Univ. 2014, 38, 51–56. [Google Scholar]
- Hao, R.M.; Zhang, L.; Zhang, M.J.; Xiang, Q.B.; Zang, D.K. Study on key climate factors in fluencing blooming of Osmanthus fragrans at autumn in Nanjing. J. Pl. Resource Environ. 2006, 15, 31–34. [Google Scholar]
- Gao, A.L.; Li, J.A.; Liu, R.; He, Z.X.; Sun, Y. Advances in research on flower bud differentiation mechanism in higher plants. Nonwood For. Res. 2010, 28, 131–136. [Google Scholar]
- Nagpal, P.; Ellis, C.M.; Weber, H.; Ploense, S.E.; Barkawi, L.S.; Guilfoyle, T.J.; Hagen, G.; Alonso, J.M.; Cohen, J.D.; Farmer, E.E.; et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 2005, 132, 4107–4118. [Google Scholar] [CrossRef]
- Wang, R.H.; Farrona, S.; Vincent, C.; Joecker, A.; Schoof, H.; Turck, F.; Coupland, G.; Albani, M.C. PEP1 regulates perennial flowering in Arabis alpina. Nature 2009, 459, 423–427. [Google Scholar] [CrossRef]
- Zhou, C.M.; Zhang, T.Q.; Wang, X.; Yu, S.; Lian, H.; Tang, H.; Feng, Z.Y.; Lihova, J.; Wang, J.W. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 2013, 340, 1097–1100. [Google Scholar] [CrossRef]
- Yang, K.M.; Xia, R.M.; Qi, W.M. An investigation and analysis on the cultivars of sweet Osmanthus and their blooming characteristics in Shanghai. Acta Hortic. Sin. 1980, 16, 146–152. [Google Scholar]
- Yang, K.M.; Zhu, W.J. Investigation and analysis on ecological factors suitable for sweet Osmanthus. J. Ecol. 1988, 7, 21–25. [Google Scholar]
- Wang, C.Y.; Gao, L.P.; Lu, D.F.; Huang, Y.W. A study on morphological differentiation of flower bud of Osmanthus fragrans ‘Houban Jingui’. Acta Hortic. Sin. 2002, 29, 52–56. [Google Scholar]
- Wan, Y.X. A preliminary observation on the flower bud differentiation of Osmanthus fragrans. J. Huazhong Agric. Univ. 1988, 7, 364–366. [Google Scholar]
- Li, J. Study on Flower Bud Differentiation in Osmanthus fragrans Lour. Master’s Thesis, Henan University, Zhengzhou, China, 30 May 2007. [Google Scholar]
- Zhu, Q.; Dong, M.F.; Yuan, W.J.; Sun, B.J.; Shang, F.D. Studies on flower bud differentiation and leaflike proliferate-flower bud of Osmanthus fragrans ‘Tianxiang Taige’. Acta Hortic. Sin. 2012, 39, 315–322. [Google Scholar]
- Zhu, Q. Study on the Variation and Evolution of Flower Organs of Osmanthus fragrans ‘Tianxiang Taige’. Master’s Thesis, Henan University, Zhengzhou, China, 1 May 2011. [Google Scholar]
- Lu, T.; Wang, Y.G.; Luo, Y.B.; Zhang, C.; Fu, J.X.; Dong, B.; Hu, S.Q.; Zhao, H.B. Comparison on flower bud differentiation and development of different seasons of Osmanthus fragrans ‘Sijigui’. Acta Hortic. Sin. 2017, 44, 1145–1156. [Google Scholar]
- Lu, T. Comparison of Flowering Mechanism of Different Seasons in Asiaticus Group of Osmanthus fragrans. Master’s Thesis, Zhejiang AF University, Hangzhou, China, 5 June 2017. [Google Scholar]
- Zhu, Y.M.; Wang, Q.Q.; Dong, B.; Zhang, C.; Zhao, H.B. Effect of OfSVP on flower bud differentiation in response to ambient temperature in Osmanthus fragrans. Acta Hortic. Sin. 2019, 46, 1134–1144. [Google Scholar]
- Fu, J.X.; Zhang, C.; Liu, Y.C.; Pang, T.H.; Dong, B.; Gao, X.Y.; Zhu, Y.M.; Zhao, H.B. Transcriptomic analysis of flower opening response to relatively low temperatures in Osmanthus fragrans. BMC Plant Biol. 2020, 20, 337. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Czech, B.; Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 2009, 138, 738–749. [Google Scholar] [CrossRef]
- Wu, H.F.; Zhou, M.S.; Zhu, S.K.; Yang, L.Y.; Zhao, H.B.; Dong, B. OfSPLs genes cloing and its expression analysis during flower bud differentiation at different temperature in Osmanthus fragrans. Chin. J. Agric. Biotechnol. 2020, 28, 1390–1399. [Google Scholar]
- Macknight, R.; Bancroft, I.; Page, T.; Lister, C.; Schmidt, R.; Love, K.; Westphal, L.; Murphy, G.; Sherson, S.; Cobbett, C.; et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 1997, 89, 737–745. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, H.F.; Zhou, M.S.; Xu, Q.X.; Yang, L.Y.; Zhao, H.B.; Ding, B. Cloning and expression analysis of OfFCA gene at flower bud differentiation stages in Osmanthus fragrans. J. Zhejiang A F Univ. 2020, 37, 195–200. [Google Scholar]
- Zheng, Z.F.; Xu, Q.; Tang, J.Q.; Chen, P.W.; Hu, Z.W.; Ye, Z.S.; Zhao, H.B.; Dong, B. Genome-wide analysis of TCP gene family in Osmanthus fragrans reveals a class I gene OfTCP13 modulates leaf morphology. Ornam. Plant Res. 2023, 3, 15. [Google Scholar] [CrossRef]
- Zhou, D.; Miao, Y.F.; Dong, B.; Yang, L.Y.; Zhao, H.B. Cloning of OfTCPs gene from Sweet Osmanthus (Osmanthus fragrans) and expression analysis during floral bud differentiation. Chin. J. Agric. Biotechnol. 2021, 29, 1506–1517. [Google Scholar]
- Zhong, S.W.; Zhu, H.J.; Li, W.L.; Wu, D.; Miao, Y.F.; Dong, B.; Wang, Y.G.; Xiao, Z.; Fang, Q.; Deng, J.P.; et al. DNA methylome analysis reveals novel insights into active hypomethylated regulatory mechanisms of temperature-dependent flower opening in Osmanthus fragrans. Hortic Res. 2024, 11, uhae010. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, Y.F.; Zhong, S.W.; Fang, Q.; Wang, Y.G.; Dong, B.; Zhao, H.B. Genome-wide identification and expression analysis of XTH gene family during flower-opening stages in Osmanthus fragrans. Plants 2022, 11, 1015. [Google Scholar] [CrossRef]
- Miao, Y.F.; Yang, Y.; Zhu, H.J.; Li, W.L.; Liu, X.N.; Zhong, S.W.; Lan, Y.G.; Zhao, H.B. The basic/helix-loop-helix 79 (bHLH79)—Xyloglucan endotransglucosylase/hydrolase 28 (XTH28) regulatory module mediates flower opening in Osmanthus fragrans. Int. J. Biol. Macromol. 2025, 322, 146633. [Google Scholar] [CrossRef]
- Ye, Y. Molecular Mechanism of OfC3H49 Gene Regulating the Floral Transition of Osmanthus fragrans in Response to Ambient Temperature. Master’s Thesis, Zhejiang A F University, Hangzhou, China, 7 June 2024. [Google Scholar]
- Ye, Y.; Lu, X.K.; Kong, E.; Wang, Q.Q.; Shen, L.X.; Zhong, S.W.; Wang, Y.G.; Xiao, Z.; Deng, J.P.; Zhao, H.B.; et al. OfWRKY17-OfC3H49 module responding to high ambient temperature delays flowering via inhibiting OfSOC1B expression in Osmanthus fragrans. Hortic Res. 2025, 12, uhae273. [Google Scholar] [CrossRef]
- Lu, X.K.; Kong, E.; Shen, L.X.; Ye, Y.; Wang, Y.G.; Dong, B.; Zhong, S.W. A Plasma membrane intrinsic protein gene OfPIP2 involved in promoting petal expansion and drought resistance in Osmanthus fragrans. Int. J. Mol. Sci. 2024, 25, 10716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.N. Isolation and Function Analysis of OfFT, OfSOC1 and OfAP1 in Osmanthus fragrans ‘Sijigui’. Master’s Thesis, Zhejiang A F University, Hangzhou, China, 25 May 2019. [Google Scholar]
- Yang, J. Comparison of Structure and Expression Patterns and Indirect Functional Verification of Multi-Season Flowering Candidate Genes in ‘Qiugui’ and ‘Sijigui’. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 12 December 2021. [Google Scholar]
- Xia, H.X. Functional Study of Variable Splicing Isoforms of Multi-season Flowering Candidate of Osmanthus fragrans. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2 June 2023. [Google Scholar]
- Li, Y.; Xia, H.X.; Cushman, S.A.; Zhao, H.; Guo, P.; Liu, Y.P.; Lin, N.; Shang, F.D. A new mechanism of flowering regulation by the competition of isoforms in Osmanthus fragrans. Ann. Bot. 2023, 132, 1089–1102. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, Q.Q.; Jiang, G.G.; Wan, Q.Q.; Dong, B.; Lu, M.; Deng, J.P.; Zhong, S.W.; Wang, Y.G.; Khan, I.A.; et al. Temperature-responsive module of OfAP1 and OfLFY regulates floral transition and floral organ identity in Osmanthus fragrans. Plant Physiol. Biochem. 2023, 203, 108076. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Gao, G.; Chen, X.; Liu, X.H.; Dong, B.; Wang, Y.G.; Zhong, S.W.; Deng, J.P.; Fang, Q.; Zhao, H.B. Genetic studies on continuous flowering in woody plant Osmanthus fragrans. Front. Plant Sci. 2022, 13, 1049479. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Chen, X.; Liu, X.H.; Gao, G.; Dong, B.; Wang, Y.G.; Zhong, S.W.; Deng, J.P.; Fang, Q.; Zhao, H.B. OfBFT genes play an essential role in the proliferate flower formation of Osmanthus fragrans. Plant Physiol. Biochem. 2024, 208, 108463. [Google Scholar] [CrossRef]
- Zou, J.J.; Zhang, J.; Wang, X.Q.; Xia, H.; Zeng, X.L.; Cai, X.; Yang, J.; Zeng, J.; Li, Z.Q.; Zhang, G.F.; et al. Comprehensive transcriptome analysis of AP2/ERFs in Osmanthus fragrans reveals the role of OfERF017-mediated organic acid metabolism pathway in flower senescence. Front. Plant Sci. 2024, 15, 1467232. [Google Scholar] [CrossRef]
- Qiu, H.; Chen, Y.W.; Fu, J.X.; Zhang, C. Expression of ethylene biosynthetic genes during flower senescence and in response to ethephon and silver nitrate treatments in Osmanthus fragrans. Genes Genom. 2024, 46, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Peng, L.; Chen, Q.; Xia, M.X.; Ning, A.X.; Dong, B.; Zhong, S.W.; Deng, J.P.; Zhao, H.B. A GATA transcription factor OfGATA9 positively regulates flower size of sweet Osmanthus. BMC Genomics. 2025, 26, 859. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.Q.; Lu, M.; Jiang, G.G.; Shao, J.X.; Chen, T.; Yang, L.Y.; Khan, I.A.; Deng, J.P.; Zhong, S.W.; Wang, Y.G.; et al. The characterization of OfRGA in regulation of flower size through tuning cell expansion genes. Front. Plant Sci. 2024, 15, 1502347. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Cao, S.S.; Shen, L.X.; Wang, Y.G.; Zhong, S.W.; Yang, L.Y.; Xiao, Z.; Fang, Q.; Zhao, H.B.; Dong, B. Comparative transcriptome analysis of CCCH family in roles of flower opening and abiotic stress in Osmanthus fragrans. Int. J. Mol. Sci. 2022, 23, 15363. [Google Scholar] [CrossRef]
- Hong, F.L.; Lu, Y.; Yu, S.J.; Hu, Z.N.; Miao, Y.F.; Zhao, S.W.; Zhao, H.B. Cloning and expression analysis of OfABFs gene in Osmanthus fragrans. J. Zhejiang A F Univ. 2023, 40, 481–491. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zhang, M.; Chen, L.; Wang, X. Molecular Mechanisms Underlying Flower Bud Differentiation in Osmanthus fragrans Lour. Plants 2025, 14, 3577. https://doi.org/10.3390/plants14233577
Yang Q, Zhang M, Chen L, Wang X. Molecular Mechanisms Underlying Flower Bud Differentiation in Osmanthus fragrans Lour. Plants. 2025; 14(23):3577. https://doi.org/10.3390/plants14233577
Chicago/Turabian StyleYang, Qinghua, Min Zhang, Lin Chen, and Xianrong Wang. 2025. "Molecular Mechanisms Underlying Flower Bud Differentiation in Osmanthus fragrans Lour." Plants 14, no. 23: 3577. https://doi.org/10.3390/plants14233577
APA StyleYang, Q., Zhang, M., Chen, L., & Wang, X. (2025). Molecular Mechanisms Underlying Flower Bud Differentiation in Osmanthus fragrans Lour. Plants, 14(23), 3577. https://doi.org/10.3390/plants14233577

