Decoding the Dual Defense: Mechanistic Insights into Antioxidant and Anti-Inflammatory Phytochemicals
1. Introduction
2. The Foundation: Deepened Phytochemical Profiling
3. Anti-Inflammatory Mechanisms: Targeting Key Regulatory Hubs
4. Antioxidant–Inflammation Crosstalk and Novel Pathways
5. Novel Antioxidant Strategies and Resource Optimization
6. Outlook
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ROS | Reactive oxygen species |
| LC | Liquid chromatography |
| MS | Mass spectrometry |
| HPLC | High-performance LC |
| GC | Gas chromatography |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid |
| FID | Flame ionization detector |
| UPLC | Ultra-HPLC |
| NF-κB | Nuclear factor-κB |
| MAPK | Mitogen-activated protein kinase |
| NO | Nitric oxide |
| iNOS | Inducible NO synthase |
| IL | Interleukin |
| TNF | Tumor necrosis factor |
| LPS | Lipopolysaccharide |
| COX | Cyclooxygenase |
| PGE2 | Prostaglandin E2 |
| TOF | Time-of-flight detection |
| NRF2 | Nuclear Factor Erythroid 2-Related Factor 2 |
| HO-1 | Heme oxygenase-1 |
| PAL | Polygonum aviculare L. |
| PINK1 | PTEN-induced kinase 1 |
| DMC | 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone |
| AQP | Aquaporin |
References
- Li, B.; Ming, H.; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox regulation: Mechanisms, biology and therapeutic targets in diseases. Signal Transduct. Target. Ther. 2025, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Bharate, S.B.; Lindsley, C.W. Natural Products Driven Medicinal Chemistry. J. Med. Chem. 2024, 67, 20723–20730. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C. Fissistigma oldhamii (Hemsl.) Merr.: Ethnomedicinal, Phytochemistry, and Pharmacological Aspects. Plants 2023, 12, 4094. [Google Scholar] [CrossRef] [PubMed]
- Imbimbo, P.; Fontanarosa, C.; Amoresano, A.; Monti, D.M.; Battaglia, G.; Nicoletti, M.; Spinelli, M.; Schaller, G.; Rocco, V. Phytochemical Composition and Antioxidant Activity of a Viscum album Mother Tincture. Plants 2025, 14, 2762. [Google Scholar] [CrossRef] [PubMed]
- Dhanaraj, F.I.; Kalimuthu, J.K.; Balamurugan, P.S.; Subramani, P.; Katerere, D.R.; Gurusamy, M. Investigating the Phytochemical Profile and Antioxidant Activity of Different Solvent Extracts of Sesamum prostratum Retz. Plants 2025, 14, 519. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Medrano, N.; Millan-Pacheco, C.; Rodriguez-Lopez, V.; Corona-Sanchez, L.; Mesnard, F.; Molinie, R.; Leon-Alvarez, E.; Villarreal, M.L.; Cardoso-Taketa, A.T. Antioxidant Active Phytochemicals in Ternstroemia lineata Explained by Aquaporin Mechanisms. Plants 2024, 13, 2223. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Gastelum, M.F.; Galindo-Castillo, P.A.; Esparza-Sanchez, J.; Jimenez-Perez, M.I.; Perfecto-Avalos, Y.; Garcia-Amezquita, L.E.; Navarro-Lopez, D.E.; Lopez-Mena, E.R.; Sanchez-Arreola, E.; Tamayo-Martinez, J.P.; et al. Lyophilized and Oven-Dried Manilkara zapota Extracts: Characterization and In Vitro, In Vivo, and In Silico Analyses. Plants 2025, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Mani, J.; Johnson, J.; Hosking, H.; Schmidt, L.; Batley, R.; du Preez, R.; Broszczak, D.; Walsh, K.; Neilsen, P.; Naiker, M. Bioassay-Guided Fractionation of Pittosporum angustifolium and Terminalia ferdinandiana with Liquid Chromatography Mass Spectroscopy and Gas Chromatography Mass Spectroscopy Exploratory Study. Plants 2024, 13, 807. [Google Scholar] [CrossRef] [PubMed]
- Baljak, J.; Bogavac, M.; Karaman, M.; Srdenovic Conic, B.; Vuckovic, B.; Anackov, G.; Kladar, N. Chemical Composition and Biological Activity of Hypericum Species-H. hirsutum, H. barbatum, H. rochelii. Plants 2024, 13, 2905. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.H.; Chung, Y.C.; Lee, A.; Hwang, Y.H. Hydroethanolic Extract of Polygonum aviculare L. Mediates the Anti-Inflammatory Activity in RAW 264.7 Murine Macrophages Through Induction of Heme Oxygenase-1 and Inhibition of Inducible Nitric Oxide Synthase. Plants 2024, 13, 3314. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Castillo, A.J.; Gonzalez-Chavez, S.A.; Portillo-Pantoja, I.; Cruz-Hermosillo, E.; Pacheco-Tena, C.; Chavez-Flores, D.; Delgado-Gardea, M.C.E.; Infante-Ramirez, R.; Ordaz-Ortiz, J.J.; Sanchez-Ramirez, B. Aqueous Extracts of Rhus trilobata Inhibit the Lipopolysaccharide-Induced Inflammatory Response In Vitro and In Vivo. Plants 2024, 13, 2840. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Kim, J.H.; Han, J.H.; Ryu, B.R.; Lim, Y.S.; Lim, J.D.; Park, S.H.; Kim, C.H.; Lee, S.U.; Kwon, T.H. In Vitro and In Vivo Anti-Inflammatory Potential of Cannabichromene Isolated from Hemp. Plants 2023, 12, 3966. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Jin, X.; Nguyen, T.T.M.; Kim, J.W.; Kim, Y.M.; Yi, T.H. Bauhinia forficata Link Protects HaCaT Keratinocytes from H(2)O(2)-Induced Oxidative Stress and Inflammation via Nrf2/PINK1 and NF-kappaB Signaling Pathways. Plants 2025, 14, 1751. [Google Scholar] [CrossRef] [PubMed]
- Bijelic, K.; Srdjenovic Conic, B.; Prpa, B.; Pilija, V.; Vukmirovic, S.; Kladar, N. The Potential of Hemp Extracts to Modify the Course of Oxidative-Stress Related Conditions. Plants 2024, 13, 1630. [Google Scholar] [CrossRef] [PubMed]
- Taya, S.; Punvittayagul, C.; Meepowpan, P.; Wongpoomchai, R. Cancer Chemopreventive Effect of 2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone on Diethylnitrosamine-Induced Early Stages of Hepatocarcinogenesis in Rats. Plants 2024, 13, 1975. [Google Scholar] [CrossRef] [PubMed]
- Vergoten, G.; Bailly, C. Interaction of Norsecurinine-Type Oligomeric Alkaloids with alpha-Tubulin: A Molecular Docking Study. Plants 2024, 13, 1269. [Google Scholar] [CrossRef]
- Tipduangta, P.; Saokham, P.; Jiaranaikulwanitch, J.; Okonogi, S.; Ampasavate, C.; Kiattisin, K. Boosting Therapeutic Effect of Turmeric, Coffee, and Chili Extracts Through Experimental Design and Encapsulation as Nanostructured Lipid Carriers for Novel Heath Supplements. Plants 2025, 14, 236. [Google Scholar] [CrossRef]
- Charoimek, N.; Sunanta, P.; Tangpao, T.; Suksathan, R.; Chanmahasathien, W.; Sirilun, S.; Hua, K.F.; Chung, H.H.; Sommano, S.R.; Junmahasathien, T. Pharmaceutical Potential Evaluation of Damask Rose By-Products from Volatile Oil Extraction. Plants 2024, 13, 1605. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-G. Decoding the Dual Defense: Mechanistic Insights into Antioxidant and Anti-Inflammatory Phytochemicals. Plants 2025, 14, 3531. https://doi.org/10.3390/plants14223531
Lee S-G. Decoding the Dual Defense: Mechanistic Insights into Antioxidant and Anti-Inflammatory Phytochemicals. Plants. 2025; 14(22):3531. https://doi.org/10.3390/plants14223531
Chicago/Turabian StyleLee, Seok-Geun. 2025. "Decoding the Dual Defense: Mechanistic Insights into Antioxidant and Anti-Inflammatory Phytochemicals" Plants 14, no. 22: 3531. https://doi.org/10.3390/plants14223531
APA StyleLee, S.-G. (2025). Decoding the Dual Defense: Mechanistic Insights into Antioxidant and Anti-Inflammatory Phytochemicals. Plants, 14(22), 3531. https://doi.org/10.3390/plants14223531
