Exogenous Plant Growth-Promoting Rhizobacteria Enhance the Promoting Effect of Polyaspartic Acid on Potato Growth by Improving Rhizosphere Nutrient Availability and Reshaping Microbial Community
Abstract
1. Introduction
2. Results
2.1. Effects of PGPR Inoculation on Potato Growth
2.2. Effects of PGPR Inoculation on Rhizosphere Soil Biochemical Properties
2.3. Effects of PGPR Inoculation on Rhizosphere Microbial Community Structure and Function
2.4. Effects of PGPR Inoculation on Rhizosphere Microbial Composition
2.5. Correlations Between Potato Biomass and Rhizosphere Soil Properties
2.6. Interactions Between Soil Biochemical Properties and Microbial Diversity
2.7. Correlations Between Rhizosphere Soil Biochemical Characteristics and Colonization Activity of PGPR
3. Discussion
3.1. PGPR Inoculation Enhances Potato Growth Through Rhizosphere Nutrient Modulation
3.2. The Changes in Soil Biochemical Properties Were Likely Mediated by PGPR Inoculation via Alterations in the Rhizosphere Microbial Community
3.3. The Introduction of Exogenous Microorganisms Has the Potential to Reshape the Structure of the Rhizosphere Soil Microbial Community
4. Materials and Methods
4.1. Experimental Site and Materials
4.2. Pot Experiment Design
4.3. Sample Collection and Processing
4.3.1. Plant Samples
4.3.2. Rhizosphere Soil Samples
4.4. Experimental Methods
4.4.1. Plant Growth Indicators and Dry Matter Determination
4.4.2. Soil Biochemical Analysis
4.4.3. PGPR Strain Colonization Quantification
4.4.4. Rhizosphere Microbiome Sequencing of Potato
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A




References
- He, Z.H.; Gong, K.Y.; Qu, M.Y.; Ru, X.Y.; Chen, S.; Jiang, T.C.; Zhang, J.; Feng, H.; Yu, Q.; He, L.; et al. Clarifying the Impacts of Climatic Coupling on Plastic-Mulching Potato Production in the Loess Plateau of China. Agric. Syst. 2024, 221, 104140. [Google Scholar] [CrossRef]
- Zhong, N.Q.; Liu, N.; Zhao, P.; Cai, D.Q.; Song, S.W.; Chao, Y.P. Current Status and Challenges for Potato Chemical Fertilizer & Pesticide Reductions in China. Chin. Sci. Bull. 2018, 63, 1693–1702. [Google Scholar] [CrossRef]
- Obst, M.; Steinbüchel, A. Microbial Degradation of Poly(amino acid)s. Biomacromolecules 2004, 5, 1166–1176. [Google Scholar] [CrossRef]
- Machingura, M.C.; Glover, S.; Settles, A.; Pan, Z.Q.; Hirschel, J.B.; Chitiyo, G.; Weiland, M.H. Transcriptome and Physiological Analyses Reveal the Response of Arabidopsis Thaliana to Poly(aspartic acid). Plant Stress 2024, 12, 100478. [Google Scholar] [CrossRef]
- Liu, T.; Yang, J.H.; Wang, H.Y.; Chen, Y.X.; Ren, J.; Lin, X.B.; Zhao, J.C.; Chen, B.Y.; Liu, H.B. Effects of Molecular Weight of Polyaspartic Acid on Nitrogen Use Efficiency and Crop Yield. J. Sci. Food Agric. 2022, 102, 7343–7352. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Mao, Y.; Zhang, X.Y.; Gu, P.X.; Niu, Y.H.; Chen, X.L. Effects of PASP/NTA and TS on the Phytoremediation of Pyrene-Nickel Contaminated Soil by Bidens pilosa L. Chemosphere 2019, 237, 124502. [Google Scholar] [CrossRef]
- Cheema, H.N.; Wang, K.X.; Ma, H.Y.; Tang, M.X.; Saba, T.; Hu, T.Y.; Jahandad, A.; Fang, X.T.; Zhang, K.Q.; Ansar, M.; et al. Unlocking NUE Potential via PASP-Ca Synergist: Insights into Physio-Biochemical, Enzymatic and Molecular Analyses of Contrasting Potato Genotypes in Aeroponics. Plant Soil 2024, 503, 545–567. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, Y.N.; Yang, Y.; Zhang, M.S.; Mao, X.X.; Guo, Y.J.; Li, X.Y.; Tao, B.; Qi, Y.Z.; Ma, L.; et al. Co-application of Biochar and Microbial Inoculants Increases Soil Phosphorus and Potassium Fertility and Improves Soil Health and Tomato Growth. J. Soils Sediments 2022, 23, 947–957. [Google Scholar] [CrossRef]
- Sughra, H.; Tahir, N.; Shoib, N.M.; Iqra, L.; Jawad, S.M.; Rabisa, Z.; Sajjad, M.M.; Asma, I. Rhizosphere Engineering with Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability. Front. Sustain. Food Syst. 2021, 5, 617157. [Google Scholar] [CrossRef]
- Luo, C.H.; He, Y.J.; Chen, Y.P. Rhizosphere Microbiome Regulation: Unlocking the Potential for Plant Growth. Curr. Res. Microb. Sci. 2025, 8, 100322. [Google Scholar] [CrossRef]
- Arjun, A.; Lee, K.E.; Aaqil, K.M.; Kang, S.M.; Bishnu, A.; Muhammad, I.; Rahmatullah, J.; Kim, K.M.; Lee, I.J. Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress. J. Microbiol. Biotechnol. 2020, 30, 118–126. [Google Scholar] [CrossRef]
- Li, Y.K.; Zou, N.; Liang, X.J.; Zhou, X.; Guo, S.H.; Wang, Y.J.; Qin, X.Y.; Tian, Y.H.; Lin, J. Effects of Nitrogen Input on Soil Bacterial Community Structure and Soil Nitrogen Cycling in the Rhizosphere Soil of Lycium barbarum L. Front. Microbiol. 2023, 13, 1070817. [Google Scholar] [CrossRef]
- Mahdi, I.; Fahsi, N.; Hafidi, M.; Allaoui, A.; Biskri, L. Plant Growth Enhancement using Rhizospheric Halotolerant Phosphate Solubilizing Bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 Isolated from Chenopodium quinoa Willd. Microorganisms 2020, 8, 948. [Google Scholar] [CrossRef]
- Pankaj, T.; Leach, J.E.; Tringe, S.G.; Tongmin, S.; Singh, B.K. Plant-Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Maurya, B.R.; Meena, V.S.; Meena, O.P. Influence of Inceptisol and Alfisol’s Potassium Solubilizing Bacteria (KSB) Isolates on Release of K from Waste Mica. Vegetos 2014, 27, 181–187. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, R.Y.; Song, Y.; Lu, J.; Zhou, B.J.; Song, F.; Zhang, L.J.; Huang, Q.Q.; Gong, J.; Lei, J.J.; et al. Pyoluteorin-Deficient Pseudomonas Protegens Improves Cooperation with Bacillus velezensis, Biofilm Formation, Co-Colonizing, and Reshapes Rhizosphere Microbiome. NPJ Biofilms Microbiomes 2024, 10, 145. [Google Scholar] [CrossRef]
- Sun, B.; Sun, C.Y.; Fu, W.J.; Fu, H.J.; Shu, H.L.; Wu, M.F.; Guo, Q.; Lai, H.X. Bacillus siamensis Orchestrates Plant Gene Reprogramming and Rhizosphere Microbiome Reshaping to Bolster Maize Crop Performance. Soil Sci. Soc. Am. J. 2024, 88, 2031–2045. [Google Scholar] [CrossRef]
- Rahou, Y.A.; Douira, A.; Tahiri, A.I.; Cherkaoui, E.M.; Benkirane, R.; Meddich, A. Application of Plant Growth-Promoting Rhizobacteria Combined with Compost as A Management Strategy Against Verticillium dahliae in Tomato. Can. J. Plant Pathol. 2022, 44, 806–827. [Google Scholar] [CrossRef]
- Zulfiqar, B.; Raza, M.A.S.; Akhtar, M.; Zhang, N.; Hussain, M.; Ahmad, J.; Maksoud, M.A.A.; Ebaid, H.; Iqba, R.l.; Aslam, M.U.; et al. Combined Application of Biochar and Silicon Nanoparticles Enhance Soil and Wheat Productivity under Drought: Insights into Physiological and Antioxidant Defense Mechanisms. Curr. Plant Biol. 2024, 40, 100424. [Google Scholar] [CrossRef]
- Liu, T.; Wei, J.; Yang, J.H.; Wang, H.Y.; Wu, B.L.; He, P.C.; Wang, Y.L.; Liu, H.B. Polyaspartic Acid Facilitated Rice Production by Reshaping Soil Microbiome. Appl. Soil Ecol. 2023, 191, 105056. [Google Scholar] [CrossRef]
- Sun, W.L.; Shahrajabian, M.H. Biostimulant and Beyond: Bacillus spp., the Important Plant Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulant for Sustainable Agriculture. Earth Syst. Environ. 2025, 9, 1465–1498. [Google Scholar] [CrossRef]
- Qin, Y.P.; Wang, X.J.; Dong, H.; Ye, T.; Du, N.S.; Zhang, T.; Piao, F.Z.; Dong, X.X.; Shen, S.S.; Guo, Z.X. Plant Growth-Promoting Rhizobacteria Paenibacillus polymyxa HL14-3 Inoculation Enhances Drought Tolerance in Cucumber by Triggering Abscisic Acid-Mediated Stomatal Closure. J. Agric. Food Chem. 2024, 73, 260–272. [Google Scholar] [CrossRef]
- Li, J.; Hu, W.S.; Lu, Z.F.; Meng, F.J.; Cong, R.H.; Li, X.K.; Ren, T.; Lu, J.W. Imbalance between Nitrogen and Potassium Fertilization Influences Potassium Deficiency Symptoms in Winter Oilseed Rape (Brassica napus L.) Leaves. Crop J. 2022, 10, 565–576. [Google Scholar] [CrossRef]
- Ruan, L.; Cheng, H.; Ludewig, U.; Li, J.W.; Chang, S.X. Root Foraging Strategy Improves the Adaptability of Tea Plants (Camellia sinensis L.) to Soil Potassium Heterogeneity. Int. J. Mol. Sci. 2022, 23, 8585. [Google Scholar] [CrossRef]
- Razack, H.M.A.; Jamilou, I.; Dahiratou, I.D. Contribution of PGPRs to Plant Growth: A Review. Int. J. Plant Soil Sci. 2024, 36, 571–576. [Google Scholar] [CrossRef]
- Igiehon, N.; Babalola, O. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria Towards Sustainable Agriculture. Int. J. Environ. Res. Public Health 2018, 15, 574. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 2020, 21, 49–68. [Google Scholar] [CrossRef]
- Xie, C.S.; Wu, Y.T.; Wu, Z.H.; Cao, H.; Huang, X.H.; Cui, F.; Meng, S.; Chen, J. Bacillus velezensis TCS001 Enhances the Resistance of Hickory to Phytophthora cinnamomi and Reshapes the Rhizosphere Microbial Community. Agriculture 2025, 15, 193. [Google Scholar] [CrossRef]
- Sun, X.L.; Xu, Z.H.; Xie, J.Y.; Hesselberg, T.V.; Tan, T.M.; Zheng, D.Y.; Strube, M.L.; Dragoš, A.; Shen, Q.R.; Zhang, R.F.; et al. Bacillus velezensis Stimulates Resident Rhizosphere Pseudomonas stutzeri for Plant Health through Metabolic Interactions. ISME J. 2021, 16, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.F.; Chu, C.B.; Zhao, Z.; Wu, S.H.; Zhou, D.P. Pseudomonas fluorescens Enriched by Bacillus velezensis Containing Agricultural Waste Promotes Strawberry Growth by Microbial Interaction in Plant Rhizosphere. Land Degrad. Dev. 2024, 35, 2476–2488. [Google Scholar] [CrossRef]
- Nicolle, C.; Gayrard, D.; Noël, A.; Hortala, M.; Amiel, A.; Grat, S.; Ru, A.L.; Marti, G.; Pernodet, J.L.; Lautru, S.; et al. Root-Associated Streptomyces Produce Galbonolides to Modulate Plant Immunity and Promote Rhizosphere Colonization. ISME J. 2024, 18, 112. [Google Scholar] [CrossRef]
- Segura, A.; Ramos, L.J. Plant–Bacteria Interactions in the Removal of Pollutants. Curr. Opin. Biotechnol. 2023, 24, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Stringlis, I.A.; Yu, K.; Feussner, K.; Jonge, R.D.; Bentum, S.V.; Verk, M.C.V.; Berendsen, R.L.; Bakker, P.A.H.M.; Feussner, I.; Pieterse, C.M.J. MYB72-Dependent Coumarin Exudation Shapes Root Microbiome Assembly to Promote Plant Health. Proc. Natl. Acad. Sci. USA 2018, 115, E5213–E5222. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, G.; Kim, H.J.; Jeon, J.M.; Yoon, J.J. Isolation of Massilia Species Capable of Degrading Poly(3-hydroxybutyrate) Isolated from Eggplant (Solanum melongena L.) Field. Chemosphere 2024, 368, 143776. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.J.; Kim, I.Y.; Chhetri, G.; Park, S.H.; Lee, H.J.; Yook, S.B.; Seo, T.G. Two Novel Bacterial Species, Rhodanobacter lycopersici sp. nov.Si-c and Rhodanobacter geophilus sp. nov.S2-g, Isolated from the Rhizosphere of Solanum lycopersicum with Plant Growth-Promoting Traits. Microorganisms 2024, 12, 2227. [Google Scholar] [CrossRef]
- Shi, X.X. Functional Analysis of Enterobacter asburiae S13 Promoting Potato Plant Growth. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, June 2025. [Google Scholar]
- Xiang, J.Y.; Li, N.; Feng, J.X.; Yin, J.Y.; Wang, Y.L.; Wang, H.; Wang, W.P.; Yang, Z.W. Endophytic Consortium Exhibits Varying Effects in Mitigating Cadmium Toxicity in Rice Cultivars with Distinct Cadmium Accumulation Capacities. Environ. Technol. Innov. 2024, 36, 103833. [Google Scholar] [CrossRef]
- Zhang, S.J.; Gu, W.H.; Bai, J.F.; Dong, B.; Zhao, J.; Zhuang, X.N.; Shih, K. Influence of Sludge-Based Biochar on the Soil Physicochemical Properties and the Growth of Brassica chinensis L. J. Soil Sci. Plant Nutr. 2023, 23, 4886–4898. [Google Scholar] [CrossRef]
- Zheng, S.H.; Ni, K.; Chai, H.L.; Ning, Q.Y.; Cheng, C.; Kang, H.J.; Ruan, J.Y. Comparative Research on Monitoring Methods for Nitrate Nitrogen Leaching in Tea Plantation Soils. Sci. Rep. 2024, 14, 20747. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, C.B.; Hu, F.C.; Luo, Z.W.; Zhang, S.Q.; Xiao, M.; Chen, Z.; Fan, H.Y. Intercropping Pinto Peanut in Litchi Orchard Effectively Improved Soil Available Potassium Content, Optimized Soil Bacterial Community Structure, and Advanced Bacterial Community Diversity. Front. Microbiol. 2022, 13, 868312. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhu, X.; Fan, X.; Huang, X.; Ma, H.; Cheema, H.N.; Zhang, K.; Zheng, S. Exogenous Plant Growth-Promoting Rhizobacteria Enhance the Promoting Effect of Polyaspartic Acid on Potato Growth by Improving Rhizosphere Nutrient Availability and Reshaping Microbial Community. Plants 2025, 14, 3530. https://doi.org/10.3390/plants14223530
Zhou X, Zhu X, Fan X, Huang X, Ma H, Cheema HN, Zhang K, Zheng S. Exogenous Plant Growth-Promoting Rhizobacteria Enhance the Promoting Effect of Polyaspartic Acid on Potato Growth by Improving Rhizosphere Nutrient Availability and Reshaping Microbial Community. Plants. 2025; 14(22):3530. https://doi.org/10.3390/plants14223530
Chicago/Turabian StyleZhou, Xin, Xia Zhu, Xiangquan Fan, Xueli Huang, Haiyan Ma, Hafsa Nazir Cheema, Kaiqin Zhang, and Shunlin Zheng. 2025. "Exogenous Plant Growth-Promoting Rhizobacteria Enhance the Promoting Effect of Polyaspartic Acid on Potato Growth by Improving Rhizosphere Nutrient Availability and Reshaping Microbial Community" Plants 14, no. 22: 3530. https://doi.org/10.3390/plants14223530
APA StyleZhou, X., Zhu, X., Fan, X., Huang, X., Ma, H., Cheema, H. N., Zhang, K., & Zheng, S. (2025). Exogenous Plant Growth-Promoting Rhizobacteria Enhance the Promoting Effect of Polyaspartic Acid on Potato Growth by Improving Rhizosphere Nutrient Availability and Reshaping Microbial Community. Plants, 14(22), 3530. https://doi.org/10.3390/plants14223530
