The Balkan Region and the “Nano Gap”: An Underexplored Dimension of In Vitro Biotechnology for Woody Plants
Abstract
1. Introduction
2. Applications of Nanotechnology in Plant Tissue Culture: Opportunities for the Balkan Countries
2.1. Nano-Assisted Surface Sterilization
2.2. Nano-Enhanced Micropropagation
2.3. Enhancing Survival and Delaying Explant Senescence
2.4. Nano-Encapsulation for the Controlled Release of Bioactive Substances
2.5. Nano-Assisted Cryopreservation
2.6. Nano-Enhanced Production of Secondary Metabolites
2.7. Nano-Assisted Stress Attenuation
3. Cross-Sector Applications of Nanotechnology: A Regional Starting Point
4. Reasons for the “Nano Gap” and Strategic Ways to Integrate into in Biotechnology for Woody Plants
- Organizing regional workshops and training programs is considered a valuable way to bring together experts from the fields of nanotechnology, agriculture, and in vitro plant biotechnology. Such activities promote knowledge exchange and collaboration in the development of multidisciplinary experimental platforms and contribute to building practical regional expertise. Good initiatives so far are the international activities organized by NanoBalkan, which have become a tradition in Albania for several years (https://www.nanobalkanconf.com/2025/; accessed on 4 September 2025). The participation of a larger number of scientists from different Balkan countries working in the field of in vitro plant biotechnology and agriculture could create good opportunities for multidisciplinary integration with nanosciences.
- Assess the current state of plant tissue culture and nanobiotechnology curricula in the region’s universities and endeavor to integrate them in the best possible way in order to train and better prepare the new generation of workers in this field.
- Seek effective funding sources and implement multidisciplinary projects to support nanobiotech studies, shared infrastructure, and applications in high-priority species. These funds could be used in pilot projects to optimize protocols, make an initial assessment of results and raise awareness among researchers of the benefits of multidisciplinary collaboration.
- International networks, such as CopyTree (https://www.cost.eu/actions/CA21157/; accessed on 4 September 2025), CryoConnect (https://www.ecpgr.org/working-groups/cryopreservation/cryoconnect; accessed on 4 September 2025) and the NanoBalkan Research Center, could help in integrating nano-research into existing international initiatives for the propagation and conservation of woody plants. Regional consortia can be useful for sharing best practices and collaborating on joint projects involving nano-applications in plant tissue culture, large-scale plant production, and the development of elite cultivars.
- A proactive approach to the EU regulatory framework is extremely important, as it helps to ensure the safe development and application of nanotechnologies in agriculture and in all plant sciences. In this context, translating regulations into practical guidelines for regional researchers and companies can be beneficial for future advances in nanotechnology.
- The establishment of joint research facilities and open-access nanotech laboratories could be another approach to close the existing gap. Such facilities would enable the sharing of resources, reduce costs and provide equal access to advanced equipment and knowledge, which would facilitate the application of nanotechnologies in plant sciences.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sota, V.; Nacheva, L.; Bošnjak, D.; Abraham, E.; Jevremović, S.; Cvjetković, B.; Galović, V.; Jevremović, D.; Marković, Z.; Kongjika, E.; et al. Unveiling the Balkans’ advances: In vitro biotechnology of woody plants in the early 21st century. Front. Plant Sci. 2025, 16, 1586013. [Google Scholar] [CrossRef]
- McCown, B.H. Recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predeterminism. In Vitro Cell. Dev. Biol. Plant 2000, 36, 149–154. [Google Scholar] [CrossRef]
- Ochatt, S.J.; Akin, M.; Chan, M.T.; Dolgov, S.V.; Eimert, K.; Flachowsky, H.; Guo, W.W.; Jiménez, V.M.; Lambardi, M.; Moncaleán, P.; et al. Research is rendering the recalcitrant woody plants amenable to biotechnological approaches. Plant Cell Tissue Organ Cult. 2025, 161, 48. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Zhao, F.J.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Rayeen, F.; Mishra, R.; Tripathi, M.; Pathak, N. Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach. Plant Nano Biol. 2023, 4, 100033. [Google Scholar] [CrossRef]
- Meng, Y.; Feng, Y.; Bai, X.; Yu, Q.; Zhou, J.; Wang, J. Application of nanotechnology in agricultural sustainability: Absorption, translocation, and challenges of nanoparticles. Curr. Plant Biol. 2025, 42, 100492. [Google Scholar] [CrossRef]
- Gulzar, B.; Mujib, A.; Malik, M.Q.; Mamgain, J.; Syeed, R.; Zafar, N. Plant tissue culture: Agriculture and industrial applications. In Transgenic Technology Based Value Addition in Plant Biotechnology; Kiran, U., Abdin, M.Z., Kamaluddin, Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 25–49. [Google Scholar] [CrossRef]
- Sota, V.; Wilms, H.; Yücesan, B.; Mendi, Y.Y.; Christie, B.; Nisler, J.; Aslan, Ş.E.; Purmale-Trasune, L.; Silvestri, C.; Werbrouck, S.P.O.; et al. Challenges in the micropropagation of economically important fruit species in Europe. Plant Cell Tissue Organ Cult. 2025, 162, 53. [Google Scholar] [CrossRef]
- Álvarez, S.P.; Tapia, M.A.M.; Vega, M.E.G.; Ardisana, E.F.H.; Medina, J.A.C.; Zamora, G.L.F.; Bustamante, D.V. Nanotechnology and plant tissue culture. In Plant Nanobionics. Nanotechnology in the Life Sciences; Prasad, R., Ed.; Springer: Cham, Switzerland, 2019; pp. 333–370. [Google Scholar] [CrossRef]
- Feizi, S. Role of nanomaterials in plant cell and tissue culture. In Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications; Al-Khayri, J.M., Alnaddaf, L.M., Jain, S.M., Eds.; Springer: Cham, Switzerland, 2023; pp. 359–397. [Google Scholar] [CrossRef]
- Ochatt, S.; Abdollahi, M.R.; Akin, M.; Bello Bello, J.J.; Eimert, K.; Faisal, M.; Nhut, D.T. Application of nanoparticles in plant tissue cultures: Minuscule size but huge effects. Plant Cell Tissue Organ Cult. 2023, 155, 323–326. [Google Scholar] [CrossRef]
- Gunasena, M.D.K.M.; Alahakoon, A.M.P.D.; Polwaththa, K.P.G.D.M.; Galpaya, G.D.C.P.; Priyanjani, H.A.S.A.; Koswattage, K.R.; Senarath, W.T.P.S.K. Transforming plant tissue culture with nanoparticles: A review of current applications. Plant Nano Biol. 2024, 10, 100102. [Google Scholar] [CrossRef]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef]
- Abou El-Nour, K.M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010, 3, 135–140. [Google Scholar] [CrossRef]
- Prasad, A.; Sidhic, J.; Sarbadhikary, P.; Narayanankutty, A.; George, S.; George, B.P.; Abrahamse, H. Role of metal nanoparticles in organogenesis, secondary metabolite production and genetic transformation of plants under in vitro condition: A comprehensive review. Plant Cell Tissue Organ Cult. 2024, 158, 33. [Google Scholar] [CrossRef]
- Lala, S. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnol. 2021, 15, 28–57. [Google Scholar] [CrossRef]
- El-Sayed, I.; Salama, W.; Salim, R.G.; Taha, L. Relevance of nanoparticles on micropropagation, antioxidant activity and molecular characterization of Sequoia sempervirens L. plant. Jordan J. Biol. Sci. 2021, 14, 374–382. [Google Scholar]
- Ahmed, M.F.; Ibrahim, M.A.; Mansour, A.S.; Emam, A.N.; Abd El-Razik, A.B.; Tawfik, E. Metal-based-oxide nanoparticles assisted the in vitro culture growth of Populus alba as micronutrients: Essential metabolic processes and genetic stability. RSC Adv. 2023, 13, 11577–11590. [Google Scholar] [CrossRef]
- Taha, R.A.; Hassan, M.M.; Ibrahim, E.A.; Abou Baker, N.H.; Shaaban, E.A. Carbon nanotubes impact on date palm in vitro cultures. Plant Cell Tissue Organ Cult. 2016, 127, 525–534. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; de Silva, K.; Biris, A.S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Flores, D.; Chacón, R.; Alvarado, L.; Schmidt, A.; Alvarado, C.; Chaves, J. Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology. Am. J. Plant Sci. 2014, 5, 3510–3518. [Google Scholar] [CrossRef]
- Li, X.; Gao, H.; Uo, M.; Sato, Y.; Akasaka, T.; Feng, Q.; Cui, F.; Liu, X.; Watari, F. Effect of carbon nanotubes on cellular functions in vitro. J. Biomed. Mater. Res. Part A 2009, 91, 132–139. [Google Scholar] [CrossRef]
- Zakharova, O.V.; Gusev, A.A.; Muratov, D.S.; Shuklinov, A.V.; Strekalova, N.S.; Matveev, S.M. Titanium trisulfide nanoribbons affect the downy birch and poplar × aspen hybrid in plant tissue culture via the emission of hydrogen sulfide. Forests 2021, 12, 713. [Google Scholar] [CrossRef]
- Mosqueda-Frómeta, O.; Mosqueda-Rodríguez, G.M.; Companioni, B.; Hajari, E.; Bogdanchikova, N.; Concepción, O.; Escalona, M.; Pestryakov, A.; Lorenzo, J.C. Growth of in vitro–regenerated plants of Gerbera jamesonii following micropropagation in temporary immersion bioreactors. In Vitro Cell. Dev. Biol.-Plant 2024, 60, 384–389. [Google Scholar] [CrossRef]
- Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Chitosan nanoparticles and their combination with methyl jasmonate for the elicitation of phenolics and flavonoids in plant cell suspension cultures. Int. J. Biol. Macromol. 2022, 214, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Petrova, M.; Miladinova-Georgieva, K.; Geneva, M. Influence of abiotic and biotic elicitors on organogenesis, biomass accumulation, and production of key secondary metabolites in Asteraceae plants. Int. J. Mol. Sci. 2024, 25, 4197. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, V.; Bauer, T.; Butova, V.; Minkina, T.; Rajput, V.D. Nanoparticles-based delivery systems for salicylic acid as plant growth stimulator and stress alleviation. Plants 2023, 12, 1637. [Google Scholar] [CrossRef]
- Sarabia-Castillo, C.R.; Meléndez-González, P.C.; Juárez-Altamirano, R.; Carrillo-Rodríguez, J.C. Use of nanomaterials for the in vitro production of plants and plant metabolites. In Plant Biostimulation with Nanomaterials. Smart Nanomaterials Technology; Juárez-Maldonado, A., Benavides-Mendoza, A., Ojeda-Barrios, D.L., Tortella Fuentes, G., Seabra, A.B., Eds.; Springer: Singapore, 2025; pp. 101–120. [Google Scholar] [CrossRef]
- Benson, E.E. Special symposium: In vitro plant recalcitrance: An introduction. In Vitro Cell. Dev. Biol.-Plant 2000, 36, 141–148. [Google Scholar] [CrossRef]
- Jan, S.; Jan, N.; Singh, S.; Shah, M.A.; Bhat, I.A. Nanotechnology in plant tissue culture: A review. Hortic. Plant J. 2025, in press. [CrossRef]
- Miladinova-Georgieva, K.; Sichanova, M.; Petrova, M.; Kirova, E.; Nedev, T.; Tsekova, D.; Geneva, M. Effect of in vitro pretreatment with Ag-containing amino acid nanofibers on biometrics and antioxidant activity in drought-stressed ex vitro-adapted Stevia rebaudiana Bertoni. Agronomy 2024, 14, 2570. [Google Scholar] [CrossRef]
- Sichanova, M.; Geneva, M.; Petrova, M.; Miladinova-Georgieva, K.; Kirova, E.; Nedev, T.; Tsekova, D.; Iwanov, I.; Dochev, K.; Ivanova, V.; et al. Improvement of Stevia rebaudiana Bertoni in vitro propagation and steviol glycoside content using aminoacid silver nanofibers. Plants 2022, 11, 2468. [Google Scholar] [CrossRef]
- Sichanova, M.; Geneva, M.; Petrova, M.; Miladinova-Georgieva, K.; Kirova, E.; Nedev, T.; Tsekova, D.; Ivanova, V.; Trendafilova, A. Influence of the abiotic elicitors Ag salts of aspartic acid derivatives, self-organized in nanofibers with monomeric and dimeric molecular structures, on the antioxidant activity and stevioside content in micropropagated Stevia rebaudiana Bert. Plants 2023, 12, 3574. [Google Scholar] [CrossRef]
- Geneva, M.; Trendafilova, A.; Miladinova-Georgieva, K.; Sichanova, M.; Tsekova, D.; Ivanova, V.; Kirova, E.; Petrova, M. Application of organic nanofibers to boost specialized metabolite production and antioxidant potential in Stevia rebaudiana in vitro cultures. Metabolites 2025, 15, 579. [Google Scholar] [CrossRef]
- Cassells, A.C. Problems in tissue culture: Culture contamination. In Micropropagation; Debergh, P.C., Zimmerman, R.H., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 31–44. [Google Scholar] [CrossRef]
- Herman, E.B. Plant tissue culture contamination: Challenges and opportunities. Acta Hortic. 2017, 1155, 231–238. [Google Scholar] [CrossRef]
- Anikina, I.; Kaynidenov, N.; Turista, D.; Kukusheva, A.; Tokbergenova, Z.; Tuganova, B.; Seytkhanova, K.; Kaliyeva, A. Control of contamination of tissue plant cultures during in vitro clonal micropropagation. Online J. Biol. Sci. 2025, 25, 333–342. [Google Scholar] [CrossRef]
- Gouran, A.; Mohammad, J.; Ali, M.; Mahmoud, K.; Nasser, G.; Sabah, Z. Effect of silver nanoparticles on grapevine leaf explants sterilization at in vitro conditions. In Proceedings of the 2nd National Conference of Nanotechnology from Theory to Application, Esfahan, Iran, 20 February 2014. [Google Scholar]
- Arab, M.; Yadollahi, A.; Hosseini Mazinani, M.; Bagheri, S. Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G × N15 (hybrid of almond × peach) rootstock. J. Genet. Eng. Biotechnol. 2014, 12, 103–110. [Google Scholar] [CrossRef]
- El-Kosary, S.; Abd Allatif, A.M.; Stino, R.G.; Hassan, M.M.; Kinawy, A.A. Effect of silver nanoparticles on micropropagation of date palm (Phoenix dactylifera L., cv. Sewi and Medjool). Plant Arch. 2020, 20, 9701–9706. [Google Scholar]
- El-Sharabasy, S.; Zayed, Z. Silver nanoparticles, antibiotics and fungicide to control microbial activity during establishment of date palm explants in vitro. Sci. Agric. 2018, 21, 57–63. Available online: https://www.researchgate.net/publication/322802487 (accessed on 21 August 2025).
- Rostami, A.A.; Shahsavar, A. Nano-silver particles eliminate the in vitro contaminations of olive ‘Mission’ explants. Asian J. Plant Sci. 2009, 8, 505–509. [Google Scholar] [CrossRef]
- Ahlawat, J.; Sehrawat, A.R.; Choudhary, R.; Yadav, S.K. Biologically synthesized silver nanoparticles eclipse fungal and bacterial contamination in micropropagation of Capparis decidua (Forsk.) Edgew: A substitute to toxic substances. Indian J. Exp. Biol. 2020, 58, 336–343. [Google Scholar] [CrossRef]
- Zakharova, O.; Vasyukova, I.; Strekalova, N.; Gusev, A. Effects of silver nanoparticles on morphometric parameters of hairy birch (Betula pubescens) at various stages of microcloning. IOP Conf. Ser. Earth Environ. Sci. 2019, 392, 012024. [Google Scholar] [CrossRef]
- Al-Mayahi, A.M.W. The effect of humic acid (HA) and zinc oxide nanoparticles (ZnO-NPs) on in vitro regeneration of date palm (Phoenix dactylifera L.) cv. Quntar. Plant Cell Tissue Organ Cult. 2021, 145, 445–456. [Google Scholar] [CrossRef]
- El-Mahdy, M.T.; Elazab, D.S. Impact of zinc oxide nanoparticles on pomegranate growth under in vitro conditions. Russ. J. Plant Physiol. 2020, 67, 162–167. [Google Scholar] [CrossRef]
- Hussain, M.; Raja, N.I.; Mashwani, Z.U.R.; Iqbal, M.; Ejaz, M.; Yasmeen, F.; Sohail. In vitro germination and biochemical profiling of Citrus reticulata in response to green synthesised zinc and copper nanoparticles. IET Nanobiotechnol. 2017, 11, 790–796. [Google Scholar] [CrossRef]
- Hasanin, M.S.; Hassan, S.A.; AbdAllatif, A.M.; Darwesh, O.M. Unveiling the silver lining: Examining the effects of biogenic silver nanoparticles on the growth dynamics of in vitro olive shoots. Microb. Cell Fact. 2024, 23, 79. [Google Scholar] [CrossRef] [PubMed]
- Regni, L.; Del Buono, D.; Micheli, M.; Facchin, S.L.; Tolisano, C.; Proietti, P. Effects of biogenic ZnO nanoparticles on growth, physiological, biochemical traits and antioxidants on olive tree in vitro. Horticulturae 2022, 8, 161. [Google Scholar] [CrossRef]
- Vasyukova, I.; Gusev, A.; Zakharova, O.; Baranchikov, P.; Yevtushenko, N. Silver nanoparticles for enhancing the efficiency of micropropagation of gray poplar (Populus × canescens Aiton Sm.). IOP Conf. Ser. Earth Environ. Sci. 2021, 875, 012053. [Google Scholar] [CrossRef]
- Fedorova, O.A.; Grodetskaya, T.A.; Evtushenko, N.A.; Evlakov, P.M.; Gusev, A.; Zakharova, A. The impact of copper oxide and silver nanoparticles on woody plants obtained by in vitro method. IOP Conf. Ser. Earth Environ. Sci. 2021, 875, 012048. [Google Scholar] [CrossRef]
- Fedorova, O.A.; Grodetskaya, T.A.; Evtushenko, N.A.; Evlakov, P.M. On the role of colloidal system stabilizers in the stimulating activity of copper oxide nanoparticles on poplar plants in culture in vitro. Nanotechnol. Russ. 2025, 20, 70–77. [Google Scholar] [CrossRef]
- Pérez-Caselles, C.; Burgos, L.; Sánchez-Balibrea, I.; Egea, J.A.; Faize, L.; Martín-Valmaseda, M.; Bogdanchikova, N.; Pestryakov, A.; Alburquerque, N. The effect of silver nanoparticle addition on micropropagation of apricot cultivars (Prunus armeniaca L.) in semisolid and liquid media. Plants 2023, 12, 1547. [Google Scholar] [CrossRef]
- Khafri, A.Z.; Zarghami, R.; Ma’mani, L.; Ahmadi, B. Enhanced efficiency of in vitro rootstock micropropagation using silica-based nanoparticles and plant growth regulators in Myrobalan 29C (Prunus cerasifera L.). J. Plant Growth Regul. 2023, 42, 1457–1471. [Google Scholar] [CrossRef]
- Guru, G.R.; Ramteke, P.W.; Veres, C.; Vágvölgyi, C. Potential impacts of nanoparticle integration on micropropagation efficiency: Current achievements and prospects. Front. Plant Sci. 2025, 16, 1629548. [Google Scholar] [CrossRef]
- Sarmast, M.K.; Niazi, A.; Salehi, H.; Abolimoghadam, A. Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tiss. Organ Cult. 2015, 121, 227–236. [Google Scholar] [CrossRef]
- Moradipour, M.; Saberi-Riseh, R.; Mohammadinejad, R.; Hosseini, A. Nano-encapsulation of plant growth-promoting rhizobacteria and their metabolites using alginate-silica nanoparticles and carbon nanotube improves UCB1 pistachio micropropagation. J. Microbiol. Biotechnol. 2019, 29, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, R.M.; Gunasekaran, D.; Jesse, M.I.; Riyaz, M.S.U.; Sundarajan, D.; Krishnan, K. Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as “nanobullets” for the dynamic applications in horticulture—An in vitro and ex vitro study. Arab. J. Chem. 2018, 11, 48–61. [Google Scholar] [CrossRef]
- Tiwari, K.; Tripathi, S.; Mahra, S.; Mathew, S.; Rana, S.; Tripathi, D.K.; Sharma, S. Carrier-based delivery system of phytohormones in plants: Stepping outside of the ordinary. Physiol. Plant. 2024, 176, e14387. [Google Scholar] [CrossRef] [PubMed]
- Sampedro-Guerrero, J.; Vives-Peris, V.; Gomez-Cadenas, A.; Clausell-Terol, C. Efficient strategies for controlled release of nanoencapsulated phytohormones to improve plant stress tolerance. Plant Methods 2023, 19, 47. [Google Scholar] [CrossRef]
- Montalbán, I.A.; Olarieta, A.C.; Casillas-Figueroa, F.; Arellano-García, M.E.; Chavez-Santoscoy, A.R.; Pestryakov, A.; Bogdanchikova, N.; Moncalean, P. Simplified method to store embryogenic cells: Silver nanoparticles and cryoprotectors elimination effect. Cryobiology 2018, 85, 134. [Google Scholar] [CrossRef]
- Kulus, D.; Tymoszuk, A. Gold nanoparticles affect the cryopreservation efficiency of in vitro-derived shoot tips of bleeding heart. Plant Cell Tissue Organ Cult. 2021, 146, 297–311. [Google Scholar] [CrossRef]
- Ren, L.; Deng, S.; Chu, Y.; Zhang, Y.; Zhao, H.; Chen, H.; Zhang, D. Single-wall carbon nanotubes improve cell survival rate and reduce oxidative injury in cryopreservation of Agapanthus praecox embryogenic callus. Plant Methods 2020, 16, 130. [Google Scholar] [CrossRef]
- Escrich, A.; Almagro, L.; Moyano, E.; Cusido, R.M.; Bonfill, M.; Hosseini, B.; Palazon, J. Improved biotechnological production of paclitaxel in Taxus media cell cultures by the combined action of coronatine and calix[8]arenes. Plant Physiol. Biochem. 2021, 163, 68–75. [Google Scholar] [CrossRef]
- Tarroum, M.; Alfarraj, N.S.; Al-Qurainy, F.; Al-Hashimi, A.; Khan, S.; Nadeem, M.; Salih, A.M.; Shaikhaldein, H.O. Improving the production of secondary metabolites via the application of biogenic zinc oxide nanoparticles in the calli of Delonix elata: A potential medicinal plant. Metabolites 2023, 13, 905. [Google Scholar] [CrossRef]
- Jamshidi, M.; Ghanati, F. Taxanes content and cytotoxicity of hazel cells extract after elicitation with silver nanoparticles. Plant Physiol. Biochem. 2017, 110, 178–184. [Google Scholar] [CrossRef]
- El-Fadl, R.; El-Saber, M.; Ahmed, M.; Elaziem, T.; El-Sayed, A. Impact on growth and secondary metabolites in white poplar (Populus alba L.) callus using SeNPs@Moringa. Curr. Mater. Sci. 2021, 15, 175–191. [Google Scholar] [CrossRef]
- Youssef, N.M.; Abdel Aziz, N.G.; Ali, A.I.A.R. Alleviation of salinity stress on in vitro propagation ability of Populus alba L. using iron nanoparticles. Middle East J. Agric. Res. 2019, 18, 1211–1218. [Google Scholar] [CrossRef]
- Mozafari, A.A.; Ghadakchi Asl, A.; Ghaderi, N. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt-induced damage under in vitro conditions. Physiol. Mol. Biol. Plants 2018, 24, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Al-Mayahi, A.M.W. Combined efficiency of iron nanoparticles (IONPs) and salicylic acid (SA) on in vitro propagation of date palm (Phoenix dactylifera L.) under combined drought and salinity. S. Afr. J. Bot. 2023, 162, 324–333. [Google Scholar] [CrossRef]
- Prifti, D.; Maçi, A. The effect of herbagreen fertilizer nanoparticles in wheat productivity through leaf pulverization. Albanian J. Agric. Sci. 2015, 14, 350–354. [Google Scholar]
- Prifti, D.; Maçi, A. Effect of herbagreen nanoparticles on biochemical and technological parameters of cereals (wheat and corn). Eur. Sci. J. 2017, 13, 72. [Google Scholar] [CrossRef]
- Mele, A.; Scognamiglio, V.; Nocerino, V.; De Stefano, L.; Memo, A.; Toro, R.G.; Rossi, M.; Baldassarre, F.; Capitelli, F. In-depth characterization of natural clays from southeast Albania. Crystals 2024, 14, 903. [Google Scholar] [CrossRef]
- Dervishi, S.; Korpa, A.; Gjyli, S. Enhanced photocatalytic properties of a novel Ag/TiO2/graphite nanocomposite. In Proceedings of the 3rd International Electronic Conference on Processes, Virtual, 29–31 May 2024. [Google Scholar]
- Stević, D.; Sukur, S.; Gotovac Atlagić, S. Primjena nanotehnologije u zaštiti životne sredine. In Životna Sredina/Environment (Monografija LV); Ilić, P., Govedar, Z., Pržulj, N., Eds.; Akademija nauka i umjetnosti Republike Srpske: Banja Luka, Bosnia and Herzegovina, 2023; pp. 623–642. [Google Scholar] [CrossRef]
- Gotovac Atlagić, S.; Sukur, S.; Pržulj, S.; Hattori, Y.; Nasser, K.I.; Pisaturo, M.; Senatore, A.; Kukobat, R.; Stević, D. Iron oxide nanoparticles synthesized from iron waste as an additive to lubricants for reducing friction. Waste Biomass Valorization 2024, 15, 1681–1688. [Google Scholar] [CrossRef]
- Kukobat, R.; Škrbić, R.; Massiani, P.; Baghdad, K.; Launay, F.; Sarno, M.; Cirillo, C.; Senatore, A.; Salčin, E.; Gotovac Atlagić, S. Thermal and structural stability of microporous natural clinoptilolite zeolite. Microporous Mesoporous Mater. 2022, 341, 112062. [Google Scholar] [CrossRef]
- Krumova, E.; Benkova, D.; Stoyancheva, G.; Dishliyska, V.; Miteva-Staleva, J.; Kostadinova, A.; Ivanov, K.; El-Sayed, K.; Staneva, G.; Elshoky, H. Exploring the mechanism underlying the antifungal activity of chitosan-based ZnO, CuO, and SiO2 nanocomposites as nanopesticides against Fusarium solani and Alternaria solani. Int. J. Biol. Macromol. 2024, 268, 131702. [Google Scholar] [CrossRef]
- Benkova, B.; Dishliyska, V.; Staleva, J.; Kostadinova, A.; Staneva, G.; El-Sayed, K.; Elshoky, H.; Krumova, E. CS and ZnO nanoparticles as fungicides against potato fungal pathogens Alternaria solani and Fusarium solani: Mechanism underlying their antifungal activity. Proc. Bulg. Acad. Sci. 2024, 77, 986–996. [Google Scholar] [CrossRef]
- Bošnjak, D. Optimizacija Mikropropagacije Borovnice (Vaccinium corymbosum L.) Primjenom Nanobiotehnologije U Tekućem Imerznom (Tib/Tis) Sustavu Bioreaktora. Ph.D. Thesis, Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Department of Plant Production and Biotechnology, Osijek, Croatia, 2022. [Google Scholar]
- Košpić, K.; Biba, R.; Peharec Štefanić, P.; Cvjetko, P.; Tkalec, M.; Balen, B. Silver nanoparticle effects on antioxidant response in tobacco are modulated by surface coating. Plants 2022, 11, 2402. [Google Scholar] [CrossRef] [PubMed]
- Biba, R.; Cvjetko, P.; Tkalec, M.; Košpić, K.; Štefanić, P.P.; Šikić, S.; Domijan, A.-M.; Balen, B. Effects of silver nanoparticles on physiological and proteomic responses of tobacco (Nicotiana tabacum) seedlings are coating-dependent. Int. J. Mol. Sci. 2022, 23, 15923. [Google Scholar] [CrossRef] [PubMed]
- Peharec Štefanić, P.; Košpić, K.; Lyons, D.M.; Jurković, L.; Balen, B.; Tkalec, M. Phytotoxicity of silver nanoparticles on tobacco plants: Evaluation of coating effects on photosynthetic performance and chloroplast ultrastructure. Nanomaterials 2021, 11, 744. [Google Scholar] [CrossRef]
- Cvjetko, P.; Zovko, M.; Štefanić, P.P.; Biba, R.; Tkalec, M.; Domijan, A.M.; Vrček, I.V.; Letofsky-Papst, I.; Šikić, S.; Balen, B. Phytotoxic effects of silver nanoparticles in tobacco plants. Environ. Sci. Pollut. Res. Int. 2018, 25, 5590–5602. [Google Scholar] [CrossRef]
- Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, V.C. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 2019, 670, 292–299. [Google Scholar] [CrossRef]
- Varympopi, A.; Dimopoulou, A.; Papafotis, D.; Avramidis, P.; Sarris, I.; Karamanidou, T.; Kerou, A.K.; Vlachou, A.; Vellis, E.; Giannopoulos, A.; et al. Antibacterial activity of copper nanoparticles against Xanthomonas campestris pv. vesicatoria in tomato plants. Int. J. Mol. Sci. 2022, 23, 4080. [Google Scholar] [CrossRef]
- Ntasiou, P.; Kaldeli Kerou, A.; Karamanidou, T.; Vlachou, A.; Tziros, G.T.; Tsouknidas, A.; Karaoglanidis, G.S. Synthesis and characterization of novel copper nanoparticles for the control of leaf spot and anthracnose diseases of olive. Nanomaterials 2021, 11, 1667. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Sakellariou, A.; Sofianos, G.; Triviza, M.F.; Stika, D.M.; Tsiriva, D.; Karaoglanidis, G.; Markellou, E. Chitosan nanoparticles loaded with jasmonic acid induce plant resistance against Botrytis cinerea. Physiol. Mol. Plant Pathol. 2025, 140, 102887. [Google Scholar] [CrossRef]
- Malandrakis, A.A.; Kavroulakis, N.; Avramidou, M.; Papadopoulou, K.K.; Tsaniklidis, G.; Chrysikopoulos, V.C. Metal nanoparticles: Phytotoxicity on tomato and effect on symbiosis with the Fusarium solani FsK strain. Sci. Total Environ. 2021, 787, 147606. [Google Scholar] [CrossRef]
- Sperdouli, I.; Moustaka, J.; Antonoglou, O.; Adamakis, I.D.S.; Dendrinou-Samara, C.; Moustakas, M. Leaf age-dependent effects of foliar-sprayed CuZn nanoparticles on photosynthetic efficiency and ROS generation in Arabidopsis thaliana. Materials 2019, 12, 2498. [Google Scholar] [CrossRef]
- Sperdouli, I.; Giannousi, K.; Moustaka, J.; Antonoglou, O.; Dendrinou-Samara, C.; Moustakas, M. Responses of tomato photosystem II photochemistry to pegylated zinc-doped ferrite nanoparticles. Nanomaterials 2025, 15, 288. [Google Scholar] [CrossRef] [PubMed]
- Tryfon, P.; Sperdouli, I.; Adamakis, I.-D.S.; Mourdikoudis, S.; Dendrinou-Samara, C.; Moustakas, M. Modification of tomato Photosystem II photochemistry with engineered zinc oxide nanorods. Plants 2023, 12, 3502. [Google Scholar] [CrossRef] [PubMed]
- Atkovska, K.; Lisichko, K.; Ruseska, G.; Dimitrov, A.; Grozdanov, A. Removal of heavy metal ions from wastewater using conventional and nanosorbents: A review. J. Chem. Technol. Metall. 2018, 53, 2022–2219. [Google Scholar]
- Ackova, D.G.; Kadifkova-Panovska, T. Silver nanoparticles: Toxicity and inhibitory effects against aflatoxins. Plant Sci. Today 2025, 12, 1–8. [Google Scholar] [CrossRef]
- Bakić, I.; Radonjić, S.; Mirović, V.; Peruničić, M.; Atak, A.; Radović, A.; Čolić, S. Impact of foliar nanocalcium fertilization on yield and wine characteristics of ‘Vranac’ wine grapes. Adv. Technol. 2025, 14, 19–28. [Google Scholar] [CrossRef]
- Milenković, I.; Borišev, M.; Zhou, Y.; Spasić, S.Z.; Leblanc, R.M.; Radotić, K. Photosynthesis enhancement in maize via nontoxic orange carbon dots. J. Agric. Food Chem. 2021, 69, 5446–5451. [Google Scholar] [CrossRef]
- Radotić, K.; Milenković, I.; Borišev, M.; Spasić, S. Use of Non-Toxic Organic Nanoparticles to Increase Productivity of Growed Plants and Procedure for Their Application. P-2021/0073, 2022. Available online: https://rimsi.imsi.bg.ac.rs/handle/123456789/1854 (accessed on 2 November 2025).
- Milenković, I.; Borišev, M.; Zhou, Y.; Spasić, S.Z.; Spasić, D.; Leblanc, R.M.; Radotić, K. Non-toxic orange carbon dots stimulate photosynthesis and CO2 assimilation in hydroponically cultivated green beans (Phaseolus vulgaris). Funct. Plant Biol. 2024, 51, FP23164. [Google Scholar] [CrossRef]
- Milenković, I.; Zhou, Y.Q.; Borišev, M.; Serafim, L.F.; Chen, J.Y.; ElMetwally, A.E.; Spasić, S.Z.; Algarra, M.; Yuso, M.V.M.; Prabhakar, R.; et al. Modeling of orange carbon dots–CO2 interaction and its effects on photosynthesis and productivity in maize and green beans. J. Environ. Inform. 2024, 43, 80–91. [Google Scholar] [CrossRef]
- Milenković, I.; Mitrović, A.; Algarra, M.; Lázaro-Martínez, J.M.; Rodríguez-Castellón, E.; Maksimović, V.; Spasić, S.Z.; Beškoski, V.P.; Radotić, K. Interaction of carbohydrate-coated cerium oxide nanoparticles with wheat and pea: Stress induction potential and effect on development. Plants 2019, 8, 478. [Google Scholar] [CrossRef]
- Milenković, I.; Radotić, K.; Trifković, J.; Vujisić, L.; Beškoski, V.P. Screening of semi-volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two-dimensional gas chromatography. J. Sep. Sci. 2021, 44, 2260–2268. [Google Scholar] [CrossRef]
- Milenković, I.; Baruh Krstić, M.; Spasić, S.; Radotić, K. Trans-generational effect of cerium oxide nanoparticles (nCeO2) on Chenopodium rubrum L. and Sinapis alba L. seeds. Funct. Plant Biol. 2023, 50, 303–313. [Google Scholar] [CrossRef]
- Galović, V.; Rausch, T.; Gršić-Rausch, S. Mature embryo-derived wheat transformation with major stress modulated antioxidant target gene. Arch. Biol. Sci. 2010, 62, 539–546. [Google Scholar] [CrossRef]
- Borišev, M.; Borišev, I.; Župunski, M.; Arsenov, D.; Pajević, S.; Ćurčić, Ž.; Vasin, J.; Djordjevic, A. Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS ONE 2016, 11, e0166248. [Google Scholar] [CrossRef] [PubMed]
- Joksimović, A.; Arsenov, D.; Borišev, M.; Djordjević, A.; Župunski, M.; Borišev, I. Foliar application of fullerenol and zinc oxide nanoparticles improves stress resilience in drought-sensitive Arabidopsis thaliana. PLoS ONE 2025, 20, e0330022. [Google Scholar] [CrossRef] [PubMed]
- Kovač, T.; Marček, T.; Šarkanj, B.; Borišev, I.; Ižaković, M.; Jukić, K.; Lončarić, A.; Krska, T.; Sulyok, M.; Krska, R. Fullerol C60(OH)24 nanoparticles and drought impact on wheat (Triticum aestivum L.) during growth and infection with Aspergillus flavus. J. Fungi 2021, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Ljubicic, N.; Radovic, M.; Kostić, M.; Popovic, V.; Radulovic, M.; Blagojević, D.; Ivosevic, B. The impact of ZnO nanoparticles application on yield components of different wheat genotypes. Agric. For. 2020, 66, 217–227. [Google Scholar] [CrossRef]
- Subotić, A.; Jevremović, S.; Milošević, S.; Trifunović-Momčilov, M.; Đurić, M.; Koruga, Đ. Physiological response, oxidative stress assessment and aquaporin genes expression of cherry tomato (Solanum lycopersicum L.) exposed to hyper-harmonized fullerene water complex. Plants 2022, 11, 2810. [Google Scholar] [CrossRef]
- Tamindžić, G.; Azizbekian, S.; Miljaković, D.; Turan, J.; Nikolić, Z.; Ignjatov, M.; Milošević, D.; Vasiljević, S. Comprehensive metal-based nanopriming for improving seed germination and initial growth of field pea (Pisum sativum L.). Agronomy 2023, 13, 2932. [Google Scholar] [CrossRef]
- Tamindžić, G.; Azizbekian, S.; Miljaković, D.; Ignjatov, M.; Nikolić, Z.; Budakov, D.; Vasiljević, S.; Grahovac, M. Assessment of various nanoprimings for boosting pea germination and early growth in both optimal and drought-stressed environments. Plants 2024, 13, 1547. [Google Scholar] [CrossRef]
- Nešić, A.; Segura, R.; Benavides, S.; Cabrera-Barjas, G. Biocomposite films intended for agriculture application based on polysaccharide/quinoa saponin/Ag nanoparticles. Metall. Mater. Data 2024, 2, 109–112. [Google Scholar] [CrossRef]
- Bakić, I.; Radović, A.; Živković, B.; Radović, I.; Simin, N.; Živanović, N.; Čolić, S. Effect of nanocalcium foliar application on the growth, yield, and fruit quality of strawberry cv. ‘Alba’. J. Plant Nutr. 2025, 48, 1695–1710. [Google Scholar] [CrossRef]
- Radonić, V.; Savić Ružić, S.; Bajac, B.; Janković, N.; Mastilović, J. Knowledge and skills transfer for the application of nanotechnology in biosensors for foodborne pathogens: Abstract. Hem. Ind. 2024, 78, 75. [Google Scholar]
- Kumari, R.; Suman, K.; Karmakar, S.; Mishra, V.; Lakra, S.G.; Saurav, G.K.; Mahto, B.K. Regulation and safety measures for nanotechnology-based agri-products. Front. Genome Ed. 2023, 5, 1200987. [Google Scholar] [CrossRef]
- Hansen, S.F.; Baun, A. European regulation affecting nanomaterials—Review of limitations and future recommendations. Dose-Response 2012, 10, 364–383. [Google Scholar] [CrossRef]
- Mishra, A.; Mishra, R.K.; Dikshit, A.; Pandey, A.C. Interactions of nanoparticles with plants: An emerging prospective in the agriculture industry. In Emerging Technologies and Management of Crop Stress Tolerance; Ahmad, P., Rasool, S., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 159–180. [Google Scholar] [CrossRef]
- Ma, X.; Geiser-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010, 408, 3053–3061. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sota, V.; Jevremović, S.; Abraham, E.; Daničić, V.; Bošnjak, D.; Nacheva, L.; Cvjetković, B.; Andonovski, V.; Bogunović, S.; Kongjika, E.; et al. The Balkan Region and the “Nano Gap”: An Underexplored Dimension of In Vitro Biotechnology for Woody Plants. Plants 2025, 14, 3499. https://doi.org/10.3390/plants14223499
Sota V, Jevremović S, Abraham E, Daničić V, Bošnjak D, Nacheva L, Cvjetković B, Andonovski V, Bogunović S, Kongjika E, et al. The Balkan Region and the “Nano Gap”: An Underexplored Dimension of In Vitro Biotechnology for Woody Plants. Plants. 2025; 14(22):3499. https://doi.org/10.3390/plants14223499
Chicago/Turabian StyleSota, Valbona, Slađana Jevremović, Eleni Abraham, Vanja Daničić, Dejan Bošnjak, Lilyana Nacheva, Branislav Cvjetković, Vlatko Andonovski, Sanja Bogunović, Efigjeni Kongjika, and et al. 2025. "The Balkan Region and the “Nano Gap”: An Underexplored Dimension of In Vitro Biotechnology for Woody Plants" Plants 14, no. 22: 3499. https://doi.org/10.3390/plants14223499
APA StyleSota, V., Jevremović, S., Abraham, E., Daničić, V., Bošnjak, D., Nacheva, L., Cvjetković, B., Andonovski, V., Bogunović, S., Kongjika, E., Zeljković, S., Jevremović, D., Marković, Z., Galović, V., & Vujović, T. (2025). The Balkan Region and the “Nano Gap”: An Underexplored Dimension of In Vitro Biotechnology for Woody Plants. Plants, 14(22), 3499. https://doi.org/10.3390/plants14223499

