An Update of Phytotherapeutic Advances of Marigold (Calendula officinalis L.) in Wound Healing
Abstract
1. Introduction
2. Results
2.1. Pre-Clinical Evaluations and Animal Models
2.2. Clinical Trials
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saporito, F.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Boselli, C.; Cornaglia, A.I.; Mannucci, B.; Grisoli, P.; Vigani, B.; Ferrari, F. Essential Oil-Loaded Lipid Nanoparticles for Wound Healing. Int. J. Nanomed. 2018, 13, 175–186. [Google Scholar] [CrossRef]
- Gantwerker, E.A.; Hom, D.B. Skin: Histology and Physiology of Wound Healing. Clin. Plast. Surg. 2012, 39, 85–97. [Google Scholar] [CrossRef]
- Wang, P.H.; Huang, B.S.; Horng, H.C.; Yeh, C.C.; Chen, Y.J. Wound Healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, C.; An, J.; Liu, J.; Wang, Y.; Cai, Y. Mechanisms of Microbial Infection and Wound Healing in Diabetic Foot Ulcer: Pathogenicity in the Inflammatory-Proliferative Phase, Chronicity, and Treatment Strategies. Front. Endocrinol. 2025, 16, 1657928. [Google Scholar] [CrossRef] [PubMed]
- Williams, M. Wound Infections: An Overview. Br. J. Community Nurs. 2021, 26, S22–S25. [Google Scholar] [CrossRef]
- Edwards, R.; Harding, K.G. Bacteria and Wound Healing. Curr. Opin. Infect. Dis. 2004, 17, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Uberoi, A.; McCready-Vangi, A.; Grice, E.A. The Wound Microbiota: Microbial Mechanisms of Impaired Wound Healing and Infection. Nat. Rev. Microbiol. 2024, 22, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.; Ousey, K.; Rippon, M.; Rogers, A.; Pastar, I.; Lev-Tov, H. Applying Antimicrobial Strategies in Wound Care Practice: A Review of the Evidence. Int. Wound J. 2025, 22, e70684. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Inflammation. In The Impact of Nutrition and Statins on Cardiovascular Diseases; Academic Press: Cambridge, MA, USA, 2019; ISBN 9780128137925. [Google Scholar]
- Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and Antiinflammatory Activity of Coumarin Derivatives. J. Med. Chem. 2005, 48, 6400–6408. [Google Scholar] [CrossRef]
- Peña, O.A.; Martin, P. Cellular and Molecular Mechanisms of Skin Wound Healing. Nat. Rev. Mol. Cell Biol. 2024, 25, 599–616. [Google Scholar] [CrossRef]
- Kumar, S.S.; Remya, C.; Krishnakumar, K.; Maria, E.; Dileep, K.V.; John, M. Modulation of COX-2, 5-LOX, and Cytokine Signalling by Carica papaya L. Leaf Cultivar “Red Lady” Flavonoids in Inflammation: In-Vitro and in-Silico Insights. Nat. Prod. Res. 2025, 1–7. [Google Scholar] [CrossRef]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef]
- Guo, S.; DiPietro, L.A. Critical Review in Oral Biology & Medicine: Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Rodero, M.P.; Khosrotehrani, K. Skin Wound Healing Modulation by Macrophages. Int. J. Clin. Exp. Pathol. 2010, 3, 643–653. [Google Scholar]
- Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in Wound Repair: Molecular and Cellular Mechanisms. J. Investig. Dermatol. 2007, 127, 514–525. [Google Scholar] [CrossRef]
- De Cleene, H.K.L.; Keçeli, B.N.; Maschalidi, S. Apoptosis and Cell Clearance in Skin Wound Healing. Adv. Exp. Med. Biol. 2025, 1481, 121–151. [Google Scholar] [CrossRef] [PubMed]
- Lindley, L.E.; Stojadinovic, O.; Pastar, I.; Tomic-Canic, M. Biology and Biomarkers for Wound Healing. Plast. Reconstr. Surg. 2016, 138, 18S–28S. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Maheshwari, A.; Chandra, A. Biomarkers for Wound Healing and Their Evaluation. J. Wound Care 2016, 25, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.; Koch, M.; Lee, Y.H.; Jung, F.; Blocki, A. An in Vitro Model of Angiogenesis during Wound Healing Provides Insights into the Complex Role of Cells and Factors in the Inflammatory and Proliferation Phase. Int. J. Mol. Sci. 2018, 19, 2913. [Google Scholar] [CrossRef]
- Johnson, K.E.; Wilgus, T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care 2014, 3, 647–661. [Google Scholar] [CrossRef]
- Corliss, B.A.; Azimi, M.S.; Munson, J.M.; Peirce, S.M.; Murfee, W.L. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 2016, 23, 95–121. [Google Scholar] [CrossRef]
- Mu, L.; Tang, J.; Liu, H.; Shen, C.; Rong, M.; Zhang, Z.; Lai, R. A Potential Wound-Healing-Promoting Peptide from Salamander Skin. FASEB J. 2014, 28, 3919–3929. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, L.; Xu, J.; Xie, Z.; Xu, Y.; Jiang, P.; Duan, B.; Huang, X.; Feng, F.; Liu, W. Effects of Periploca Forrestii Schltr on Wound Healing by Src Meditated Mek/Erk and PI3K/Akt Signals. J. Ethnopharmacol. 2019, 237, 116–127. [Google Scholar] [CrossRef]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive Oxygen Species (ROS) and Wound Healing: The Functional Role of ROS and Emerging ROS-Modulating Technologies for Augmentation of the Healing Process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef]
- Enoch, S.; Leaper, D.J. Basic Science of Wound Healing. Surgery 2008, 26, 31–37. [Google Scholar]
- Darby, I.A.; Laverdet, B.; Bonté, F.; Desmoulière, A. Fibroblasts and Myofibroblasts in Wound Healing. Clin. Cosmet. Investig. Dermatol. 2014, 7, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Utz, E.R.; Elster, E.A.; Tadaki, D.K.; Gage, F.; Perdue, P.W.; Forsberg, J.A.; Stojadinovic, A.; Hawksworth, J.S.; Brown, T.S. Metalloproteinase Expression Is Associated with Traumatic Wound Failure. J. Surg. Res. 2010, 159, 633–639. [Google Scholar] [CrossRef]
- Barku, V.Y.A. Wound Healing: Contributions from Plant Secondary Metabolite Antioxidants. In Wound Healing—Current Perspectives; IntechOpen: London, UK, 2019. [Google Scholar]
- Rasul, M. Extraction, Isolation and Characterization of Natural Products from Medicinal Plants. Int. J. Basic Sci. Appl. Comput. 2018, 2, 1–6. [Google Scholar]
- Che, C.T.; George, V.; Ijinu, T.P.; Pushpangadan, P.; Andrae-Marobela, K. Traditional Medicine. In Pharmacognosy: Fundamentals, Applications and Strategy; Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128020999. [Google Scholar]
- World Health Organization (WHO). WHO Traditional Medicine Strategy 2014–2023; World Health Organization (WHO): Geneva, Switzerland, 2013. [Google Scholar]
- Ahmed, L.A.; Hussain, A.; Barbhuiya, P.A.; Zaman, S.; Laskar, A.M.; Pathak, M.P.; Dutta, P.P.; Sen, S. Herbal Medicine for the Management of Wounds: A Systematic Review of Clinical Studies. Infect. Disord. Drug Targets 2024, 25, E18715265320593. [Google Scholar] [CrossRef]
- Que, S.; Ma, X.; Yang, T.; He, J. Evaluation of the Effect of Herbal Agents as Management of Radiodermatitis in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Jpn. J. Nurs. Sci. 2024, 21, e12559. [Google Scholar] [CrossRef]
- Baharara, H.; Rahsepar, S.; Emami, S.A.; Elyasi, S.; Mohammadpour, A.H.; Ghavami, V.; Rajendram, R.; Sahebkar, A.; Arasteh, O. The Efficacy of Medicinal Plant Preparations in the Alleviation of Radiodermatitis in Patients with Breast Cancer: A Systematic Review of Clinical Trials. Phytother. Res. 2023, 37, 3275–3295. [Google Scholar] [CrossRef]
- Kalekhan, F.; Kudva, A.K.; Raghu, S.V.; Rao, S.; Hegde, S.K.; Simon, P.; Baliga, M.S. Traditionally Used Natural Products in Preventing Ionizing Radiation-Induced. Anticancer Agents Med. Chem. 2022, 22, 64–82. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Calendulae Flos—Herbal Medicinal Product. Available online:. Available online: https://www.ema.europa.eu/en/medicines/herbal/calendulae-flos (accessed on 13 October 2025).
- Shahane, K.; Kshirsagar, M.; Tambe, S.; Jain, D.; Rout, S.; Ferreira, M.K.M.; Mali, S.; Amin, P.; Srivastav, P.P.; Cruz, J.; et al. An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L. Pharmaceuticals 2023, 16, 611. Pharmaceuticals 2023, 16, 611. [Google Scholar] [CrossRef]
- Nicolaus, C.; Junghanns, S.; Hartmann, A.; Murillo, R.; Ganzera, M.; Merfort, I. In Vitro Studies to Evaluate the Wound Healing Properties of Calendula officinalis Extracts. J. Ethnopharmacol. 2017, 196, 94–103. [Google Scholar] [CrossRef]
- Dinda, M.; Mazumdar, S.; Das, S.; Ganguly, D.; Dasgupta, U.B.; Dutta, A.; Jana, K.; Karmakar, P. The Water Fraction of Calendula officinalis Hydroethanol Extract Stimulates In Vitro and In Vivo Proliferation of Dermal Fibroblasts in Wound Healing. Phytother. Res. 2016, 30, 1696–1707. [Google Scholar] [CrossRef]
- Jahdi, F.; Khabbaz, A.; Kashian, M.; Taghizadeh, M.; Haghani, H. The Impact of Calendula Ointment on Cesarean Wound Healing: A Randomized Controlled Clinical Trial. J. Fam. Med. Prim. Care 2018, 7, 893. [Google Scholar] [CrossRef] [PubMed]
- Buzzi, M.; De Freitas, F.; De Barros Winter, M. Therapeutic Effectiveness of a Calendula officinalis Extract in Venous Leg Ulcer Healing. J. Wound Care 2016, 25, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Yadav, S.; Khan, J. Revolutionizing Wound Healing: Unleashing Nanostructured Lipid Carriers Embodied with Herbal Medicinal Plant. Curr. Pharm. Biotechnol. 2025, 26, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Terpiłowska, A.; Nowak, I.; Feliczak-Guzik, A.; Wyganowska, M. Analysis of the Impact of Ethanol Extract of Calendula officinalis L. on Human Fibroblast Cell Cultures Using the PANsys 3000 Device for Breeding and Visualization of Cells. Life 2023, 13, 1949. [Google Scholar] [CrossRef]
- Ozturan, Y.A.; Akin, I. Calendula officinalis Extract Enhances Wound Healing by Promoting Fibroblast Activity and Reducing Inflammation in Mice. Cutan. Ocul. Toxicol. 2025, 44, 161–171. [Google Scholar] [CrossRef]
- Vuković, J.S.; Perišić, S.; Nikolić, A.; Milošević, I.; Mirilović, M.; Bolka Prokić, B.; Lužajić Božinovski, T. Toward Natural Wound Healing Therapy: Honey and Calendula officinalis Loaded κ-Carrageenan Films with Promising Hemostatic Potential. Pharmaceutics 2025, 17, 578. [Google Scholar] [CrossRef] [PubMed]
- Pelin, I.M.; Silion, M.; Popescu, I.; Rîmbu, C.M.; Fundueanu, G.; Constantin, M. Pullulan/Poly(Vinyl Alcohol) Hydrogels Loaded with Calendula officinalis Extract: Design and In Vitro Evaluation for Wound Healing Applications. Pharmaceutics 2023, 15, 1674. [Google Scholar] [CrossRef] [PubMed]
- Naseriyeh, T.; Kahrizi, D.; Alvandi, H.; Rajati, H.; Behbood, L.; khodabandeh Shahraky, M.; Arkan, E. Preparation of Liposomal Hydrogel Containing Calendula and Application as a Wound Dressing. Cell Mol. Biol. 2022, 68, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Possa, G.D.; Chopek, S.; Pereira, A.V.; Koga, A.Y.; Oliveira, M.R.; Costa, M.D. Calendula Glycolic Extract Enhances Wound Healing of Alginate Hydrogel. Acta Cir. Bras. 2024, 39, e399724. [Google Scholar] [CrossRef]
- Jessy Mercy, D.; Thirumalai, A.; Udayakumar, S.; Deepika, B.; Janani, G.; Girigoswami, A.; Girigoswami, K. Enhancing Wound Healing with Nanohydrogel-Entrapped Plant Extracts and Nanosilver: An In Vitro Investigation. Molecules 2024, 29, 5004. [Google Scholar] [CrossRef]
- Ferreira, L.M.; Bandeira, E.D.; Gomes, M.F.; Lynch, D.G.; Bastos, G.N.; Silva-Júnior, J.O.; Ribeiro-Costa, R.M. Polyacrylamide Hydrogel Containing Calendula Extract as a Wound Healing Bandage: In Vivo Test. Int. J. Mol. Sci. 2023, 24, 3806. [Google Scholar] [CrossRef]
- Rodríguez-Acosta, H.; Tapia-Rivera, J.M.; Guerrero-Guzmán, A.; Hernández-Elizarraráz, E.; Hernández-Díaz, J.A.; Garza-García, J.J.O.; Pérez-Ramírez, P.E.; Velasco-Ramírez, S.F.; Ramírez-Anguiano, A.C.; Velázquez-Juárez, G.; et al. Chronic Wound Healing by Controlled Release of Chitosan Hydrogels Loaded with Silver Nanoparticles and Calendula Extract. J. Tissue Viability 2022, 31, 173–179. [Google Scholar] [CrossRef]
- Aydin Acar, C.; Gencer, M.A.; Pehlivanoglu, S.; Yesilot, S.; Donmez, S. Green and Eco-Friendly Biosynthesis of Zinc Oxide Nanoparticles Using Calendula officinalis Flower Extract: Wound Healing Potential and Antioxidant Activity. Int. Wound J. 2024, 21, e14413. [Google Scholar] [CrossRef]
- Tahami, S.R.; Nemati, N.H.; Keshvari, H.; Khorasani, M.T. In Vitro and in Vivo Evaluation of Nanofibre Mats Containing Calendula officinalis Extract as a Wound Dressing. J. Wound Care 2022, 31, 598–611. [Google Scholar] [CrossRef]
- Kharat, Z.; Amiri Goushki, M.; Sarvian, N.; Asad, S.; Dehghan, M.M.; Kabiri, M. Chitosan/PEO Nanofibers Containing Calendula officinalis Extract: Preparation, Characterization, in Vitro and in Vivo Evaluation for Wound Healing Applications. Int. J. Pharm. 2021, 609, 121132. [Google Scholar] [CrossRef]
- Kunjir, H.; Shetty, L.; Sharma, D.B.; Aphale, P.; Gunturu, S.; Kunjir, G.; Chhatriwala, A.F. Comparative Evaluation of Bilateral Cleft Earlobe Rejuvenation with and without Calendula officinalis 10% V/W- Randomised Control Trial. Indian J. Otolaryngol. Head. Neck Surg. 2025, 77, 1248–1255. [Google Scholar] [CrossRef]
- Rezai, S.; Rahzani, K.; Hekmatpou, D.; Rostami, A. Effect of Oral Calendula officinalis on Second-Degree Burn Wound Healing. Scars Burn. Heal. 2023, 9, 20595131221134053. [Google Scholar] [CrossRef]
- Siddiquee, S.; McGee, M.A.; Vincent, A.D.; Giles, E.; Clothier, R.; Carruthers, S.; Penniment, M. Efficacy of Topical Calendula officinalis on Prevalence of Radiation-Induced Dermatitis: A Randomised Controlled Trial. Australas. J. Dermatol. 2021, 62, e35–e40. [Google Scholar] [CrossRef]
- De Angelis, C.; Di Stadio, A.; Vitale, S.; Saccone, G.; Angelis, M.C.; Zizolfi, B.; Di Spiezio Sardo, A. Use of Calendula Ointment after Episiotomy: A Randomized Clinical Trial. J. Matern.-Fetal Neonatal Med. 2022, 35, 1860–1864. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, G.; Pissakas, G.; Ganos, C.G.; Sivolapenko, G.; Kardamakis, D. Effectiveness and Tolerability of Natural Herbal Formulations in the Prevention of Radiation-Induced Skin Toxicity in Patients Undergoing Radiotherapy. Int. J. Low. Extrem. Wounds 2022, 21, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Farhan, A.; Alsuwayt, B.; Alanazi, F.; Yaseen, A.; Ashour, M.A. Evaluation and HPLC Characterisation of a New Herbal Ointment for the Treatment of Full-Thickness Burns in Rats. J. Taibah Univ. Med. Sci. 2021, 16, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Al-Adwan, S.M.; Al-Qaisi, T.S.; Jabbar, A.A.; Amin, K.Y.; Sami, H.F.; Althagbi, H.I.; Al-Dabhawi, A.H.; Wahab, B.A.; Hassan, R.R.; Abdulla, M.A.; et al. Field Marigold (Calendula arvensis L.) Accelerates Wound-Healing in Vivo: Role of Transforming Growth Factor-Beta1 (TGF-Β1), Inflammatory, and Biochemical Molecules. J. Mol. Histol. 2025, 56, 156. [Google Scholar] [CrossRef]


| Study Design | Type of Intervention | Dose (If Available) | Key Outcomes |
|---|---|---|---|
| In vitro (human gingival fibroblasts) | Ethanol extract of Calendula Officinalis L. (C. officinalis) | 7%, 20%, 100% extract | No cytotoxicity; cells proliferated despite alcohol; sesquiterpenes identified as major compounds |
| Animal model (BALB/c mice) | Aqueous extract of C. officinalis | 5% extract from 7.5 g powder | Accelerated wound healing by day 7; ↑ fibroblasts & growth factors; ↓ macrophages & MMPs |
| Animal model (Wistar rats) | κ-carrageenan/honey/C. officinalis skin-adhesive film | 5 wt% and 10 wt% Calendula | ↓ blood loss; faster hemostasis vs. control |
| In vitro (L929 fibroblasts) & antimicrobial assay | Pullulan/PVA hydrogel with hydroalcoholic C. officinalis extract | 5%, 10%, 20% (w/v); antimicrobial: 1.9%, 3.9%, 10.5% | Up to 70% antioxidant activity; dose-dependent antimicrobial effect (zones up to 15 mm) |
| In vitro (L929 fibroblasts) | Hydrogel with nano-liposomes containing C. officinalis | 6 mg in 50 mL water | No cytotoxicity; supported cell proliferation |
| In vitro (3T3 fibroblasts) & animal model (Wistar rats) | Alginate hydrogel with C. officinalis glycolic extract | 10 g plant powder; 10% hydrogel | ↑ cell viability; improved wound closure; ↓ inflammation; ↑ collagen & macrophage activity |
| In vitro (V79 fibroblasts) | Alginate/gelatin hydrogel with nanosilver + C. officinalis extracts | 5 µg/mL | 79% viability (simple); 50% (extract-loaded); 98% scratch closure vs. 67% control |
| Animal model (Wistar rats) | Polyacrylamide hydrogel with C. officinalis extract | 10% extract from 1 kg of plant | 50% wound contraction; ↑ collagen; no dermal toxicity; ↓ exudate volume |
| In vitro & small-scale human evaluation | Chitosan hydrogel with silver nanoparticles + C. officinalis | 2 mL extract from 10 g dried plant | Antibacterial vs. E. coli & S. aureus; 2 diabetic patients reported positive healing |
| In vitro (L929 fibroblasts) & animal model (Wistar rats) | Zinc oxide nanoparticles with C. officinalis extract | 10 g dried flowers; up to 10 µg/mL | Moderate antioxidant activity; no cytotoxicity; 69.1% wound closure vs. 64.8% control |
| In vitro (L929 fibroblasts) & animal model (Wistar rats) | Nanofiber wound dressing with C. officinalis | 5%, 10%, 15% | Non-toxic; 10% extract showed best healing on days 7, 14, 21 |
| Animal model (rats) | Chitosan/polyethylene oxide scaffold with C. officinalis | Not specified | 96% (Gram+) & 94% (Gram−) bacterial reduction; 87.5% wound closure in 2 weeks |
| Study Design | Population | Intervention | Control | Dose & Duration | Key Outcomes |
|---|---|---|---|---|---|
| RCT (bilateral earlobe clefts) | 35 patients | C. officinalis ointment (10%) | Petroleum jelly | Applied every 12 h for 7 days | Significant improvement at day 15 (p < 0.001); no difference at day 1 or 7 |
| RCT (burn patients) | 60 patients | C. officinalis capsule (2 g/day) | Placebo | Daily for 2 weeks | Lower BWAT scores at day 7 & 15; greater healing range (13 vs. 5 points); p > 0.001 |
| RCT (breast cancer radiotherapy) | 82 women | C. officinalis lotion (<5% v/v) | Sorbolene cream | Applied during 6-week treatment + 6-week follow-up | No difference in dermatitis grade 2+; Calendula rated higher in satisfaction; Sorbolene had lower pain scores |
| RCT (episiotomy recovery) | 100 women | C. officinalis ointment | Standard care | Applied 4 h post-episiotomy, then every 8 h for 10 days | Lower self-reported pain from day 2 onward across all follow-up points |
| Step | Description |
|---|---|
| Review Objective | Identify recent evidence on Calendula officinalis in wound healing |
| Databases | PubMed, Scopus, Google Scholar |
| Search Period | March–September 2025 |
| Keywords | Calendula officinalis, wound healing, clinical trial, in vitro, in vivo, etc. |
| Date Range | 2016–2025 (final selection: 2020–2025) |
| Language | English only |
| Inclusion Criteria | Original data from clinical trials, in vivo, or in vitro studies on wound healing |
| Screening Process | Title/abstract screening → full-text review → data extraction |
| Data Extracted | Formulation type, intervention, dose, healing outcomes, safety |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deligiannidou, G.E.; Papadimitriou, K.; Poulios, E.; Kontogiorgis, C.; Papadopoulou, S.K.; Giaginis, C. An Update of Phytotherapeutic Advances of Marigold (Calendula officinalis L.) in Wound Healing. Plants 2025, 14, 3497. https://doi.org/10.3390/plants14223497
Deligiannidou GE, Papadimitriou K, Poulios E, Kontogiorgis C, Papadopoulou SK, Giaginis C. An Update of Phytotherapeutic Advances of Marigold (Calendula officinalis L.) in Wound Healing. Plants. 2025; 14(22):3497. https://doi.org/10.3390/plants14223497
Chicago/Turabian StyleDeligiannidou, Georgia Eirini, Konstantinos Papadimitriou, Efthymios Poulios, Christos Kontogiorgis, Sousana K. Papadopoulou, and Constantinos Giaginis. 2025. "An Update of Phytotherapeutic Advances of Marigold (Calendula officinalis L.) in Wound Healing" Plants 14, no. 22: 3497. https://doi.org/10.3390/plants14223497
APA StyleDeligiannidou, G. E., Papadimitriou, K., Poulios, E., Kontogiorgis, C., Papadopoulou, S. K., & Giaginis, C. (2025). An Update of Phytotherapeutic Advances of Marigold (Calendula officinalis L.) in Wound Healing. Plants, 14(22), 3497. https://doi.org/10.3390/plants14223497

