Chemical Profile and Evaluation of the Antioxidant, Anti-Enzymatic, and Antibacterial Activity of Astragalus strictispinus and Astragalus macrocephalus subsp. finitimus
Abstract
1. Introduction
2. Results and Discussion
2.1. Phenolic Compounds in the Extracts of the Astragalus Species
2.2. Antioxidant Potential
2.3. Cholinesterase Inhibitory Activity
2.4. Antibacterial Activity
3. Materials and Methods
3.1. Reagents and Standards
3.2. Plant Materials and Extraction
3.3. LC-MS/MS-Based Quantitative Identification of Phenolic Compounds
3.4. Analytical Instrumentation
3.5. Bioactivity Assays
3.5.1. DMPD Radical Scavenging Assay
3.5.2. PRAP Assay
3.6. Anticholinesterase Activity Assay
3.7. Antibacterial Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid |
| AChE | Acetylcholinesterase |
| AChI | Acetylcholin iodide |
| AD | Alzheimer’s disease |
| BChC | Butyrylcholine chloride |
| BChE | Butyrylcholinesterase |
| CE | Collision energy |
| CUPRAC | Cupric-reducing antioxidant capacity |
| DMPD | N,N-Dimethyl-p-phenylenediamine |
| DTNB | 5,5′-Dithio-bis (2-nitrobenzoic) acid |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| ESI | Electrospray ionization |
| FRAP | Ferric-reducing antioxidant power |
| iNOS | Inducible nitric oxide synthase |
| LOD | Limits of detection |
| LOQ | Limits of quantification |
| PRAP | Phosphomolybdenum-reducing antioxidant power |
| UHPLC | Ultrahigh performance liquid chromatograph |
References
- Ilcim, A.; Behcet, L. Astragalus topalanense (Fabaceae), a new species from Türkiye. Turk. J. Bot. 2016, 40, 74–80. [Google Scholar] [CrossRef]
- Ekiz Dincman, G.; Aytac, Z.; Calis, I. Turkish Astragalus species: Botanical aspects, secondary metabolites, and biotransformation. Planta Med. 2024, 91, 40–61. [Google Scholar] [CrossRef]
- Shahrivari-Baviloliaei, S.; Orhan, I.E.; Abaci Kaplan, N.; Konopacka, A.; Waleron, K.; Plenis, A.; Viapiana, A. Characterization of phenolic profile and biological properties of Astragalus membranaceus Fisch. ex-Bunge commercial samples. Antioxidants 2024, 13, 993. [Google Scholar] [CrossRef]
- Guven, L.; Erturk, A.; Demirkaya Miloglu, F.; Alwasel, S.; Gulcin, I. Screening of antiglaucoma, antidiabetic, anti-Alzheimer, and antioxidant activities of Astragalus alopecurus Pall—Analysis of phenolics profiles by LC-MS/MS. Pharmaceuticals 2023, 16, 659. [Google Scholar] [CrossRef]
- Bratkov, V.M.; Shkondrov, A.M.; Zdraveva, P.K.; Krasteva, I.N. Flavonoids from the genus Astragalus: Phytochemistry and biological activity. Pharmacogn. Rev. 2016, 10, 11–32. [Google Scholar] [CrossRef]
- Graziani, V.; Scognamiglio, M.; Esposito, A.; Fiorentino, A.; D’Abrosca, B. Chemical diversity and biological activities of the saponins isolated from Astragalus genus: Focus on astragaloside IV. Phytochem. Rev. 2019, 18, 1133–1166. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.; Han, Q.; Lan, J.; Chen, G.; Cao, G.; Yang, C. Effects of astragalus and ginseng polysaccharides on growth performance, immune function and intestinal barrier in weaned piglets challenged with lipopolysaccharide. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Mariano, A.; Russo, R.; D’Abusco, A.S.; Superti, F. Astragalus membranaceus extract attenuates inflammatory cytokines and matrix-degrading enzymes in human chondrocytes: A novel nutraceutical strategy for joint health. Curr. Issues Mol. Biol. 2025, 47, 731. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, W.; Zhang, L.; Zhang, Y.; Liu, D.; Liu, Y. A review of the pharmacological action of Astragalus polysaccharide. Front. Pharmacol. 2020, 11, 349. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Xu, H. Effect of Astragalus polysaccharide in treatment of diabetes mellitus: A narrative review. J. Tradit. Chin. Med. 2019, 39, 133–138. [Google Scholar] [PubMed]
- Liu, P.; Zhao, H.; Luo, Y. Anti-aging implications of Astragalus membranaceus (huangqi): A well-known Chinese tonic. Aging Dis. 2017, 8, 868–886. [Google Scholar] [CrossRef]
- Shahzad, M.; Shabbir, A.; Wojcikowski, K.; Wohlmuth, H.; Gobe, G.C. The antioxidant effects of radix astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease. Curr. Drug Targets. 2015, 17, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Kuberskaya, A.P.; Podgurskaya, V.V. Omega-3 fatty acids: Promising plant sources and effects on the human body. Omsk. Sci. Bull. 2023, 3, 95–105. [Google Scholar] [CrossRef]
- Colak, S.; Colak, S.; Dagli, F.; Comlekcioglu, N.; Kocabas, Y.Z.; Aygan, A. Antimicrobial activity and some phytochemical properties of extracts from Achillea aleppica subsp. aleppica. Gida-J. Food 2020, 45, 929–941. [Google Scholar] [CrossRef]
- Cheng, M.; Hu, J.; Zhao, Y.; Jiang, J.; Qi, R.; Chen, S.; Li, Y.; Zheng, H.; Liu, R.; Guo, Q.; et al. Efficacy and safety of Astragalus-containing Traditional Chinese Medicine combined with platinum-based chemotherapy in advanced gastric cancer: A systematic review and meta-analysis. Front. Oncol. 2021, 11, 632168. [Google Scholar] [CrossRef]
- Cheng, W.J.; Chiang, C.C.; Lin, C.Y.; Chen, Y.L.; Leu, Y.L.; Sie, J.Y.; Chen, W.L.; Hsu, C.Y.; Kuo, J.J.; Hwang, T.L. Astragalus mongholicus Bunge water extract exhibits anti-inflammatory effects in human neutrophils and alleviates imiquimod-induced psoriasis-like skin inflammation in mice. Front. Pharmacol. 2021, 12, 762829. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.G.; Li, J.L.; Li, P.; Yang, S.Q.; Zang, Y.; Wang, Y.; Yu, Y.T.; Xie, X.; Li, H.F.; Hao, X.L.; et al. Neuroprotective triterpenoids from Astragalus membranaceus stems and leaves: Anti-inflammatory and anti-apoptotic mechanisms for memory improvement via in vivo and in vitro models. Bioorganic Chem. 2025, 160, 108492. [Google Scholar] [CrossRef]
- Shahrivari, S.; Alizadeh, S.; Ghassemi-Golezani, K.; Aryakia, E. A comprehensive study on essential oil compositions, antioxidant, anticholinesterase and antityrosinase activities of three Iranian Artemisia species. Sci. Rep. 2022, 12, 7234. [Google Scholar] [CrossRef]
- Tok, F. Recent studies on heterocyclic cholinesterase inhibitors against Alzheimer’s disease. Chem. Biodivers. 2025, 22, e202402837. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.; Therriault, J.; Rosa-Neto, P. Cholinergic therapy in Alzheimer disease. Handb. Clin. Neurol. 2025, 211, 155–159. [Google Scholar] [CrossRef]
- Aydogan, S.F.; Ali, Z.; Khan, S.I.; Zhao, J.; Khan, I.A. Biological and phytochemical studies on six Astragalus taxa from Anatolia. In Annual Poster Session; eGrove: Oxford, MS, USA, 2022; Volume 2, pp. 10–11. Available online: https://egrove.olemiss.edu/pharm_annual_posters_2022/2 (accessed on 10 November 2022).
- Deng, G.; Zhou, L.; Wang, B.; Sun, X.; Zhang, Q.; Chen, H.; Wan, N.; Ye, H.; Wu, X.; Sun, D.; et al. Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation. J. Immunother. Cancer. 2022, 10, e004874. [Google Scholar] [CrossRef]
- Chen, T.; Xie, L.; Shen, M.; Yu, Q.; Chen, Y.; Xie, J. Recent advances in Astragalus polysaccharides: Structural characterization, bioactivities and gut microbiota modulation effects. Trends Food Sci. Technol. 2024, 153, 104707. [Google Scholar] [CrossRef]
- Bagalagel, A.; Diri, R.; Noor, A.; Almasri, D.; Bakhsh, H.T.; Kutbi, H.I.; Al-Gayyar, M.M.H. The therapeutic effects of cycloastragenol in ulcerative colitis by modulating SphK/MIP-1α/miR-143 signalling. Basic Clin. Pharmacol. Toxicol. 2022, 131, 406–419. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Zengin, G. Polyphenol profile and biological activity comparisons of different parts of Astragalus macrocephalus subsp. finitimus from Türkiye. Biology 2020, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian-Yadegari, J.; Nazemiyeh, H.; Hamedeyazdan, S.; Fathiazad, F. Secondary metabolites from the roots of Astragalus maximus. Res. J. Pharmacogn. 2017, 4, 31–38. [Google Scholar]
- Grynkiewicz, G.; Demchuk, O.M. New perspectives for fisetin. Front. Chem. 2019, 7, 697. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef]
- Shahrivari-Baviloliaei, S.; Konopacka, A.; Aguiar Pascoalino, L.; Reis, F.; Kunkowski, D.; Petropoulos, S.A.; Konieczynski, P.; Orhan, I.E.; Plenis, A.; Viapiana, A. Nutritional, chemical, antioxidant and antibacterial screening of Astragalus cicer L. and Astragalus glycyphyllos L. different morphological parts. Foods 2025, 14, 250. [Google Scholar] [CrossRef]
- Kurt-Celep, I.; Zengin, G.; Ibrahime Sinan, K.; Ak, G.; Elbasan, F.; Yildiztugay, E.; Maggi, F.; Caprioli, G.; Angeloni, S.; Sharmeen, J.B.; et al. Comprehensive evaluation of two Astragalus species (A. campylosema and A. hirsutus) based on biological, toxicological properties and chemical profiling. Food Chem. Toxicol. 2021, 154, 112330. [Google Scholar] [CrossRef] [PubMed]
- Raindjelovic, P.; Veljkovic, S.; Stojiljkovic, N.; Sokolovic, D.; Ilic, I.; Laketic, D.; Randjelovic, D.; Randjelovic, N. The beneficial biological properties of salicylic acid. Acta Fac. Med. Naissensis 2015, 32, 259–265. [Google Scholar] [CrossRef]
- Liu, J.; Lan, X.; Lv, S.; Bao, R.; Yuan, Y.; Wu, S.; Quan, X. Salicylic acid involved in chilling-induced accumulation of calycosin-7-O-β-D-glucoside in Astragalus membranaceus adventitious roots. Acta Physiol. Plant. 2019, 41, 120. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; Qi, J.; Jia, Y.; Li, X.; Zhang, Z.; Chen, X. Polyphenol composition and antioxidant activity of fermentation combined with enzymatic hydrolysis modified Astragalus membranaceus stems. Chem. Biol. Technol. Agric. 2024, 11, 153. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, T.; Qin, H.; Wang, X.; He, S.; Fan, Z.; Ye, Q.; Du, Y. Acacetin as a natural cardiovascular therapeutic: Mechanisms and preclinical evidence. Front. Pharmacol. 2025, 16, 1493981. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.; Akhtar, J.; Singh, S.P.; Ahsan, F. An overview on genistein and its various formulations. Drug Res. 2018, 69, 305–313. [Google Scholar] [CrossRef]
- Xiong, X.; Tang, N.; Lai, X.; Zhang, J.; Wen, W.; Li, X.; Li, A.; Wu, Y.; Liu, Z. Insights into amentoflavone: A natural multifunctional biflavonoid. Front. Pharmacol. 2021, 12, 768708. [Google Scholar] [CrossRef]
- Hasimi, N.; Ertas, A.; Yilmaz, M.A.; Boga, M.; Temel, H.; Demirci, S.; Yilmaz-Ozden, T.; Yener, I.; Kolak, U. LC-MS/MS and GC-MS analyses of three endemic Astragalus species from Anatolia towards their total phenolic-flavonoid contents and biological activities. Biol. Divers. Conserv. 2017, 10, 18–30. [Google Scholar]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Valgimigli, L. Lipid peroxidation and antioxidant protection. Biomolecules 2023, 13, 1291. [Google Scholar] [CrossRef]
- Viswanathan, P.; Sriram, V.; Yogeeswaran, G. Sensitive spectrophotometric assay for 3-hydroxy-substituted flavonoids, based on their binding with molybdenum, antimony, or bismuth. J. Agric. Food Chem. 2000, 48, 2802–2806. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Munoz, M.F.; Arguelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014, 6, 360438. [Google Scholar] [CrossRef]
- Karasakal, A. Evaluation of antioxidant activities of Brassica napus’s seeds by CUPRAC, ABTS Persulphate and DMPD methods. Marmara Pharm. J. 2015, 19, 153–158. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Karagecili, H.; Yilmaz, M.A.; Erturk, A.; Kiziltas, H.; Guven, L.; Alwasel, S.H.; Gulcin, I. Comprehensive metabolite profiling of Berdav propolis using LC-MS/MS: Determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects. Molecules 2023, 28, 1739. [Google Scholar] [CrossRef]
- Guven, L.; Gulcin, I. Determination of metabolic profiling by LC-MS/MS, evaluation of antioxidant activities, and enzyme inhibition effects of Helichrysum plicatum subsp. pseudopliacatum. KSÜ Tar. Doga Derg. 2024, 27, 501–514. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Medicinal plants with antioxidant and free radical scavenging effects (part 2): Plant-based review. IOSR J. Pharm. 2016, 6, 62–82. [Google Scholar] [CrossRef]
- Kocyigit, U.M.; Eruygur, N.; Atas, M.; Tekin, M.; Taslimi, P.; Gokalp, F.; Gulcin, I. Evaluation of anticholinergic, antidiabetic and antioxidant activity of Astragalus dumanii, an endemic plant. KSU J. Agric. Nat. 2022, 25, 1–10. [Google Scholar] [CrossRef]
- Teyeb, H.; Mabrouk, H.; Neffati, M.; Douki, W.; Najjar, M.F. Anticholinesterase activity of Astragalus gombiformis extracts. J. Biol. Act. Prod. Nat. 2011, 1, 344–348. [Google Scholar] [CrossRef]
- Mohammadi, R.; Zarei, M.A.; Ghobadi, S. Investigation and determination of acetylcholinesterase inhibition by methanol extract of the aerial parts of Alcea kurdica (Schlecht.) Alef and Astragalus glumaceus Bioss. J. Med. Plants Res. 2016, 15, 54–62. [Google Scholar]
- Lekmine, S.; Benslama, O.; Tahraoui, H.; Shamsul Ola, M.; Laouani, A.; Kadi, K.; Martin-Garcia, A.I.; Ali, A. Anti-cholinergic effects of the phenolic extract from the Astragalus crenatus plant: A computational and network pharmacology study. Pharmaceuticals 2024, 17, 348. [Google Scholar] [CrossRef] [PubMed]
- Sekeroglu, N.; Gezici, S. Astragalus neurocarpus Boiss. as a potential source of natural enzyme inhibitor associated with Alzheimer’s and Parkinson diseases along with its rich polyphenolic content and antioxidant activities. Ann. Phytomed. 2019, 8, 82–87. [Google Scholar] [CrossRef]
- Ersoy, E.; Boga, M.; Kaplan, A.; Mataraci Kara, E.; Eroglu Ozkan, E.; Demirci Kayiran, S. LC-HRMS profiling of phytochemicals with assessment of antioxidant, anticholinesterase, and antimicrobial potentials of Astragalus brachystachys DC. Chem. Biodivers. 2024, 22, e202401853. [Google Scholar] [CrossRef]
- Labed, A.; Ferhat, M.; Labed-Zouad, I.; Kaplaner, E.; Zerizer, S.; Voutquenne-Nazabadioko, L.; Alabdul Magid, A.; Semra, Z.; Kabouche, A.; Kabouche, Z.; et al. Compounds from the pods of Astragalus armatus with antioxidant, anticholinesterase, antibacterial and phagocytic activities. Pharm. Biol. 2016, 54, 3026–3032. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian-Yadegari, J.; Hamedeyazdan, S.; Nazemiyeh, H.; Fathiazad, F. Evaluation of phytochemical, antioxidant and antibacterial Activity on Astragalus chrysostachys Boiss. Roots. Iran. J. Pharm. Res. 2019, 18, 1902–1911. [Google Scholar] [CrossRef]
- Samuel, A.O.; Huang, B.T.; Chen, Y.; Guo, F.X.; Yang, D.D.; Jin, J.Q. Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch.) Bge. Sci. Rep. 2021, 11, 19625. [Google Scholar] [CrossRef]
- Aydemir, E.; Odabas Kose, E.; Yavuz, M.; Kilit, A.C.; Korkut, A.; Ozkaya Gul, S.; Sarikurkcu, C.; Celep, M.E.; Gokturk, R.S. Phenolic compound profiles, cytotoxic, antioxidant, antimicrobial potentials and molecular docking Studies of Astragalus gymnolobus methanolic extracts. Plants 2024, 13, 658. [Google Scholar] [CrossRef]
- Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Schlesier, K.; Harwat, M.; Bohm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Deniz, F.S.S.; Orhan, I.E.; Duman, H. Profiling cosmeceutical effects of various herbal extracts through elastase, collagenase, tyrosinase inhibitory and antioxidant assays. Phytochem. Lett. 2021, 45, 171–183. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aquilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Falcioni, G.; Fedeli, D.; Tiano, L.; Calzuola, I.; Mancinelli, L.; Marsili, V.; Gianfranceschi, G. Antioxidant activity of wheat sprouts extract in vitro: Inhibition of DNA oxidative damage. J. Food Sci. 2002, 67, 2918–2922. [Google Scholar] [CrossRef]
- Abacı, N.; Deniz, F.S.S.; Salmas, R.E.; Uysal Bayar, F.; Turgut, K.; Orhan, I.E. In vitro and in silico cholinesterase inhibitory and antioxidant effects of essential oils and extracts of two new Salvia fruticosa Mill. cultivars (Turgut and Uysal) and GC-MS analysis of the essential oils. Int. J. Environ. Health Res. 2024, 34, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]



| # | Compounds | EtOH | EtOAc | DCM | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| A.M. Leaves | A.M. Roots | A.S. Leaves | A.S. Roots | A.M. Leaves | A.M. Roots | A.S. Flowers | A.M. Leaves | A.S. Flowers | ||
| 1 | Quinic acid | nd | nd | 0.75 | nd | nd | nd | nd | nd | nd |
| 6 | Protocatechuic acid | 0.12 | 0.044 | 0.081 | nd | 0.069 | nd | nd | nd | nd |
| 17 | Caffeic acid | nd | 0.075 | nd | nd | 0.013 | 0.044 | nd | nd | nd |
| 23 | Piceid | nd | 0.026 | nd | nd | nd | nd | nd | nd | nd |
| 29 | Salicylic acid | 0.012 | nd | 0.139 | nd | nd | nd | nd | nd | nd |
| 30 | Cyranoside | 0.211 | nd | 0.039 | nd | 0.081 | nd | nd | nd | nd |
| 33 | Rutin | nd | nd | 1.101 | nd | nd | nd | nd | 0.026 | nd |
| 34 | Isoquercitrin | 1.025 | nd | 0.365 | nd | 0.368 | nd | nd | nd | nd |
| 35 | Hesperidin | nd | nd | 0.547 | nd | nd | nd | nd | nd | nd |
| 40 | Cosmosiin | 0.174 | 0.015 | 0.025 | nd | 0.03 | nd | nd | nd | nd |
| 42 | Astragalin | 0.206 | nd | nd | nd | 0.135 | nd | nd | nd | nd |
| 44 | Fisetin | nd | 0.032 | nd | nd | 0.024 | nd | nd | 0.059 | 0.003 |
| 48 | Naringenin | 0.019 | 0.019 | 0.015 | nd | 0.018 | 0.008 | 0.008 | 0.009 | 0.045 |
| 50 | Luteolin | 0.1 | 0.302 | 0.037 | nd | 0.213 | 0.153 | nd | 0.006 | 0.005 |
| 51 | Genistein | nd | nd | nd | nd | nd | nd | nd | 0.007 | 0.013 |
| 53 | Apigenin | 0.095 | 0.106 | 0.062 | nd | 0.186 | 0.064 | 0.009 | 0.025 | 0.289 |
| 54 | Amentoflavone | nd | nd | nd | nd | 0.003 | nd | nd | nd | nd |
| 56 | Acacetin | 0.003 | nd | 0.013 | 0.003 | nd | nd | nd | nd | 0.384 |
| Extract Type | Plant Parts | Inhibition % ± S.D. at 200 μg/mL * | |
|---|---|---|---|
| AChE | BChE | ||
| EtOH | A.M. leaves | 43.29 ± 2.78 | 17.58 ± 4.08 |
| A.M. roots | 9.76 ± 0.55 | - | |
| A.S. flowers | - | - | |
| A.S. leaves | - | - | |
| A.S. roots | - | - | |
| EtOAc | A.M. leaves | 86.27 ± 6.26 | 29.59 ± 4.54 |
| A.M. roots | 25.51 ± 1.56 | - | |
| A.S. flowers | - | - | |
| A.S. leaves | - | - | |
| A.S. roots | - | - | |
| DCM | A.M. leaves | 36.37 ± 3.17 | - |
| A.M. roots | - | - | |
| A.S. flowers | 5.99 ± 0.29 | - | |
| A.S. leaves | - | - | |
| A.S. roots | - | - | |
| Galanthamine hydrobromide (at 100 μg/mL *) | 88.67 ± 2.43 | 69.88 ± 1.93 | |
| Solvent | Samples | S. aureus ATCC6538 | E. coli ATCC8739 |
|---|---|---|---|
| Diameters of Zone of Inhibition (mm) | |||
| EtOH | A. macrocephalus | 25 | 0 |
| A. strictispinus | 13 | 0 | |
| EtOAc | A. macrocephalus | 24 | 13 |
| A. strictispinus | 16 | 0 | |
| DCM | A. macrocephalus | 24 | 0 |
| A. strictispinus | 0 | 0 | |
| Ampicilin | 35 | 24 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahrivari-Baviloliaei, S.; Orhan, I.E.; Senol Deniz, F.S.; Yilmaz, M.A.; Viapiana, A.; Konopacka, A.; Tugay, O.; Plenis, A. Chemical Profile and Evaluation of the Antioxidant, Anti-Enzymatic, and Antibacterial Activity of Astragalus strictispinus and Astragalus macrocephalus subsp. finitimus. Plants 2025, 14, 3485. https://doi.org/10.3390/plants14223485
Shahrivari-Baviloliaei S, Orhan IE, Senol Deniz FS, Yilmaz MA, Viapiana A, Konopacka A, Tugay O, Plenis A. Chemical Profile and Evaluation of the Antioxidant, Anti-Enzymatic, and Antibacterial Activity of Astragalus strictispinus and Astragalus macrocephalus subsp. finitimus. Plants. 2025; 14(22):3485. https://doi.org/10.3390/plants14223485
Chicago/Turabian StyleShahrivari-Baviloliaei, Saba, Ilkay Erdogan Orhan, Fatma Sezer Senol Deniz, Mustafa Abdullah Yilmaz, Agnieszka Viapiana, Agnieszka Konopacka, Osman Tugay, and Alina Plenis. 2025. "Chemical Profile and Evaluation of the Antioxidant, Anti-Enzymatic, and Antibacterial Activity of Astragalus strictispinus and Astragalus macrocephalus subsp. finitimus" Plants 14, no. 22: 3485. https://doi.org/10.3390/plants14223485
APA StyleShahrivari-Baviloliaei, S., Orhan, I. E., Senol Deniz, F. S., Yilmaz, M. A., Viapiana, A., Konopacka, A., Tugay, O., & Plenis, A. (2025). Chemical Profile and Evaluation of the Antioxidant, Anti-Enzymatic, and Antibacterial Activity of Astragalus strictispinus and Astragalus macrocephalus subsp. finitimus. Plants, 14(22), 3485. https://doi.org/10.3390/plants14223485

